Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = spinach crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 583 KB  
Review
Harnessing Nanoparticles and Nanosuspensions to Combat Powdery Mildew: A Frontier in Vegetable and Fruit Protection
by Addisie Geremew, Alemayehu Shembo and Laura Carson
J. Fungi 2025, 11(12), 896; https://doi.org/10.3390/jof11120896 - 18 Dec 2025
Viewed by 401
Abstract
Powdery mildew poses a persistent threat to global vegetable and fruit production, particularly affecting leafy crops such as lettuce, spinach, and cucurbits. Conventional control strategies including chemical fungicides, biological agents, and resistant cultivars face limitations due to resistance development, environmental toxicity, and inconsistent [...] Read more.
Powdery mildew poses a persistent threat to global vegetable and fruit production, particularly affecting leafy crops such as lettuce, spinach, and cucurbits. Conventional control strategies including chemical fungicides, biological agents, and resistant cultivars face limitations due to resistance development, environmental toxicity, and inconsistent field efficacy. This review explores the emerging role of nanotechnology, specifically nanoparticles (NPs) and nanosuspensions (NSs), in managing powdery mildew. Metallic nanoparticles and non-metallic variants demonstrate potent antifungal activity through mechanisms such as membrane disruption, reactive oxygen species (ROS) generation, and gene regulation. Encapsulated nano-fungicides and sprayable essential oils represent potential application methods that could enhance delivery precision and activate plant defense mechanisms against powdery mildew. Integrating the application of nanoparticles and nanosuspensions with smart and digital delivery systems could be a promising strategy for managing powdery mildew infestation in fruits and vegetables. Despite their potential, challenges including ecotoxicity, formulation stability, scalability, and regulatory gaps must be addressed. This review underscores the need for interdisciplinary research to advance safe, effective, and sustainable nano-enabled solutions for powdery mildew control. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

16 pages, 3103 KB  
Article
Spinach (Spinacia oleracea L.) Flavonoids Are Hydrolyzed During Digestion and Their Bioaccessibility Is Under Stronger Genetic Control Than Raw Material Content
by Michael P. Dzakovich, Alvin L. Tak, Elaine A. Le, Rachel P. Dang, Benjamin W. Redan and Geoffrey A. Dubrow
Foods 2025, 14(24), 4314; https://doi.org/10.3390/foods14244314 - 15 Dec 2025
Viewed by 281
Abstract
Spinach (Spinacia oleracea L.) is a commonly consumed crop with a diverse array of unique flavonoids. These molecules likely contribute to the health benefits associated with spinach consumption. However, little is known about the genetic diversity of these molecules, their bioaccessibility, and [...] Read more.
Spinach (Spinacia oleracea L.) is a commonly consumed crop with a diverse array of unique flavonoids. These molecules likely contribute to the health benefits associated with spinach consumption. However, little is known about the genetic diversity of these molecules, their bioaccessibility, and the heritability of these traits. We assembled a diversity panel of 30 F1 and open-pollinated spinach accessions and cultivated them under controlled conditions over two periods. Quantification of 39 flavonoids revealed that their concentration is largely influenced by environmental factors, and at least two divergent branches in the spinach flavonoid biosynthesis pathway may exist. Despite generally similar trends in the amounts of major flavonoids, open-pollinated and F1 varieties of spinach could be distinguished based on the concentrations of minor flavonoid species. Broad-sense heritability estimates for absolute bioaccessibility accounted for more genetic variation than raw material content, suggesting that this trait is preferable for breeders seeking to alter the phytochemical profile of spinach. Lastly, we found that several spinach flavonoids are unstable under digestive conditions, which was made evident by the proportion of aglycones rising from 0.1% to approximately 15% of total flavonoids after digestion. Together, these data suggest that spinach flavonoid biosynthesis and bioaccessibility are complex and contextualize how these molecules may behave in vivo. Full article
Show Figures

Figure 1

17 pages, 4283 KB  
Article
Genetic Mapping and Transcriptomic Analysis of Sepal-Derived Seed Shape in Spinach
by Mahpara Fatima, Xiaokai Ma, Ehsan Khalid and Ray Ming
Int. J. Mol. Sci. 2025, 26(22), 10838; https://doi.org/10.3390/ijms262210838 - 7 Nov 2025
Viewed by 540
Abstract
Spinach is a beloved vegetable crop and widely cultivated worldwide. It is dioecious with male and female plants, although monoecious mutations exist. Female spinach exhibits two distinct sepal morphologies—thorn-shaped and round-shaped determine seed shape and strongly influence seed handling, mechanized sowing, and cultivar [...] Read more.
Spinach is a beloved vegetable crop and widely cultivated worldwide. It is dioecious with male and female plants, although monoecious mutations exist. Female spinach exhibits two distinct sepal morphologies—thorn-shaped and round-shaped determine seed shape and strongly influence seed handling, mechanized sowing, and cultivar classification. To dissect the genetic basis of this trait, we developed an F2 population from contrasting parental lines and constructed a high-density linkage map with ~1615 bin markers spanning ~994.04 cm. A major 4.31 Mb genomic interval on chromosome 4, flanked by tightly linked markers, was consistently associated with sepal morphology. Transcriptome profiling across early and mature sepal developmental stages revealed significant enrichment of cell cycle-related pathways, including DNA replication, repair, mitosis, and cytokinesis. By integrating differential expression analysis with weighted gene co-expression network analysis, we identified 25 DEGs within the mapped interval, 11 of which showed strong co-expression with hub genes in trait-associated modules. Structural variation analysis further uncovered promoter and coding sequence polymorphisms in a subset of candidate genes. This study highlights 11 promising candidate genes potentially regulating sepal-derived seed morphology in spinach, rather than confirming definitive causal genes, providing valuable targets for functional validation and new insights into the genetic regulation of sepal development. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Graphical abstract

21 pages, 8339 KB  
Article
Effects and Mechanisms of Attapulgite Clay-g-(AA-co-AAm) Hydrogel (ACH) in Alleviating Saline Stress in Spinach
by Yinhua Wang, Bingqin Teng, Haodong Zhang, Zhengqian Zhou, Yangbin Xin, Liqun Cai and Jun Wu
Plants 2025, 14(21), 3330; https://doi.org/10.3390/plants14213330 - 31 Oct 2025
Viewed by 412
Abstract
Soil salinization restricts the sustainable development of global agriculture, expanding at an annual rate of approximately 1 million hectares. In China, the total area of saline–alkali land reaches 170 million hectares, of which the arable land area exceeds 50 million hectares. The arid [...] Read more.
Soil salinization restricts the sustainable development of global agriculture, expanding at an annual rate of approximately 1 million hectares. In China, the total area of saline–alkali land reaches 170 million hectares, of which the arable land area exceeds 50 million hectares. The arid northwest region witnesses worsening soil salinization due to arid climate and improper irrigation practices, which seriously affects the yield of crops such as spinach (Spinacia oleracea L.). As a leafy vegetable with high nutritional value and economic significance, spinach exhibits growth inhibition, leaf yellowing, and disrupted physiological metabolism under saline–alkali stress. Therefore, this study investigates the alleviating effects and mechanisms of Attapulgite Clay-g-(AA-co-AAm) Hydrogel (ACH) on spinach under salt stress (NaCl) and alkaline stress (NaHCO3). The results show that ACH has a loose, porous structure. As the addition of Attapulgite Clay increases, the surface roughness and porosity improve while retaining organic functional groups (amide groups, carboxyl groups) and inorganic Si-O bonds, providing a structural foundation for stress mitigation. In terms of yield enhancement, ACH effectively alleviates salt–alkali stress: under severe salt stress (SS2), 0.2% ACH increased leaf area by 91% and leaf weight by 95.69%; under mild alkaline stress (AS1), 0.2% ACH increased leaf area by 46.3% and leaf weight by 46.21%; and under severe mixed salt–alkali stress (MS2), 0.4% ACH increased root weight by 49.83%. Physiologically, ACH reduced proline content (51.25% reduction under severe mixed stress) and malondialdehyde (MDA) content (68.98% reduction under severe alkaline stress) while increasing soluble sugar content (63.54% increase under mixed stress) and antioxidant enzyme activity (SOD, POD, CAT). In terms of ion regulation, ACH reduced Na+ accumulation in roots and leaves (61.12% reduction in roots and 36.4% reduction in leaves under severe salt stress) and maintained potassium–sodium balance. To conclude, ACH mitigates the adverse effects of salt–alkali stress by coordinately modulating spinach’s growth, physiological metabolic processes, and ion balance. This synergistic regulatory effect ultimately contributes to sustaining high yields of spinach. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 3686 KB  
Article
Crab Shell Biochar and Compost Synergistically Mitigate Heavy Metal Toxicity in Soil–Plant System
by Fozia Aslam, Arbab Jamait, Shengsen Wang, Muhammad Mahroz Hussain and Xiaozhi Wang
Agronomy 2025, 15(10), 2427; https://doi.org/10.3390/agronomy15102427 - 20 Oct 2025
Viewed by 786
Abstract
Addressing the threat of heavy metal contamination in agriculture, this study evaluated the efficacy of crab shell biochar (CB) and compost (CO) in immobilizing copper (Cu), zinc (Zn), and lead (Pb). The objective was to determine the impact of solitary and combined applications [...] Read more.
Addressing the threat of heavy metal contamination in agriculture, this study evaluated the efficacy of crab shell biochar (CB) and compost (CO) in immobilizing copper (Cu), zinc (Zn), and lead (Pb). The objective was to determine the impact of solitary and combined applications of CB and CO on soil physicochemical properties, nutrient availability, HMs bioavailability, subsequent growth, and oxidative stress responses in spinach plants. The experiment involved two soil types (clay loam and sandy clay loam) with differing initial properties, which were simultaneously spiked with 300 mg kg−1 Cu, 500 mg kg−1 Zn, and 400 mg kg−1 Pb, aged for 30 days, and then treated with varying doses of CB and CO (e.g., 1% and 1.5% w/w). Key results demonstrated that the combined application of 1.5% CB + 1.5% CO was most effective, significantly (p < 0.05) increasing soil pH and reducing DTPA-extractable Cu (by 53–64%), Zn (42–50%), and Pb (57–59%) in both soil types. This treatment also led to a pronounced decrease in the bioaccumulation factor (BF) of HMs in spinach, coupled with improved plant growth parameters (height, fresh/dry weight, chlorophyll content) and reduced oxidative stress (as indicated by lower levels of MDA and antioxidant enzymes). We conclude that the synergistic interaction between CB and CO creates a multi-mechanistic immobilization system, offering a highly effective strategy for the remediation of heavy metal-contaminated soils and the safe cultivation of crops. Full article
Show Figures

Figure 1

16 pages, 3046 KB  
Article
Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils
by Qiaobo Song, Jian Ma, Xin Chen, Caiyan Lu, Huaihai Chen, Guangyu Chi and Yanyu Hu
Agronomy 2025, 15(10), 2382; https://doi.org/10.3390/agronomy15102382 - 13 Oct 2025
Viewed by 885
Abstract
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, [...] Read more.
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, observing the improvement effect of saline–alkali soil and the growth of crops when acid fermentation products of vegetables, humic acid-like substances, and corn straw were applied either individually or in combination. The results revealed that both the sole and combined application of organic materials could enhance the yield of spinach. Particularly, humic acid-like substances increased spinach yield to six times that of the chemical fertilizer treatment. Although the application of organic materials led to a decline in the diversity and richness indices of the microbial community in saline–alkali soil (except fungal richness), the combined use of organic materials contributed to a healthier trend in the soil microbial community structure. Beyond its effects on soil nutrients such as total carbon and total nitrogen, the improvement in soil organic matter activity caused by the joint application of organic materials was identified as the primary factor responsible for enhancing the health of the soil microbial community and the remediation effects on saline–alkali soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

25 pages, 1346 KB  
Article
Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield
by Fatemeh Ahmadnia, Ali Ebadi, Mohammad Taghi Alebrahim and Masoud Hashemi
Agriculture 2025, 15(19), 2002; https://doi.org/10.3390/agriculture15192002 - 25 Sep 2025
Viewed by 816
Abstract
Optimizing seeding ratios in mixed cover crop species can maximize their ecological benefits, such as soil properties and weed suppression. A two-year field study assessed seven oat (O) and daikon radish (D) ratios (100:0 to 0:100) for their effects on soil quality, weed [...] Read more.
Optimizing seeding ratios in mixed cover crop species can maximize their ecological benefits, such as soil properties and weed suppression. A two-year field study assessed seven oat (O) and daikon radish (D) ratios (100:0 to 0:100) for their effects on soil quality, weed pressure, and subsequent spinach yield. Measured parameters included cover crop biomass, C:N ratio, land equivalence ratio (LER), soil organic carbon (SOC), microbial population, soil enzyme activities, bulk density, porosity, moisture, and water infiltration time. The impact of intercrop residues and two weeding strategies (hand weeding and no weeding) on weed pressure and spinach yield was also assessed. Oat monoculture produced the highest biomass (338.7 g m−2), while radish monoculture biomass was the lowest (256.1 g m−2). Yet the 30:70 (O:D) ratio contributed to the highest SOC (0.96). The C:N ratio of all intercropped combinations was below the critical threshold (25:1) that causes N immobilization, with oat monoculture having the highest value (23:1). The microbial population was highest with the 10:90 (O:D) ratio, with 12.8 × 10−4 most probable number per g−1 soil. While urease and dehydrogenase enzyme activities were not affected by intercrop ratios, β-glucosidase and alkaline phosphatase activities were up to 30% higher in daikon radish-dominated intercrops. Bulk density decreased by 31.7% in oat monoculture, whereas infiltration time was shortened in daikon radish monoculture by 41.7% (4.6 s). Weed suppression was strongest in oat monoculture and the 90:10 (O:D) intercropping, reducing weed populations by over 30%. Spinach yield was highest in oat monoculture with hand weeding (842.9 g m−2), with a 40.2% increase over weeding alone. Overall, daikon radish-dominated intercropping ratios were more effective in enhancing soil properties, whereas oat-dominated intercropping improved spinach yield, mainly due to slower decomposition, thus better suppressing weeds. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 4337 KB  
Article
Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth
by Chengyao Jiang, Kexin Zhang, Yue Ma, Yu Song, Mengyao Li, Yangxia Zheng, Tonghua Pan and Wei Lu
Agriculture 2025, 15(17), 1852; https://doi.org/10.3390/agriculture15171852 - 30 Aug 2025
Cited by 1 | Viewed by 972
Abstract
With the development of modern agricultural technology, plant factories have become an important way to achieve efficient and sustainable crop production. Accurate understanding of the light received by plants is the key to improving the light energy utilization efficiency of lamps and ensuring [...] Read more.
With the development of modern agricultural technology, plant factories have become an important way to achieve efficient and sustainable crop production. Accurate understanding of the light received by plants is the key to improving the light energy utilization efficiency of lamps and ensuring the benefits of plant factories. Ray tracing technology, as one of the key technologies in plant factories, is of great significance to analyze the growing light environment of vegetables. Spinach has high nutritional value and is loved by the public and is one of the main crops grown in plant factories. In this paper, LightTools, TracePro, and Ansys Lumerical FDTD Solution, which are currently mature light environment tracking software in the field of lighting, are selected as the research objects to investigate their performance in simulating the light environment of spinach leaf surfaces under different planting arrangements and different lamp source distances. The results show as follows: Under the rectangular planting arrangement, the leaves received more light, and the plants grew faster. Different planting arrangements of plants had little effect on the simulation effect of the same kind of software, but the simulation effect of the three kinds of software under the same planting arrangement was significantly different, and the difference between the simulated value and the measured value of TracePro was the least. Further, TracePro was used to trace and simulate the leaf surface light conditions of spinach under a rectangular planting arrangement at different lighting distances, and the simulation results showed that there was no significant difference between the software simulation value and the measured value, and the simulation accuracy was the highest when the distance from the light source was 30 cm. Therefore, TracePro software can accurately simulate the light intensity of spinach leaves during the growth process and is most suitable for monitoring the change of light environment of spinach growth in plant factories. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

19 pages, 1728 KB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 - 7 Aug 2025
Viewed by 1052
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabolites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
Show Figures

Figure 1

22 pages, 2809 KB  
Article
Evaluation of Baby Leaf Products Using Hyperspectral Imaging Techniques
by Antonietta Eliana Barrasso, Claudio Perone and Roberto Romaniello
Appl. Sci. 2025, 15(15), 8532; https://doi.org/10.3390/app15158532 - 31 Jul 2025
Viewed by 608
Abstract
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method [...] Read more.
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method to analyze the different hydration levels in baby-leaf products. The species being researched was spinach, harvested at the baby leaf stage. Utilizing a large dataset of 261 wavelengths from the hyperspectral imaging system, the feature selection minimum redundancy maximum relevance (FS-MRMR) algorithm was applied, leading to the development of a neural network-based prediction model. Finally, a mathematical classification model K-NN (k-nearest neighbors type) was developed in order to identify a transfer function capable of discriminating the hyperspectral data based on a threshold value of absolute leaf humidity. Five significant wavelengths were identified for estimating the moisture content of baby leaves. The resulting model demonstrated a high generalization capability and excellent correlation between predicted and measured data, further confirmed by the successful training, validation, and testing of a K-NN-based statistical classifier. The construction phase of the statistical classifier involved the use of the experimental dataset and the critical humidity threshold value of 0.83 (83% of leaf humidity) was considered, below which the baby-leaf crop requires the irrigation intervention. High percentages of correct classification were achieved for data within two humidity classes. Specifically, the statistical classifier demonstrated excellent performance, with 81.3% correct classification for samples below the threshold and 99.4% for those above it. The application of advanced spectral analysis and artificial intelligence methods has led to significant progress in leaf moisture analysis and prediction, yielding substantial implications for both agriculture and biological research. Full article
(This article belongs to the Special Issue Advances in Automation and Controls of Agri-Food Systems)
Show Figures

Figure 1

25 pages, 1258 KB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Cited by 2 | Viewed by 4496
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

29 pages, 1493 KB  
Article
Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce
by Alessandro Esposito, Alessandra Moncada, Filippo Vetrano, Eristanna Palazzolo, Caterina Lucia and Alessandro Miceli
Horticulturae 2025, 11(7), 846; https://doi.org/10.3390/horticulturae11070846 - 17 Jul 2025
Viewed by 1519
Abstract
Tetragonia tetragonioides, or New Zealand spinach, is a widespread halophyte native to eastern Asia, Australia, and New Zealand, and naturalized in some Mediterranean regions. This underutilized vegetable is consumed for its leaves, raw or cooked. For the first time, we investigated the [...] Read more.
Tetragonia tetragonioides, or New Zealand spinach, is a widespread halophyte native to eastern Asia, Australia, and New Zealand, and naturalized in some Mediterranean regions. This underutilized vegetable is consumed for its leaves, raw or cooked. For the first time, we investigated the feasibility of using whole baby plants (including stems and leaves) as raw material for ready-to-eat (RTE) vegetable production. Our study assessed Tetragonia’s suitability for hydroponic cultivation over two cycles (autumn–winter and spring). We investigated the impact of increasing nutrient rates (only water, half-strength, and full-strength nutrient solutions) and plant densities (365, 497, and 615 plants m−2 in the first trial and 615 and 947 plants m−2 in the second) on baby plant production. We also analyzed the plants’ morphological and biochemical characteristics, and their viability for cold storage (21 days at 4 °C) as a minimally processed product. Tetragonia adapted well to hydroponic cultivation across both growing periods. Nevertheless, climatic conditions, plant density, and nutrient supply significantly influenced plant growth, yield, nutritional quality, and post-harvest storage. The highest plant density combined with the full-strength nutrient solution resulted in the highest yield, especially during spring (1.8 kg m−2), and favorable nutritional characteristics (β-carotene, Vitamin C, Fe, Cu, Mn, and Zn). Furthermore, Tetragonia baby plants proved suitable for minimal processing, maintaining good quality retention for a minimum of 14 days, thus resulting in a viable option for the RTE vegetable market. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

14 pages, 1377 KB  
Article
Sensitivity of Leafy Vegetables to Simulated Mesotrione Residues in the Soil
by Milena Radivojević, Dejan Nedeljković and Katarina Jovanović-Radovanov
Horticulturae 2025, 11(6), 644; https://doi.org/10.3390/horticulturae11060644 - 6 Jun 2025
Viewed by 885
Abstract
Mesotrione is a triketone herbicide widely used for weed control in maize (Zea mays L.). In a bioassay conducted under controlled conditions, the simulated residual effects of mesotrione on leafy vegetables, including chard, lettuce, spinach, and endive were evaluated. The herbicide was [...] Read more.
Mesotrione is a triketone herbicide widely used for weed control in maize (Zea mays L.). In a bioassay conducted under controlled conditions, the simulated residual effects of mesotrione on leafy vegetables, including chard, lettuce, spinach, and endive were evaluated. The herbicide was applied at nine concentrations (0–240 µg a.i./kg soil), with the highest corresponding to the recommended field application rate. Nonlinear regression analysis was used to describe the relationship between morphological (shoot fresh weight) and physiological (pigment content) parameters as a function of herbicide dose. Shoot fresh weight was a more sensitive parameter than pigment content with mean EC50 ± SE values of 23.9 ± 3.5 (chard), 34.3 ± 7.7 (lettuce), 13.2 ± 2.4 (spinach), and 990.3 ± 3921.5 (endive) µg a.i./kg soil, indicating that spinach is the most sensitive and endive the most tolerant species. A mesotrione residue level equivalent to EC20 for shoot fresh weight corresponds to approximately 2, 4, 6, and 29% of the recommended application rate of mesotrione at which spinach, chard, lettuce, and endive (respectively) can be safely sown. Therefore, spinach, chard, and lettuce are not suitable substitutes for maize when the latter fails and should not be sown after silage maize. In such cases, only endive appears to be a viable alternative without the risk of crop injury. Full article
(This article belongs to the Special Issue New Advances in Green Leafy Vegetables)
Show Figures

Figure 1

17 pages, 3653 KB  
Article
Genome-Wide Identification and Characterization of the mTERF Gene Family in Spinach and the Role of SomTERF5 in Response to Heat Stress
by Ziyue Sun, Li Li, Yaqi Liu, Yanshuang Liu, Gaojian Li, Yueyue Li, Qingbo Yu, Meihong Sun and Xiaofeng Xu
Plants 2025, 14(11), 1570; https://doi.org/10.3390/plants14111570 - 22 May 2025
Viewed by 1000
Abstract
Spinach (Spinacia oleracea L.), a globally consumed, nutrient-dense vegetable, contains diverse vitamins and minerals. However, elevated temperatures can constrain yield by interrupting leaf development and photosynthetic efficiency. The mitochondrial transcription termination factor (mTERF) family, which regulates organellar gene expression, plays crucial roles [...] Read more.
Spinach (Spinacia oleracea L.), a globally consumed, nutrient-dense vegetable, contains diverse vitamins and minerals. However, elevated temperatures can constrain yield by interrupting leaf development and photosynthetic efficiency. The mitochondrial transcription termination factor (mTERF) family, which regulates organellar gene expression, plays crucial roles in plant growth and photosynthetic regulation. Thus, characterization of the spinach mTERF (SomTERF) family is critical for elucidating thermotolerance mechanisms in this crop. In this study, we systematically identified 31 SomTERF genes from the spinach genome, which are distributed across five chromosomes and nine unassembled genomic scaffolds. Subcellular localization predictions indicated that these proteins predominantly target chloroplasts and mitochondria. Conserved domain analyses confirmed that all SomTERF proteins possess canonical mTERF domains and ten conserved motifs. Phylogenetic clustering segregated these proteins into nine distinct subgroups (I–IX), with significant divergence observed in gene copy numbers among subgroups. Cis-element screening identified an abundance of heat-, cold-, and hormone-responsive motifs within SomTERF promoter regions. Notably, seven members (including SomTERF5) exhibited pronounced enrichment of heat shock elements (HSEs). Organ-specific expression profiling revealed preferential leaf expression of these seven genes. Comparative RT-qPCR in heat-sensitive (Sp73) and heat-tolerant (Sp75) cultivars under thermal stress demonstrated genotype-dependent expression dynamics. Functional validation of SomTERF5 was achieved through cloning, and transgenic Arabidopsis overexpressing SomTERF5 showed significantly enhanced thermotolerance, as evidenced by improved survival rates following heat treatment. Yeast two-hybrid (Y2H) assays further revealed physical interaction between SomTERF5 and SopTAC2. This study provides a comprehensive foundation for understanding mTERF-mediated developmental regulation and advanced molecular breeding strategies for developing heat-resilient spinach varieties. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

16 pages, 2969 KB  
Article
Enhancing Crop Yield Estimation in Spinach Crops Using Synthetic Aperture Radar-Derived Normalized Difference Vegetation Index: A Sentinel-1 and Sentinel-2 Fusion Approach
by Francisco-Javier Mesas-Carrascosa, Juan Tomás Arosemena-Jované, Susana Cantón-Martínez, Fernando Pérez-Porras and Jorge Torres-Sánchez
Remote Sens. 2025, 17(8), 1412; https://doi.org/10.3390/rs17081412 - 16 Apr 2025
Cited by 3 | Viewed by 2849
Abstract
Accurate crop yield estimation is crucial for food security and effective crop management in precision agriculture. Previous studies have shown the correlation between remotely sensed data and crop yield, emphasizing the need for continuous time series of radiometric indices from satellite imagery. However, [...] Read more.
Accurate crop yield estimation is crucial for food security and effective crop management in precision agriculture. Previous studies have shown the correlation between remotely sensed data and crop yield, emphasizing the need for continuous time series of radiometric indices from satellite imagery. However, passive sensors are limited by cloud cover, restricting valid image acquisition. This study explored the integration of Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical data to enhance NDVI estimation and yield prediction of spinach. Random Forest Regression models were developed to predict NDVI from SAR data at two scales: (i) a general crop-scale model and (ii) specific plot-scale models. Both scales achieved R2 values above 0.9 for NDVI estimation, with better results at the plot scale. Integrating NDVI values derived from Sentinel-1 significantly improved yield estimation accuracy using NDVI time series compared to using NDVI from Sentinel-2 alone. The results indicated that plot-scale NDVI estimation had the lowest error rates (1.4%) and the highest R2 (0.89), outperforming the crop-scale model. The integration of SAR-based NDVI reduced data gaps caused by cloud cover and enabled earlier, more informed crop management decisions. These findings underscore the importance of SAR-based NDVI estimation for enhancing yield predictions in precision agriculture. Full article
Show Figures

Figure 1

Back to TopTop