Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = splice loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 753 KiB  
Article
Combined Genetic and Transcriptional Study Unveils the Role of DGAT1 Gene Mutations in Congenital Diarrhea
by Jingqing Zeng, Jing Ma, Lan Wang, Zhaohui Deng and Ruen Yao
Biomedicines 2025, 13(8), 1897; https://doi.org/10.3390/biomedicines13081897 - 4 Aug 2025
Viewed by 125
Abstract
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine [...] Read more.
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine the value of tissue RNA sequencing (RNA-seq) for assisting with the clinical diagnosis of some genetic variants of uncertain significance. Methods: We clinically evaluated a patient with watery diarrhea, vomiting, severe malnutrition, and total parenteral nutrition dependence. Possible pathogenic variants were detected using whole-exome sequencing (WES). RNA-seq was utilized to explore the transcriptional alterations in DGAT1 variants identified by WES with unknown clinical significance, according to the American College of Medical Genetics guidelines. Systemic examinations, including endoscopic and histopathological examinations of the intestinal mucosa, were conducted to rule out other potential diagnoses. Results: We successfully diagnosed a patient with congenital diarrhea and protein-losing enteropathy caused by a DGAT1 mutation and reviewed the literature of 19 cases of children with DGAT defects. The missense mutation c.620A>G, p.Lys207Arg located in exon 15, and the intronic mutation c.1249-6T>G in DGAT1 were identified by WES. RNA-seq revealed two aberrant splicing events in the DGAT1 gene of the patient’s small intestinal tissue. Both variants lead to loss-of-function consequences and are classified as pathogenic variants of congenital diarrhea. Conclusions: Rare DGAT1 variants were identified as pathogenic evidence of congenital diarrhea, and the detection of tissue-specific mRNA splicing and transcriptional effects can provide auxiliary evidence. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

40 pages, 1378 KiB  
Systematic Review
Liquid Biopsy Biomarkers in Metastatic Castration-Resistant Prostate Cancer Treated with Second-Generation Antiandrogens: Ready for Clinical Practice? A Systematic Review
by Andrei-Vlad Badulescu, Razvan Rahota, Alon Vigdorovits and Ovidiu Laurean Pop
Cancers 2025, 17(15), 2482; https://doi.org/10.3390/cancers17152482 - 27 Jul 2025
Viewed by 439
Abstract
Background: Second-generation androgen receptor signaling inhibitors are one of the main treatment options in metastatic castration-resistant prostate cancer (mCRPC). Nonetheless, a considerable proportion show limited response to treatment, which indicates the need for convenient, easily accessible predictor biomarkers, a role suited for [...] Read more.
Background: Second-generation androgen receptor signaling inhibitors are one of the main treatment options in metastatic castration-resistant prostate cancer (mCRPC). Nonetheless, a considerable proportion show limited response to treatment, which indicates the need for convenient, easily accessible predictor biomarkers, a role suited for liquid biopsy. Methods: We conducted a PRISMA-compliant systematic review of four databases (Embase, Medline, Scopus, Web of Science) to identify all studies (observational studies and clinical trials) investigating cell-free DNA, circulating tumor cells, exosomes, and circulating RNAs as prognostic markers in metastatic castration-resistant patients starting androgen receptor signaling inhibitors. We excluded studies that evaluated combination therapies, rare histological subtypes or included nonmetastatic or castrate-sensitive disease. We also evaluated whether published papers followed reporting guidelines (REMARK, STROBE, or CONSORT for abstracts). Results: We identified a total of 123 reports, from which we identified only a few well-studied and consistent biomarkers: androgen receptor overexpression/copy number gain and splice variant 7, as well as disease burden markers (circulating tumor DNA fraction and circulating tumor cell concentration). Alterations or copy number loss in tumor suppressors PTEN, RB1, and TP53 were second in terms of quantity and consistency of evidence. However, a large majority of identified biomarkers were relatively understudied or inconsistent. We identified two potential vulnerabilities: inconsistent adherence to reporting guidelines and the under-inclusion of patients of non-Western European ancestry. Conclusions: A large number of biomarkers were linked to worse outcomes in prostate cancer; nonetheless, in most cases, the evidence is limited or inconsistent, or even contradictory. The main exceptions pertain to androgen receptor signaling and disease burden, and, to a smaller extent, to certain tumor suppressor genes. Further studies are needed to confirm their clinical utility, using clear and consistent methodologies and including patients from currently understudied populations. Full article
(This article belongs to the Special Issue Recent Advances in Liquid Biopsy Biomarkers of Cancer)
Show Figures

Figure 1

17 pages, 12102 KiB  
Article
Multiomics Integration of Parkinson’s Disease Datasets Reveals Unexpected Roles of IRE1 in Its Pathology
by Bianka Alexandra Pasat, Matthieu Moncan, Eleftherios Pilalis, Afshin Samali, Aristotelis Chatziioannou and Adrienne M. Gorman
Int. J. Mol. Sci. 2025, 26(14), 6711; https://doi.org/10.3390/ijms26146711 - 12 Jul 2025
Viewed by 356
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a meta-analysis of transcriptomics and proteomics data using MultiOmicsIntegrator to gain insights into the post-transcriptional modifications and deregulated pathways associated with this disease. Our results reveal differential isoform usage between control and PD patient brain samples that result in enriched alternative splicing events, including an extended UTR length, domain loss, and the upregulation of non-coding isoforms. We found that Inositol-Requiring Enzyme 1 (IRE1) is active in PD samples and examined the role of its downstream signaling through X-box binding mRNA 1 (XBP1) and regulated IRE1-dependent decay (RIDD). We identified several RIDD candidates and showed that the enriched alternative splicing events observed are associated with RIDD. Moreover, in vitro mRNA cleavage assays demonstrated that OSBPL3, C16orf74, and SLC6A1 mRNAs are targets of IRE1 RNAse activity. Finally, a pathway enrichment analysis of both XBP1s and RIDD targets in the PD samples uncovered associations with processes such as immune response, oxidative stress, signal transduction, and cell–cell communication that have previously been linked to PD. These findings highlight a potential regulatory role of IRE in PD. Full article
Show Figures

Figure 1

17 pages, 3082 KiB  
Article
Full-Length Transcriptome Sequencing and hsp Gene Family Analysis Provide New Insights into the Stress Response Mechanisms of Mystus guttatus
by Lang Qin, Xueling Zhang, Yusen Li, Jun Shi, Yu Li, Yaoquan Han, Hui Luo, Dapeng Wang, Yong Lin and Hua Ye
Biology 2025, 14(7), 840; https://doi.org/10.3390/biology14070840 - 10 Jul 2025
Viewed by 463
Abstract
Mystus guttatus, a second-class protected species in China, has undergone severe population decline due to anthropogenic and environmental pressures, yet conservation efforts are hindered by limited genomic resources and a lack of mechanistic insights into its stress response systems. Here, the first [...] Read more.
Mystus guttatus, a second-class protected species in China, has undergone severe population decline due to anthropogenic and environmental pressures, yet conservation efforts are hindered by limited genomic resources and a lack of mechanistic insights into its stress response systems. Here, the first full-length transcriptome of M. guttatus was generated via SMRT sequencing. A total of 32,647 full-length transcripts were obtained, with an average length of 1783 bp. After structure and function annotation of full-length transcripts, 30,977 genes, 1670 transcription factors (TF), 918 alternative splicing (AS), and 11,830 simple sequence repeats (SSR) were identified. In order to further explore the stress resistance of M. guttatus, 93 genes belonging to the heat shock protein (HSP) family were identified and categorized into HSP70 and HSP90 subgroups. After phylogenetic analysis and selective stress analysis, it was discovered that the hsp family has suffered purifying selection and gene loss, potentially contributing to a decrease in the stress resilience and population of M. guttatus. Using protein interaction network and molecular docking tools, we observed the intricate interplay among HSPs and discovered HSP70-HOP-HSP90 interaction, which is an essential stress response mechanism. Our study sequenced the first full-length transcriptome of M. guttatus to enhance its genomic resources for its conservation and breeding and provide new insights into the future study of stress response mechanisms on M. guttatus. Full article
Show Figures

Figure 1

16 pages, 4634 KiB  
Article
Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng
by Jing Zhao, Juzuo Li, Xiujuan Lei, Peng Di, Hongwei Xun, Zhibin Zhang, Jian Zhang, Xiangru Meng and Yingping Wang
Plants 2025, 14(14), 2120; https://doi.org/10.3390/plants14142120 - 9 Jul 2025
Viewed by 320
Abstract
Ginseng rusty root symptoms (GRSs) compromise the yield and quality of Panax ginseng. While transcriptomic analyses have demonstrated extensive remodeling of stress signaling networks, the post-transcriptional defense circuitry remains obscure. We profiled alternative splicing (AS) in three phloem tissues, the healthy phloem [...] Read more.
Ginseng rusty root symptoms (GRSs) compromise the yield and quality of Panax ginseng. While transcriptomic analyses have demonstrated extensive remodeling of stress signaling networks, the post-transcriptional defense circuitry remains obscure. We profiled alternative splicing (AS) in three phloem tissues, the healthy phloem (AG), the non-reddened phloem neighboring lesions (BG), and the reddened lesion core (CG), to delineate AS reprogramming during GRS progression. The frequency of AS was sharply elevated in CG, with intron retention predominating. Extensive gains and losses of splice events indicate large-scale rewiring of the splice network. Overlapping differentially alternative spliced genes (DAGs) identified in both CG vs AG and CG vs BG contrasts were significantly enriched for RNA–spliceosome assembly and stress–response pathways, revealing a conserved post-transcriptional response associated with lesion formation. Integrative analysis of differentially expressed genes uncovered 671 loci under dual regulation; functional classification categorized these genes in receptor-like kinase signaling and chromatin-remodeling modules, underscoring the synergy between AS and transcriptional control. Moreover, the B subgenome disproportionately contributed stress-responsive transcripts in diseased tissue, suggesting an adaptive, subgenome-biased strategy. These findings demonstrate that dynamic AS remodeling and subgenome expression bias jointly orchestrate ginseng defense against GRS and provide a framework for breeding disease-resilient crops. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

23 pages, 5386 KiB  
Article
Structural and Functional Characterization of N-Glycanase-1 Pathogenic Variants
by Antje Banning, Lukas Hoeren, Isis Atallah, Ralph Orczyk, David Jacquier, Diana Ballhausen and Ritva Tikkanen
Cells 2025, 14(13), 1036; https://doi.org/10.3390/cells14131036 - 7 Jul 2025
Viewed by 386
Abstract
NGLY1 deficiency is a congenital disorder of deglycosylation, caused by pathogenic variants of the NGLY1 gene. It manifests as global developmental delay, hypo- or alacrima, hypotonia, and a primarily hyperkinetic movement disorder. The NGLY1 enzyme is involved in deglycosylation of misfolded N-glycosylated proteins [...] Read more.
NGLY1 deficiency is a congenital disorder of deglycosylation, caused by pathogenic variants of the NGLY1 gene. It manifests as global developmental delay, hypo- or alacrima, hypotonia, and a primarily hyperkinetic movement disorder. The NGLY1 enzyme is involved in deglycosylation of misfolded N-glycosylated proteins before their proteasomal degradation and in the activation of transcription factors that control the expression of proteasomal subunits. Here, we have characterized the pathogenic NGLY1 variants found in three Swiss NGLY deficiency patients, as well as the most common pathogenic NGLY1 variant, Arg401*, found in about 20% of patients. Our functional and structural assessments of these variants show that they cause a profound reduction in NGLY1 activity, severely reduced expression of NGLY1 protein, and misprocessing of the transcription factor NFE2L1. Furthermore, transcription of proteasomal subunits and NGLY1 mRNA splicing are impaired by some of these variants. Our in silico structural analysis shows that the Arg390Gln substitution results in destabilization of NGLY1 structure due to a loss of an ionic interaction network of Arg390 and potentially impairment of protein–protein interactions. Our results provide important information on the functional and structural effects of pathogenic NGLY1 variants and pave the way for structure-based development of personalized treatment options. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Lysosomal Storage Disorders)
Show Figures

Figure 1

15 pages, 621 KiB  
Article
Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars
by Mampe E. Ndlovu, Puffy Soundy, Jacob J. De Klerk and Martin M. Maboko
Horticulturae 2025, 11(7), 758; https://doi.org/10.3390/horticulturae11070758 - 1 Jul 2025
Viewed by 337
Abstract
Limited comparative research exists on evaluating the performance of tomato rootstocks under different growing methods, resulting in growers facing challenges when deciding which rootstock and growing method to use for improved yield. The effect of growing methods (scion of a single stem or [...] Read more.
Limited comparative research exists on evaluating the performance of tomato rootstocks under different growing methods, resulting in growers facing challenges when deciding which rootstock and growing method to use for improved yield. The effect of growing methods (scion of a single stem or double stems and non-grafted plant as the control) and rootstock cultivars (Goldbac, SVTX6258, and Booster) on the yield and quality of tomatoes grown in a plastic tunnel and a shade net structure was investigated. The splice grafting method was followed. In a plastic tunnel experiment, grafting and rootstock cultivar did not significantly affect the total soluble solids (TSS), pH, and electrical conductivity (EC) of the tomato juice, as well as percentage weight loss, yield, and fruit firmness. However, the Booster rootstock with a scion of 2 stems had high fruit Mg, K, P, and Fe contents, while the Goldbac rootstock with a scion of 1 stem and 2 stems had high fruit Ca and Fe contents compared to other treatments. The Goldbac and Booster rootstocks grafted to a scion of 2 stems had a high marketable yield. In a shade net experiment, the Booster rootstock with a scion of 2 stems had a high early harvest and total yield of tomatoes, followed by the Goldbac rootstock with a scion of 2 stems. Higher incidences of fruit cracking were noticed on the Booster rootstock grafted with a scion of a single stem. Generally, grafted plants on Booster and Goldbac had improved Mg, K, and P contents, unlike SVTX6258 with a scion of 1 stem. The Booster rootstock with a scion of 2 stems had significantly higher Mg, K, and P contents, while the sodium (Na) fruit content was high on the SVTX6258 rootstock with a scion of 1 stem. Grafting did not significantly affect fruit physiological disorders, weight loss, and TSS, or pH and EC of tomato juice. Grafting with a scion of two stems at the seedling stage significantly improved the tomato fruit mineral content and the total and marketable yield in a plastic tunnel and a shade net structure. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

13 pages, 1030 KiB  
Case Report
Novel Splice Variant in the HES7 Gene in Vietnamese Patient with Spondylocostal Dysostosis 4: A Case Report and Literature Review
by Ha Minh Nguyen, Nguyen Thi Kim Lien, Thinh Huy Tran, Ngoc Lan Nguyen, Suong Bang Thi Nguyen, Thi Hong Chau Bui, Nguyen Van Tung, Le Tat Thanh, Nguyen Thi Xuan, Van Khanh Tran and Nguyen Huy Hoang
Diagnostics 2025, 15(13), 1587; https://doi.org/10.3390/diagnostics15131587 - 23 Jun 2025
Viewed by 480
Abstract
Spondylocostal dysostosis (SCDO) is a group of rare genetic disorders characterized by segmental vertebral defects and rib deformities due to congenital misalignment, fusion, or reduction in the number of ribs. The causes of the disease have been found in seven genes, including DLL3 [...] Read more.
Spondylocostal dysostosis (SCDO) is a group of rare genetic disorders characterized by segmental vertebral defects and rib deformities due to congenital misalignment, fusion, or reduction in the number of ribs. The causes of the disease have been found in seven genes, including DLL3 (SCDO1, OMIM 602768), MESP2 (SCDO2, OMIM 608681), LFNG (SCDO3, OMIM 609813), HES7 (SCDO4, OMIM 608059), TBX6 (SCDO5, OMIM 602427), RIPPLY2 (SCDO6, OMIM 616566), and DLL1 (SCDO7). Among these, SCDO4, characterized by a short trunk, short neck, and mild nonprogressive scoliosis, is a rare form of reported cases. SCDO4 is identified as caused by homozygous or compound heterozygous variants in the HES7 gene (NM_001165967.2; NP_001159439.1). This study reports a novel homozygous HES7 splice variant (c.43-9T>A) detected in an SCDO4 patient by whole-exome sequencing and confirmed by Sanger sequencing. This variant was evaluated as an acceptor loss variant in intron 1 in the HES7 transcript by in silico analysis and was inherited from the patient’s parent. This study also reviews previous reports to provide a comprehensive overview of SCDO and help us to understand the pathogenesis to develop future treatment strategies. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

23 pages, 52584 KiB  
Article
DMSF-YOLO: A Dynamic Multi-Scale Fusion Method for Maize Tassel Detection in UAV Low-Altitude Remote Sensing Images
by Dongbin Liu, Jiandong Fang and Yudong Zhao
Agriculture 2025, 15(12), 1259; https://doi.org/10.3390/agriculture15121259 - 11 Jun 2025
Viewed by 1307
Abstract
Maize tassels are critical phenotypic organs in maize, and their quantity is essential for determining tasseling stages, estimating yield potential, monitoring growth status, and supporting crop breeding programs. However, tassel identification in complex field environments presents significant challenges due to occlusion, variable lighting [...] Read more.
Maize tassels are critical phenotypic organs in maize, and their quantity is essential for determining tasseling stages, estimating yield potential, monitoring growth status, and supporting crop breeding programs. However, tassel identification in complex field environments presents significant challenges due to occlusion, variable lighting conditions, multi-scale target complexities, and the asynchronous and irregular growth patterns characteristic of maize tassels. In response to these challenges, this paper presents a DMSF-YOLO model for maize tassel detection. In the network’s backbone front, conventional convolutions are replaced with conditional parameter convolutions (CondConv) to enhance feature extraction capabilities. A novel DMSF-P2 network architecture is designed, including a multi-scale fusion module (SSFF-D), a scale-splicing module (TFE), and a small object detection layer (P2), which further enhances the model’s feature fusion capabilities. By integrating a dynamic detection head (Dyhead), superior recognition accuracy for maize tassels across various scales is achieved. Additionally, the Wise-IoU loss function is used to improve localization precision and strengthen the model’s adaptability. Experimental results demonstrate that on our self-built maize tassel detection dataset, the proposed DMSF-YOLO model shows remarkable superiority compared with the baseline YOLOv8n model, with precision (P), recall (R), mAP50, and mAP50:95 increasing by 0.5%, 3.4%, 2.4%, and 3.9%, respectively. This approach enables accurate and reliable maize tassel detection in complex field environments, providing effective technical support for precision field management of maize crops. Full article
Show Figures

Figure 1

16 pages, 1060 KiB  
Review
Glucocorticoid Insensitivity: Is It a Question of Time and Place?
by Christopher Lambers and Michael Roth
Biomedicines 2025, 13(6), 1418; https://doi.org/10.3390/biomedicines13061418 - 10 Jun 2025
Viewed by 592
Abstract
Background: Glucocorticoid insensitivity is a problem for the therapy of chronic inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Both are non-communicable chronic inflammatory lung diseases with worldwide increasing incidences. Only symptoms can be controlled by inhaled or systemic [...] Read more.
Background: Glucocorticoid insensitivity is a problem for the therapy of chronic inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Both are non-communicable chronic inflammatory lung diseases with worldwide increasing incidences. Only symptoms can be controlled by inhaled or systemic glucocorticoids, often combined with β2 agonists and/or muscarinic receptor antagonists. The therapeutic effect of glucocorticoids varies between individuals, and a significant number of patients do not respond well. It is believed that only protein-free circulating unbound glucocorticoids can enter cells by diffusion and achieve their therapeutic effect by binding to the intracellular glucocorticoid receptor (GR), encoded by the NR3C1 gene, for which over 3000 single-nucleotide polymorphisms have been described. In addition, various GR protein isoforms result from 11 transcription start sites, and differential mRNA splicing leads to further GR protein variants; each can be modified post-translational and alter steroid response. To add more variety, some GR isoforms are expressed cell-type specific or in a sub-cellular location. The GR only functions when it forms a complex with other intracellular proteins that regulate ligand binding, cytosol-to-nuclear transport, and nuclear and cytosolic action. Importantly, the timing of the GR activity can be cell type, time, and condition specific. These factors are rarely considered when assessing disease-specific loss or reduced GR response. Conclusions: Future studies should analyze the timing of the availability, activity, and interaction of all components of the glucocorticoid signaling cascade(s) and compare these factors between non-diseased and diseased probands, applying the combination of all omics methods (250). Full article
Show Figures

Figure 1

26 pages, 5272 KiB  
Article
Molecular Screening Reveals De Novo Loss-of-Function NR4A2 Variants in Saudi Children with Autism Spectrum Disorders: A Single-Center Study
by Najwa M. Alharbi, Wejdan F. Baaboud, Heba Shawky, Aisha A. Alrofaidi, Reem M. Farsi, Khloud M. Algothmi, Shahira A. Hassoubah, Fatemah S. Basingab, Sheren A. Azhari, Mona G. Alharbi, Reham Yahya and Safiah Alhazmi
Int. J. Mol. Sci. 2025, 26(12), 5468; https://doi.org/10.3390/ijms26125468 - 7 Jun 2025
Viewed by 562
Abstract
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been [...] Read more.
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been fully elucidated. Herein, we aimed to explore the role of NR4A2 variants in the genetic underpinnings of ASD among Saudi children of different age ranges and phenotype severities. A total of 338 children with ASD from 315 unrelated families (293 simplex, 2 quads, and 1 quintet) were screened for NR4A2 variants via exome sequencing (ES) of the genomic DNA extracted from peripheral blood mononuclear cells (PBMCs), after which the probands with identified NR4A2 variants were further subjected to trio genetic analyses. ES analysis revealed 10 de novo NR4A2 variants (5 indels/nonsense, 2 missense, and 3 variants affecting splicing) in 8 unrelated probands (2.37%) and 2 affected siblings from 8 unrelated families (6 simplex (2.04%) and 2 quads (8.7%)). Three NR4A2 variants were notably recurrent among both affected and unaffected carriers. All identified indels and two splicing variants met the criteria for pathogenic/loss-of-function (LoF) variants according to the ACMG classification (PVS1), whereas the missense variants were classified as of uncertain significance (VUS). This study is among the first to identify such a high frequency of recurrent variants in an ASD cohort, suggesting their significant contribution to the etiopathogenesis of ASD within this population. Full article
Show Figures

Figure 1

13 pages, 1349 KiB  
Article
TMEM14A Gene Affects Hippocampal Sclerosis in Mesial Temporal Lobe Epilepsy
by Joonho Kim, Soomi Cho, Kyoung Hoon Jeong, Woo-Seok Ha, Kyung Min Kim, Min Kyung Chu, Ji Hyun Lee, Sangwoo Kim and Won-Joo Kim
J. Clin. Med. 2025, 14(11), 3810; https://doi.org/10.3390/jcm14113810 - 29 May 2025
Viewed by 618
Abstract
Background: Hippocampal sclerosis (HS) is a hallmark of mesial temporal lobe epilepsy (MTLE). However, genetic studies on MTLE patients with HS (MTLE-HS) remain limited, especially in East Asian populations. This study aimed to identify genetic variants associated with MTLE-HS and elucidate their [...] Read more.
Background: Hippocampal sclerosis (HS) is a hallmark of mesial temporal lobe epilepsy (MTLE). However, genetic studies on MTLE patients with HS (MTLE-HS) remain limited, especially in East Asian populations. This study aimed to identify genetic variants associated with MTLE-HS and elucidate their biological relevance through integrative genomic and transcriptomic analyses. Methods: We conducted a genome-wide association study (GWAS) on 157 Korean epilepsy patients, including 52 MTLE-HS subjects and 105 non-acquired focal epilepsy individuals without HS as controls. The splicing and expression quantitative trait locus (sQTL and eQTL, respectively) effects of significant variants were analyzed using GTEx datasets. Transcriptomic data from the hippocampi of MTLE-HS subjects and an epilepsy mouse model were examined to assess TMEM14A expression. Gene correlation enrichment analysis was performed to investigate potential associations with epilepsy-related phenotypes. Results: The GWAS identified rs6924849, located downstream of TMEM14A, as significantly associated with MTLE-HS. The sQTL analysis revealed that rs6924849 induces abnormal TMEM14A splicing in hippocampal tissue. Transcriptomic analyses showed reduced TMEM14A expression in MTLE-HS hippocampi, while mice with pilocarpine-induced epilepsy exhibited a transient increase in TMEM14A expression during the acute phase post-status epilepticus. Gene correlation enrichment analyses linked TMEM14A to seizure-related phenotypes in both humans and mice. Conclusions: This study identifies rs6924849 as a novel genetic variant associated with MTLE-HS in an East Asian population. The dysfunctional splicing and altered expression of TMEM14A may contribute to the neuronal loss characteristic of HS, as TMEM14A regulates apoptosis. These findings emphasize the potential role of TMEM14A in MTLE-HS pathogenesis from genomic and transcriptomic perspectives. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

27 pages, 770 KiB  
Review
Alternative Splicing in Tumorigenesis and Cancer Therapy
by Huiping Chen, Jingqun Tang and Juanjuan Xiang
Biomolecules 2025, 15(6), 789; https://doi.org/10.3390/biom15060789 - 29 May 2025
Cited by 1 | Viewed by 1268
Abstract
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly [...] Read more.
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly regulated by splicing factors (SFs), such as serine/arginine-rich proteins (SRs), heterogeneous nuclear ribonucleoproteins (hnRNPs), and RNA-binding motif (RBM) proteins. These factors recognize specific sequences, including 5′ and 3′ splice sites and branch points, to ensure precise splicing. While AS is essential for normal cellular function, its dysregulation is increasingly implicated in cancer pathogenesis. Aberrant splicing can lead to the production of oncogenic isoforms that promote tumorigenesis, metastasis, and resistance to therapy. Furthermore, such abnormalities can cause the loss of tumor-suppressing activity, thereby contributing to cancer development. Importantly, abnormal AS events can generate neoantigens, which are presented on tumor cell surfaces via major histocompatibility complex (MHC) molecules, suggesting novel targets for cancer immunotherapy. Additionally, splice-switching oligonucleotides (SSOs) have shown promise as therapeutic agents because they modulate splicing patterns to restore normal gene function or induce tumor-suppressive isoforms. This review explores the mechanisms of AS dysregulation in cancer, its role in tumor progression, and its potential as a therapeutic target. We also discuss innovative technologies, such as high-throughput sequencing and computational approaches, that are revolutionizing the study of AS in cancer. Finally, we address the challenges and future prospects of targeting AS for personalized cancer therapies, emphasizing its potential in precision medicine. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

9 pages, 1523 KiB  
Brief Report
Replication of Missense OTOG Gene Variants in a Brazilian Patient with Menière’s Disease
by Giselle Bianco-Bortoletto, Geovana Almeida-Carneiro, Helena Fabbri-Scallet, Alberto M. Parra-Perez, Karen de Carvalho Lopes, Tatiana de Almeida Lima Sá Vieira, Fernando Freitas Ganança, Juan Carlos Amor-Dorado, Andres Soto-Varela, Jose A. Lopez-Escamez and Edi Lucia Sartorato
Genes 2025, 16(6), 654; https://doi.org/10.3390/genes16060654 - 28 May 2025
Viewed by 673
Abstract
Ménière’s Disease (MD) is a chronic inner ear disorder defined by recurring episodes of vertigo, fluctuating sensorineural hearing loss, tinnitus, and/or fullness in the ear. Its prevalence varies by region and ethnicity, with scarce epidemiological data in the Brazilian population. Although most MD [...] Read more.
Ménière’s Disease (MD) is a chronic inner ear disorder defined by recurring episodes of vertigo, fluctuating sensorineural hearing loss, tinnitus, and/or fullness in the ear. Its prevalence varies by region and ethnicity, with scarce epidemiological data in the Brazilian population. Although most MD cases are sporadic, familial MD (FMD) is observed in 5% to 20% of European cases. Through exome sequencing, we have found a rare missense variant in the OTOG gene in a Brazilian individual with MD with probable European ancestry (chr11:17599671C>T), which was previously reported in a Spanish cohort. Two additional rare missense heterozygous OTOG variants were found in the same proband. Splice Site analysis showed that chr11:17599671C>T may lead to substantial changes generating exonic cis regulatory elements, and protein modelling revealed structural changes in the presence of chr11:17599671C>T, chr11:17576581G>C, and chr11:17594108C>T, predicted to highly destabilize the protein structure. The manuscript aims to replicate genes previously reported in a Spanish cohort, and the main finding is that a Brazilian patient with MD also has variants previously reported in familial MD, supporting OTOG as the most frequently mutated gene in MD. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

23 pages, 6786 KiB  
Article
P-Type Pentatricopeptide Repeat Proteins YS1 and YS2 Function in Splicing of petB Intron to Maintain Chloroplast Homeostasis During Rice Seedling Development
by Hui Sun, Yanshen Nie, Li Yu, Xiaohong Yue, Xin Hou and Jie Zhao
Int. J. Mol. Sci. 2025, 26(9), 4459; https://doi.org/10.3390/ijms26094459 - 7 May 2025
Viewed by 463
Abstract
Regulating chloroplast gene expression is crucial for maintaining chloroplast function and plant development. Pentatricopeptide repeat (PPR) proteins form a vast protein family that regulates organelle genes and has multiple functions during plant development. Here, we found that two P-type PPR proteins, YS1 (yellow-green [...] Read more.
Regulating chloroplast gene expression is crucial for maintaining chloroplast function and plant development. Pentatricopeptide repeat (PPR) proteins form a vast protein family that regulates organelle genes and has multiple functions during plant development. Here, we found that two P-type PPR proteins, YS1 (yellow-green seedling 1) and YS2, jointly regulated seedling development in rice. The loss of YS1 and YS2 exhibited the collapsed chloroplast thylakoids and decreased photosynthetic activity, leading to the yellowing and death of rice seedlings. YS1 and YS2 could directly bind to the transcript of the psbH-petB intergenic region to facilitate the splicing of petB intron, thereby affecting the splicing efficiency of petD, which is located downstream of petB in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD. The mutations in YS1 and YS2 led to decreased mature transcripts of petB and petD after splicing, significantly reducing the protein levels of PetB and PetD. This further led to deficiencies in the cytochrome b6/f and photosystem I complexes of the electron transport chain (ETC), ultimately resulting in decreased ETC-produced NADPH and reduced contents of carbohydrates in ys mutants. Moreover, transcriptome sequencing analysis revealed that YS1 and YS2 were vital for chloroplast organization and carbohydrate metabolism, as well as chloroplast RNA processing. In previous studies, the mechanism of petB intron splicing in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD of rice is unclear. Our study revealed that the two highly conserved proteins YS1 and YS2 were functionally redundant and played critical roles in photosynthesis and seedling development through their involvement in petB intron splicing to maintain chloroplast homeostasis in rice. This work broadened the perspective on PPR-mediated chloroplast development and laid a foundation for exploring the biofunctions of duplicated genes in higher plants. Full article
Show Figures

Figure 1

Back to TopTop