Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Material
2.2. Soil Sampling and Measurements
2.3. DNA Extraction, 16S, ITS rRNA Gene Amplification, and Sequencing
2.4. Statistical Analysis
3. Results
3.1. Crop Yield and Basic Soil Properties
3.2. Fourier Transform Infrared Spectroscopy Analysis
3.3. Soil Microbial Community Structure Analysis
3.4. Relationships Among Soil Chemical, Microbiological Properties, and Plant Growth
4. Discussion
4.1. Effects of Exogenous Organic Materials on SOM Chemical Composition
4.2. Effects of Exogenous Organic Materials on Soil Microbial Community Composition
4.3. Relationships Between Edaphic Factors and Soil Microbial Community Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from saltaffected soils. Energ. Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Schofield, R.V.; Kirkby, M.J. Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob. Biogeochem. Cycles 2003, 17, 1078. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2014, 22, 123–131. [Google Scholar] [CrossRef]
- Cai, J.F.; Jiang, F.; Liu, X.S.; Sun, K.; Wang, W.; Zhang, M.X.; Li, H.L.; Xu, H.F.; Kong, W.J.; Yu, F.H. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Sci. Total Environ. 2021, 788, 147707. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, X.F.; Li, Y.Y.; Sun, Q.; Dai, L.N.; Li, J.W.; Guo, Z.J.; Zhang, L.; Ci, L.J. Functional carbon nanodots improve soil quality and tomato tolerance in saline–alkali soils. Sci. Total Environ. 2022, 830, 154817. [Google Scholar] [CrossRef]
- Lei, S.H.; Jia, X.X.; Zhao, C.L.; Shao, M.G. A review of saline–alkali soil improvements in China: Efforts and their impacts on soil properties. Agric. Water Manag. 2025, 317, 109617. [Google Scholar] [CrossRef]
- Amini, S.; Ghadiri, H.; Chen, C.R.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Liang, J.P.; Li, Y.; Si, B.C.; Wang, Y.Z.; Chen, X.G.; Wang, X.F.; Chen, H.R.; Wang, H.R.; Zhang, F.C.; Bai, Y.G.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline–alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef]
- Zuo, W.G.; Xu, L.; Qiu, M.H.; Yi, S.Q.; Wang, Y.M.; Shen, C.; Zhao, Y.L.; Li, Y.L.; Gu, C.H.; Shan, Y.H.; et al. Effects of different exogenous organic materials on improving soil fertility in coastal saline–alkali soil. Agronomy 2023, 13, 61. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, J.Y.; Wang, J.P. Seasonality of soil respiration under gypsum and straw amendments in an arid saline–alkali soil. J. Environ. Manag. 2021, 277, 111494. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chen, H.Q.; Gong, Y.S.; Fan, M.S.; Yang, H.F.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutr. Cycl. Agroecosyst. 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Chavez-Garcia, E.; Siebe, C. Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments. Soil Tillage Res. 2019, 189, 176–188. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Liu, R.N.; Liang, B.J.; Zhao, H.L.; Zhao, Y. Impacts of various amendments on the microbial communities and soil organic carbon of coastal saline–alkali soil in the Yellow River Delta. Front. Microbiol. 2023, 14, 1239855. [Google Scholar] [CrossRef]
- Zhao, W.B.; Wang, S.F.; Tang, L.; Xiao, J.; Chen, G.C. Combined application of humic acid and attapulgite improves physical structure and nutrients in coastal saline–alkali soils. Land Degrad. Dev. 2025, 36, 4415–4424. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef]
- Xu, X.; Guo, L.; Wang, S.B.; Wang, X.Y.; Ren, M.; Zhao, P.J.; Huang, Z.Y.; Jia, H.J.; Wang, J.H.; Lin, A.J. Effective strategies for reclamation of saline–alkali soil and response mechanisms of the soil-plant system. Sci. Total Environ. 2023, 905, 167179. [Google Scholar] [CrossRef]
- Wang, X.Y.; Bian, Q.; Jiang, Y.J.; Zhu, L.Y.; Chen, Y.; Liang, Y.T.; Sun, B. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 2021, 153, 108062. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, H.; Liu, X.X.; Chen, Y.; Lu, Y.; Shen, M.C.; Dang, K.K.; Zhao, Y.; Dong, Y.H.; Li, Q.Y.; et al. Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use Manag. 2022, 38, 964–977. [Google Scholar] [CrossRef]
- Saqib, A.; Ahmed, K.; Naseem, A.; Qadir, G.; Nawaz, M.; Khalid, M.; Warraich, I.; Arif, M. Integrated use of humic acid and gypsum under saline-sodic conditions. Pak. J. Agric. Res. 2020, 33, 684–691. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y.Y.; Yang, M.C.; Zhang, Y.P.; Zhang, S.G.; Shen, T.L.; Ding, F.J.; Li, Z.Y.; Liu, W.Z.; Cui, J.T.; et al. Effects of different amendments on aggregate stability and microbial communities of coastal saline–alkali soil in the Yellow River Delta. Land Degrad. Dev. 2022, 34, 1694–1707. [Google Scholar] [CrossRef]
- Zhu, T.S.; Shao, T.Y.; Liu, J.Y.; Li, N.; Long, X.H.; Gao, X.M.; Rengel, Z. Improvement of physico-chemical properties and microbiome in different salinity soils by incorporating jerusalem artichoke residues. Appl. Soil Ecol. 2021, 158, 103791. [Google Scholar] [CrossRef]
- Duan, M.; Wu, F.P.; Jia, Z.K.; Wang, S.G.; Cai, Y.J.; Chang, S.X. Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil. Biol. Fertil. Soils 2020, 56, 1023–1036. [Google Scholar] [CrossRef]
- Zhao, H.L.; Ning, P.; Chen, Y.L.; Liu, J.F.; Ghaffar, S.A.; Tian, X.H.; Shi, J.L. Effect of straw amendment modes on soil organic carbon, nitrogen sequestration and crop yield on the North-Central Plain of China. Soil Use Manag. 2018, 35, 511–525. [Google Scholar] [CrossRef]
- Shan, A.Q.; Pan, J.Q.; Kang, K.J.; Pan, M.H.; Wang, G.; Wang, M.; He, Z.L.; Yang, X.E. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. Environ. Pollut. 2021, 288, 117741. [Google Scholar] [CrossRef]
- Xu, D.L.; Yu, X.W.; Chen, J.; Li, X.F.; Chen, J.; Li, J.H. Effects of compost as a soil amendment on bacterial community diversity in saline–alkali soil. Front. Microbiol. 2023, 14, 1253415. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Yang, F.; Antonietti, M. Artificial humic acids: Sustainable materials against climate change. Adv. Sci. 2020, 7, 1902992. [Google Scholar] [CrossRef]
- Lu, R.K. Methods for Soil Agro-Chemistry Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Grube, M.; Lin, J.G.; Lee, P.H.; Kokorevicha, S. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 2006, 130, 324–333. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Kinyangi, J.; Liang, B.Q.; Schäfer, T. Carbon K-Edge NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in soils. Soil Sci. Soc. Am. J. 2005, 69, 107–119. [Google Scholar] [CrossRef]
- Fultz, L.M.; Jennifer, M.K.; Calderón, F.; Acosta-Martínez, V. Using fourier-transform mid-infrared spectroscopy to distinguish soil organic matter composition dynamics in aggregate fractions of two agroecosystems. Soil Biol. Biochem. 2014, 78, 1940–1948. [Google Scholar] [CrossRef]
- Wen, Y.J.; Wen, J.; Wang, Q.; Bai, L.Y.; Wang, Y.N.; Su, S.M.; Wu, C.X.; Zeng, X.B. Organic carbon preservation promoted by aromatic compound-iron complexes through manure fertilization in red soil. J. Soil Sediments 2021, 21, 295–306. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.N.; He, C.H.; Zhang, Y.H.; Huang, W.J.; Wang, D. Source identification and chemical compositions of particulate and mineral-associated organic matter in the deposited sediments of a dam-controlled watershed. Catena 2022, 219, 106618. [Google Scholar] [CrossRef]
- Lei, W.Y.; Pan, Q.; Teng, P.J.; Yu, J.C.; Li, N. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in Northeast China? An explanation using FTIR spectroscopy data. Catena 2023, 228, 107152. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, Y.; Wang, X.; Zhang, H.; Yang, X. Tillage impacts on the fractions and compositions of soil organic carbon. Geoderma 2012, 189, 397–403. [Google Scholar] [CrossRef]
- Chen, H.F.; Li, Q.; Wang, M.X.; Ji, D.B.; Tan, W.F. XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface. Sci. Total Environ. 2020, 724, 138154. [Google Scholar] [CrossRef]
- Zeng, Q.C.; An, S.S. Identifying the biogeographic patterns of rare and abundant bacterial communities using different primer sets on the Loess Plateau. Microorganisms 2021, 9, 139. [Google Scholar] [CrossRef]
- Ma, Y.J.; Gao, W.Q.; Zhang, F.; Zhu, X.T.; Kong, W.B.; Niu, S.Q.; Gao, K.; Yang, H.Q. Community composition and trophic mode diversity of fungi associated with fruiting body of medicinal Sanghuangporus vaninii. BMC Microbiol. 2022, 22, 251–262. [Google Scholar] [CrossRef]
- Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy-Applications in Vibrational and Optical Spectroscopy; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Li, S.W.; Leng, Y.; Kang, X.H. Structural and functional responses of bacterial and fungal communities to multiple heavy metal exposure in arid loess. Sci. Total Environ. 2020, 723, 138081. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi an Open Source Software for Exploring and Manipulating Networks. In Proceedings of the Third International ICWSM Conference, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E. Assessments of organic carbon stabilization using the spectroscopic characteristics of humic acids separated from soils of the Lena River Delta. Separations 2021, 6, 87. [Google Scholar] [CrossRef]
- He, Z.Q.; Cao, X.Y.; Mao, J.D.; Ohno, T.; Waldrip, H.M. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight us soils. Pedosphere 2013, 23, 705–716. [Google Scholar] [CrossRef]
- Liu, T.Q.; Guo, L.J.; Cao, C.G.; Tan, W.F.; Li, C.F. Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter. Agric. Ecosyst. Environ. 2021, 319, 107548. [Google Scholar] [CrossRef]
- Hou, J.Q.; Li, M.X.; Xi, B.D.; Tan, W.B.; Ding, J.; Hao, Y.; Liu, D.M.; Liu, H.L. Short-duration hydrothermal fermentation of food waste: Preparation of soil conditioner for amending organic-matter-impoverished arable soils. Environ. Sci. Pollut. Res. 2017, 24, 21283–21297. [Google Scholar] [CrossRef]
- Liu, X.R.; Wei, L.H.; Jiang, J.Y.; He, C.J.; Sun, X.; Song, H.Y. New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar. Environ. Sci. Pollut. Res. 2024, 31, 18527–18539. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, S.; Tian, H.; Wang, Z.; Fang, X. Varieties with a high level of resistance provide an opportunity to manage root rot caused by Rhizoctonia solani in alfalfa. Eur. J. Plant Pathol. 2021, 160, 983–989. [Google Scholar] [CrossRef]
- Gao, Y.X.; Feng, H.J.; Zhang, M.; Shao, Y.Q.; Wang, J.Q.; Liu, Y.L.; Li, C.L. Straw returning combined with controlled-release nitrogen fertilizer affected organic carbon storage and crop yield by changing humic acid composition and aggregate distribution. J. Clean. Prod. 2023, 415, 137783. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Wang, D.D.; Zhu, Z.K.; Shahbaz, M.; Chen, L.; Liu, S.L.; Inubushi, K.; Wu, J.S.; Ge, T.D. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: A 100-day incubation experiment. Biol. Fertil. Soils 2019, 55, 701–712. [Google Scholar] [CrossRef]
- Wang, P.X.; Wang, X.Q.; Nie, J.W.; Wang, Y.; Zang, H.D.; Peixoto, L.; Yang, Y.D.; Zeng, Z.H. Manure application increases soil bacterial and fungal network complexity and alters keystone taxa. J. Plant Nutr. Soil SC. 2022, 22, 607–618. [Google Scholar] [CrossRef]
- Strickland, M.S.; Rousk, J. Considering fungal: Bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Yuan, Y.D.; Zu, M.T.; Li, R.Z.; Zou, J.J.; Tao, J. Soil properties, microbial diversity, and changes in the functionality of saline–alkali soil are driven by microplastics. J. Hazard. Mater. 2023, 446, 130712. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Jia, H.B.; Wang, Q.Y. The effect of land use on bacterial communities in saline–alkali soil. Curr. Microbiol. 2017, 74, 325–333. [Google Scholar] [CrossRef]
- Yang, C.; Li, K.J.; Lv, D.T.; Jiang, S.Y.; Sun, J.Q.; Lin, H.; Sun, J. Inconsistent response of bacterial phyla diversity and abundance to soil salinity in a Chinese delta. Sci. Rep. 2021, 11, 12870. [Google Scholar] [CrossRef]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol. Ecol. 2012, 82, 341–355. [Google Scholar] [CrossRef]
- Hu, H.Y.; Shao, T.Y.; Gao, X.M.; Long, X.H.; Rengel, Z. Effects of planting quinoa on soil properties and microbiome in saline soil. Land Degrad. Dev. 2022, 33, 2689–2698. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.Y.; Li, J.X.; Xin, Y.Y.; Hao, Z.Y.; Chen, C.; Li, H.X.; Wang, B.; Ding, M.; Li, W.W.; et al. Insights into bacterial diversity in compost: Core microbiome and prevalence of potential pathogenic bacteria. Sci. Total Environ. 2020, 718, 137304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Gao, M.; Chen, H.T.; Chen, Y.W.; Wang, L.; Wang, R. Organic amendments promote saline–alkali soil desalinization and enhance maize growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Qiu, S.; Xu, X.; Ciampitti, I.A.; Zhang, S.; He, P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 2019, 138, 123–133. [Google Scholar] [CrossRef]
- Xiao, D.; He, X.Y.; Wang, G.H.; Xu, X.C.; Hu, Y.J.; Chen, X.B.; Zhang, W.; Su, Y.R.; Wang, K.L.; Soromotin, A.V.; et al. Network analysis reveals bacterial and fungal keystone taxa involved in straw and soil organic matter mineralization. Appl. Soil Ecol. 2022, 173, 104395. [Google Scholar] [CrossRef]
- Zhou, S.G.; Chen, S.S.; Yuan, Y.; Lu, Q. Influence of humic acid complexation with metal ions on extracellular electron transfer activity. Sci. Rep. 2015, 5, 17067. [Google Scholar] [CrossRef]
- Melo, B.A.G.D.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef]
- Shan, Y.; Li, G.; Bai, Y.; Liu, H.; Zhang, J.; Wei, K.; Wang, Q.; Cao, L. Effects of gypsum combined with different amounts of biochemical humic acid on soil improvement and cotton (Gossypium hirsutum L.) yield on saline–alkali land. Appl. Ecol. Environ. Res. 2022, 20, 841–854. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Liu, X.L.; Lu, Y.C.; Wang, Y.F. Saline–alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Jing, X.; Sanders, N.J.; Shi, Y.; Chu, H.; Classen, A.T.; Zhao, K.; Chen, L.T.; Shi, Y.; Jiang, Y.X.; He, J.S. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 2015, 6, 8159. [Google Scholar] [CrossRef]
- Yan, K.; Dong, Y.F.; Gong, Y.B.; Zhu, Q.L.; Wang, Y.P. Climatic and edaphic factors affecting soil bacterial community biodiversity in different forests of China. Catena 2021, 207, 105675. [Google Scholar] [CrossRef]
- Yang, F.; Wu, J.J.; Zhang, D.D.; Chen, Q.; Zhang, Q.; Chen, X.L. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl. Soil Ecol. 2018, 128, 43–53. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Bainard, L.D.; Hamel, C.; Gan, Y.T. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl. Soil Ecol. 2016, 105, 160–168. [Google Scholar] [CrossRef]
- Roy, S.; Roy, M.M.; Jaiswal, A.K.; Baitha, A. Soil arthropods in maintaining soil health: Thrust areas for sugarcane production systems. Sugar Tech. 2018, 20, 376–391. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, Y.; Lu, X.; Bai, E.; He, H.; Xie, H.; Liang, C.; Zhang, X. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem. Soil Biol. Biochem. 2016, 97, 211–214. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Liu, T.Q.; Ding, H.N.; Li, C.F.; Tan, W.F.; Yu, M.; Liu, J.; Cao, C.G. Effects of nitrogen fertilizer on soil microbial residues and their contribution to soil organic carbon and total nitrogen in a rice-wheat system. Appl. Soil Ecol. 2023, 181, 104648. [Google Scholar] [CrossRef]
- Van Diepen, L.T.A.; Lilleskov, E.A.; Pregitzer, K.S.; Miller, R.M. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol. 2007, 176, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Revathi, K.; Khanna, S. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohyd. Polym. 2015, 134, 61–67. [Google Scholar] [CrossRef]
- Chhetri, G.; Kim, I.; Seo, T. Devosia oryzisoli sp. nov., a novel moderately halotolerant bacterium isolated from the roots of rice plants and genome mining revealed the biosynthesis potential as plant growth promoter. Antonie Van Leeuwenhoek 2023, 116, 231–242. [Google Scholar] [CrossRef]
- Sandhya, V.; Ali, S.K.Z.; Grover, M.; Reddy, G.; Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils 2009, 46, 17–26. [Google Scholar] [CrossRef]
- Nyvad, B.; Fejerskov, O. An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries. J. Dent. Res. 1990, 69, 1118–1125. [Google Scholar] [CrossRef]
- Moslemi, A.; Adesb, P.K.; Crous, P.W.; Groom, T.; Scott, J.B.; Nicolas, M.E.; Taylor, P.W.J. Paraphoma chlamydocopiosa sp. nov. and Paraphoma pye sp. nov., two new species associated with leaf and crown infection of pyrethrum. Plant Pathol. 2018, 67, 124–135. [Google Scholar] [CrossRef]






| Treatments | pH | SOC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) |
|---|---|---|---|---|
| CF | 8.45 ± 0.03 a | 2.80 ± 0.20 b | 0.34 ± 0.01 b | 0.62 ± 0.01 a |
| SF | 8.42 ± 0.01 a | 5.15 ± 0.16 a | 0.42 ± 0.01 a | 0.64 ± 0.01 a |
| SHC | 8.44 ± 0.03 a | 4.49 ± 0.29 a | 0.42 ± 0.01 a | 0.64 ± 0.00 a |
| SHA | 8.47 ± 0.02 a | 4.76 ± 0.35 a | 0.48 ± 0.00 a | 0.64 ± 0.01 a |
| Treatments | C–O | C–H | C=C | O–H | C=C/C–H | C–H/C–O |
|---|---|---|---|---|---|---|
| 1030 cm−1 (%) | (1440 + 2925) cm−1 (%) | 1630 cm−1 (%) | 3440 cm−1 (%) | 1630/ (1440 + 2925) | (1440 + 2925)/1030 | |
| CF | 53.2 ± 0.49 a | 19.6 ± 0.45 a | 10.2 ± 0.36 a | 17.0 ± 0.96 ab | 0.52 ± 0.01 a | 0.37 ± 0.01 b |
| SF | 51.8 ± 0.52 a | 19.7 ± 0.40 a | 10.1 ± 0.28 a | 18.4 ± 0.56 a | 0.51 ± 0.02 a | 0.38 ± 0.01 ab |
| SHC | 51.5 ± 0.35 a | 21.1 ± 0.62 a | 10.3 ± 0.23 a | 17.1 ± 1.25 ab | 0.49 ± 0.01 a | 0.41 ± 0.01 a |
| SHA | 53.9 ± 1.33 a | 21.3 ± 0.80 a | 10.2 ± 0.09 a | 14.6 ± 3.35 b | 0.48 ± 0.02 a | 0.40 ± 0.01 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Ma, J.; Chen, X.; Lu, C.; Chen, H.; Chi, G.; Hu, Y. Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils. Agronomy 2025, 15, 2382. https://doi.org/10.3390/agronomy15102382
Song Q, Ma J, Chen X, Lu C, Chen H, Chi G, Hu Y. Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils. Agronomy. 2025; 15(10):2382. https://doi.org/10.3390/agronomy15102382
Chicago/Turabian StyleSong, Qiaobo, Jian Ma, Xin Chen, Caiyan Lu, Huaihai Chen, Guangyu Chi, and Yanyu Hu. 2025. "Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils" Agronomy 15, no. 10: 2382. https://doi.org/10.3390/agronomy15102382
APA StyleSong, Q., Ma, J., Chen, X., Lu, C., Chen, H., Chi, G., & Hu, Y. (2025). Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils. Agronomy, 15(10), 2382. https://doi.org/10.3390/agronomy15102382

