Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Layout and Treatments
2.3. Statistical Analyses
3. Results
3.1. Cover Crops Biomass, Carbon-to-Nitrogen Ratio (C:N), and Land Equivalence Ratio (LER)
3.2. Impact of Cover Crops on Soil Properties
3.2.1. Soil Organic Carbon (SOC) and Soil Organic Carbon Stock (SOCS)
3.2.2. Soil Microbial Population
3.2.3. Earthworm Populations
3.2.4. Dehydrogenase, β-Glucosidase, Urease, and Alkaline Phosphatase Enzyme Activity
3.2.5. Soil Moisture
3.2.6. Bulk Density and Soil Porosity
3.2.7. Water Infiltration Time
3.3. Impact of Cover Crops on Weed Population and Biomass and Spinach Yield
3.3.1. Weed Population and Biomass
3.3.2. Spinach Yield
3.4. Correlation
4. Discussion
4.1. Impact of Cover Crops on Soil Properties
4.2. Impact of Cover Crops on Weed Population and Biomass
4.3. Impact of Enhanced Soil Properties and Weeding Strategy on Spinach Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APE | Alkaline phosphatases enzyme |
BD | Bulk density |
C | Carbon content |
CCs | Cover crops |
D | Daikon radish |
DEA | Dehydrogenase enzyme |
EWP | Earthworm populations |
LER | Land Equivalence Ratio |
N | Nitrogen content |
O | Oat |
SM | Soil moisture percentage |
SMP | Soil microbial population |
SOC | Soil organic carbon |
SOCS | Soil organic carbon stock |
SPP | Soil porosity percentage |
UE | Urease enzyme |
WIT | Water infiltration time |
βGE | β-glucosidase enzyme |
Appendix A
Treatments | Oat (g m−2) | Daikon Radish (g m−2) | Carbon (mg g−1 Dry Matter) | Nitrogen (mg g−1 Dry Matter) | |
---|---|---|---|---|---|
Years | 2020–2021 | 135.5 ± 121.5 b | 107.2 ± 96.6 b | 399.9 ± 12.8 b | 21.1 ± 2.3 a |
2021–2022 | 149.5 ± 128.2 a | 117.9 ± 101.9 a | 412.5 ± 18.5 a | 20.5 ± 1.7 a | |
LSD5% | 5.9 | 5.8 | 3.6 | 1.0 | |
Cover crops ratio | Oat (O) | 338.7 ± 25.5 a | 0.0 ± 0.0 g | 421.8 ± 8.4 a | 18.3 ± 1.0 d |
Daikon radish (D) | 0.0 ± 0.0 g | 256.1 ± 10.4 a | 387.1 ± 8.0 d | 20.2 ± 1.4 bcd | |
90:10 (O:D) | 282.3 ± 15.0 b | 30.2 ± 3.0 f | 419.0 ± 11.3 a | 19.8 ± 1.8 cd | |
70:30 (O:D) | 222.6 ± 7.6 c | 70.1 ± 10.8 e | 419.5 ± 13.5 a | 21.1 ± 1.1 bc | |
50:50 (O:D) | 156.0 ± 9.4 d | 125.6 ± 8.7 d | 411.6 ± 12.5 b | 21.1 ± 1.7 bc | |
30:70 (O:D) | 91.1 ± 10.8 e | 181.3 ± 13.2 c | 395.8 ± 6.2 c | 21.8 ± 2.1 ab | |
10:90 (O:D) | 37.7 ± 2.4 f | 237.1 ± 25.0 b | 388.8 ± 8.1 d | 23.3 ± 1.3 a | |
Control | 0.0 ± 0.0 g | 0.0 ± 0.0 g | – | – | |
LSD5% | 11.8 | 11.6 | 6.8 | 1.9 | |
F Value | Year (Y) | 1455.6 ** | 1385.9 ** | 1672.0 ** | 4.5 ns |
Cover crops (Cc) | 101915.4 ** | 64240.5 ** | 1386.3 ** | 14.8 ** | |
Y × Cc | 130.2 ns | 117.3 ns | 162.8 ** | 1.2 ns | |
CV (%) | 7.0 | 8.7 | 1.4 | 7.6 |
References
- Kim, R.H.; Tagele, S.B.; Jeong, M.; Jung, D.R.; Lee, D.; Park, T.; Tino, B.F.; Lim, K.; Kim, M.A.; Park, Y.J.; et al. Spinach (Spinacia oleracea) as green manure modifies the soil nutrients and microbiota structure for enhanced pepper productivity. Sci. Rep. 2023, 13, 4140. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A.; Alebrahim, M.T. Impact of some cover crops and hand-weeding on the yield of spinach (Spinacia oleracea L.). J. Veg. Sci. 2024, 8, 109–134. [Google Scholar] [CrossRef]
- Roberts, J.L.; Moreau, R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef] [PubMed]
- Awika, H.O.; Mishra, A.K.; Gill, H.; DiPiazza, J.; Avila, C.A.; Joshi, V. Selection of nitrogen responsive root architectural traits in spinach using machine learning and genetic correlations. Sci. Rep. 2021, 11, 9536. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Wang, Q.; Wang, C. Responses of the growth characteristics of spinach to different moisture contents in soil under irrigation with magnetoelectric water. Agronomy 2023, 13, 657. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Antonopoulos, N. Cultural practices and mechanical weed control for the management of a low-diversity weed community in spinach. Diversity 2021, 13, 616. [Google Scholar] [CrossRef]
- De Cauwer, B.; Delanote, L.; Devos, M.; De Ryck, S.; Reheul, D. Optimisation of weed control in organic processing spinach (Spinacia oleracea L.): Impacts of cultivar, seeding rate, plant spacing and integrated weed management strategy. Agronomy 2020, 11, 53. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A.; Alebrahim, M.T. Impact of Oat (Avena sativa L.) and Daikon radish (Raphanus sativus var. Longipinnatus) cover crops on some soil properties. Appl. Soil Res. 2024, 12, 1–17. [Google Scholar]
- Ahmadnia, F.; Ebadi, A.; Alebrahim, M.T.; Parmoon, G.; Feizpoor, S.; Hashemi, M. The efficacy of sunn hemp (Crotalaria juncea) and Fe3O4 nanoparticles in controlling weed seed germination. Agronomy 2025, 15, 795. [Google Scholar] [CrossRef]
- Saadat, D.; Hashemi, M.; Herbert, S.; Siller, A. Contribution of roots and shoots of three summer cover crops to soil c and n cycling post-termination. Agronomy 2025, 15, 1467. [Google Scholar] [CrossRef]
- Smychkovich, A.; Glaze-Corcoran, S.; Keiser, A.; Hashemi, M. Assessing the root and shoot composition, decomposition, carbon contribution and nitrogen mineralization trends of single species and mixed cover crops. Field Crops Res. 2025, 327, 109902. [Google Scholar] [CrossRef]
- Suarez, A.; Gwozdz, W. On the relation between monocultures and ecosystem services in the Global South: A review. Biol. Conserv. 2023, 278, 109870. [Google Scholar] [CrossRef]
- Madsen, I.J.; Parks, J.M.; Friesen, M.L.; Clark, R.E. Increasing biodiversity and land-use efficiency through pea (Pisum aestivum)-canola (Brassica napus) intercropping (peaola). Front. Soil Sci. 2022, 2, 818862. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Nabati, L. Investigating the effectiveness of Sunn Hemp (Crotalaria juncea) and Rye (Secale cereal L.) in weed suppression and yield of Kohlrabi (Brassica oleracea var. Gongylodes). J. Agric. Sci. Sustain. Prod. 2021, 31, 43–56. [Google Scholar] [CrossRef]
- Cunha, J.R.D.; Freitas, R.D.C.A.D.; Souza, D.J.D.A.T.; Gualberto, A.V.S.; Souza, H.A.D.; Leite, L.F.C. Soil biological attributes in monoculture and integrated systems in the Cerrado region of Piauí State, Brazil. Acta Sci. Agron. 2021, 43, e51814. [Google Scholar] [CrossRef]
- Armengot, L.; Ferrari, L.; Milz, J.; Velásquez, F.; Hohmann, P.; Schneider, M. Cacao agroforestry systems do not increase pest and disease incidence compared with monocultures under good cultural management practices. Crop Prot. 2020, 130, 105047. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil microbial diversity and community composition in rice–fish co-culture and rice monoculture farming system. Biology 2022, 11, 1242. [Google Scholar] [CrossRef]
- Belete, T.; Yadete, E. Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: A review. J. Plant. Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Tang, X.; He, Y.; Zhang, Z.; Wu, H.; He, L.; Jiang, J.; Meng, W.; Huang, Z.; Xiong, F.; Liu, J.; et al. Beneficial shift of rhizosphere soil nutrients and metabolites under a sugarcane/peanut intercropping system. Front. Plant Sci. 2022, 13, 1018727. [Google Scholar] [CrossRef]
- Oladoye, C. Influence of Cover Cropping and Nitrogen Fertilization on Soil Properties and Cotton Productivity. Ph.D. Dissertation, Plant and Environmental Science, Graduate School of Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Vinogradova, A. Possibilities of Oil Radish Cultivation. Bachelor’s Thesis, Natural Recourses, Agriculture and Rural Enterprises, Seinäjoki University of Applied Sciences, Seinäjoki, Finland, 2024. [Google Scholar]
- Solangi, F.; Zhu, X.; Cao, W.; Dai, X.; Solangi, K.A.; Zhou, G.; Alwasel, Y.A. Nutrient uptake potential of non-leguminous species and its interaction with soil characteristics and enzyme activities in the agro-ecosystem. ACS Omega 2024, 9, 13860–13871. [Google Scholar] [CrossRef]
- Brewer, M.; Kadyampakeni, D.M.; Kanissery, R.; Kwakye, S. Evaluation of the nitrogen uptake efficacy of daikon radish under greenhouse conditions on sandy soils. Agrosys. Geosci. Environ. 2024, 7, e20508. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Ebadi, A.; Tobeh, A.; Hashemi, M.; Asghari, S.; Ahmadnia, F. Effect of triticale (× Triticosecale Wittmack) and daikon radish (Raphanus sativus L.) cover crops on weed suppression, grain yield and yield components of maize (Zea mays L. cv. Kousha). Iran. J. Crop Sci. 2024, 26, 94–110. [Google Scholar]
- Hu, T.; Olesen, J.E.; Christensen, B.T.; Sørensen, P. Release of carbon and nitrogen from fodder radish (Raphanus sativus) shoots and roots incubated in soils with different management history. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2018, 68, 749–756. [Google Scholar] [CrossRef]
- Tsytsiura, Y.G. Influence of biochemical composition of above-ground biomass of oilseed radish on the expediency of its green manure application. Agrology 2024, 7, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Tomar, M.; Singh, P. Oat (Avena sativa): Production to Plate, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; p. 412. [Google Scholar]
- Liu, J.; Zhu, Y.; Wu, H.; Dong, G.; Zhou, G.; Smith, D.L. Effects of fertilizers and soil amendments on soil physicochemical properties and carbon sequestration of oat (Avena sativa L.) planted in saline–alkaline land. Agronomy 2025, 15, 1582. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Evaluation and assessment of trivalent and hexavalent chromium on Avena sativa and soil enzymes. Molecules 2023, 28, 4693. [Google Scholar] [CrossRef]
- Domagała-Świątkiewicz, I.; Siwek, P. Effect of field pea (Pisum sativum subsp. arvense (L.) Asch.) and pea-oat (Avena sativa L.) biculture cover crops on high tunnel vegetable under organic production system. Org. Agric. 2022, 12, 91–106. [Google Scholar] [CrossRef]
- Kidson, M.; Hernandez-Soriano, M.C.; Mndzebele, B.; Ndaba, B.; Adeleke, R.; Nciizah, A.D.; Roopnarain, A. Fodder oats as catch crop: Potential to reduce nitrogen losses from soil. BioRxiv 2024. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A.; Alebrahim, M.T. Investigating the effect of aqueous extracts of sunn hemp (Crotalaria juncea) and oats (Avena sativa L.) on the germination of wild mustard weed (Sinapis arvensis). Iran. J. Seed Sci. Res. 2023, 10, 1–19. [Google Scholar]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar] [CrossRef]
- He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Tang, S. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 2013, 164, 189–198. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bustamar, A.; Juniarti; Emalinda, O.; Gusnidar; Fiantis, D. Assessing soil organic carbon stock under different land-uses in Koto XI Tarusan District, West Sumatra. IOP Conf. Ser. Earth Environ. Sci. 2023, 1160, 012033. [Google Scholar] [CrossRef]
- Ball, A.S. Bacterial Cell Culture Methods. In Reviews in Cell Biology and Molecular Medicine; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; Van-Es, H.; MThies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health–The Cornell Framework, 3.2 ed.; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986; Volume 5.1, pp. 635–662. [Google Scholar] [CrossRef]
- Dane, J.H.; Topp, C.G. Methods of Soil Analysis, Part 4: Physical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 20, p. 1744. [Google Scholar]
- Bunzl, K.; Wolf, A.; Sansoni, B. Kinetics of ion exchange in soil organic matter V. Differential ion exchange reactions of Cu2+-, Cd2+-, Zn2+-and Ca2+-ions in humic acid. Z. Pflanzenernähr. Bodenkd. 1976, 139, 475–485. [Google Scholar] [CrossRef]
- Tabatabai, M. Soil enzymes. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; The American Society of Agronomy: Madison, WI, USA, 1994; Volume 5, pp. 775–833. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M. Glucosidases and galactosidases in soils. Soil. Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil. Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertile. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Xie, X.; Weng, B.; Cai, B.; Dong, Y.; Yan, C. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl. Soil Ecol. 2014, 75, 162–171. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Romdhane, S.; Spor, A.; Busset, H.; Falchetto, L.; Martin, J.; Bizouard, F.; Bru, D.; Breuil, M.C.; Philippot, L.; Cordeau, S. Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol. 2019, 10, 1618. [Google Scholar] [CrossRef]
- Saleem, M.; Pervaiz, Z.H.; Contreras, J.; Lindenberger, J.H.; Hupp, B.M.; Chen, D.; Zhang, Q.; Wang, C.; Iqbal, J.; Twigg, P. Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere 2020, 16, 100248. [Google Scholar] [CrossRef]
- Raniro, H.R.; Hernandez-Mora, A.; Duboc, O.; Staudinger, C.; Santner, J. Phosphorus release dynamics from cover crop residues: A comparison between single species and mixtures. Soil Use Manag. 2025, 41, e70082. [Google Scholar] [CrossRef]
- Raza, M.A.; Din, A.M.U.; Yasin, H.S.; Gul, H.; Shah, G.A.; Zhiqi, W.; Hassan, M.J.; Bilal, M.; Gitari, H.; Iqbal, R.; et al. Maize/legume intercropping increases nutrient uptake, crop yields, land productivity, and economic profits in resource-intensive arid-irrigated areas. J. Soil Sci. Plant Nutr. 2025, 25, 8316–8332. [Google Scholar] [CrossRef]
- Wu, X.; Wu, W.; Yang, H. Effects of legume–grass ratio on C and nutrients of root and soil in common vetch–oat mixture under fertilization. Agronomy 2022, 12, 1936. [Google Scholar] [CrossRef]
- Finney, D.; Buyer, J.S.; Kaye, J.P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 2017, 72, 361–373. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Gao, H.; Tian, G.; Rahuman, M.K.U.; Wu, F. Cover crop species composition alters the soil bacterial community structure and function. Front. Microbiol. 2022, 12, 789034. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Mukumbareza, C.; Muchaonyerwa, P.; Chiduza, C. Bicultures of oat (Avena sativa L.) and grazing vetch (Vicia dasycarpa L.) cover crops increase contents of carbon pools and activities of selected enzymes in a loam soil under warm temperate conditions. Soil Sci. Plant Nutr. 2016, 62, 447–455. [Google Scholar] [CrossRef]
- Elhawat, N.; Domokos-Szabolcsy, É.; Veres, S.; Fári, M.G.; Alshaal, T. Five-year impacts of biomass crop monoculture on soil enzyme activity, nitrogen pools, and other soil health indicators. Biomass Bioenergy 2025, 198, 107856. [Google Scholar] [CrossRef]
- Khan, M.T.; Aleinikovienė, J.; Butkevičienė, L.M. Innovative organic fertilizers and cover crops: Perspectives for sustainable agriculture in the era of climate change and organic agriculture. Agronomy 2024, 14, 2871. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Afolabi, F.; Joseph, F.; Maddela, N.R. Soil enzymes: Distribution, interactions, and influencing factors. In Agricultural Biocatalysis; Jenny Stanford Publishing: New Delhi, India, 2022; pp. 303–333. [Google Scholar]
- Zhang, X.; Chen, X.; Li, S.; Bello, A.; Liu, J.; Gao, L.; Fun, Z.; Wang, S.; Liu, L.; Ma, B.; et al. Mechanism of differential expression of β-glucosidase genes in functional microbial communities in response to carbon catabolite repression. Biotechnol. Biofuels Bioprod. 2022, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.T.; Ncube, B.; Meyer, A.H.; Olatunji, O.S.; Mulidzi, R.; Lewu, F.B. Soil pH, nitrogen, phosphatase and urease activities in response to cover crop species, termination stage and termination method. Heliyon 2022, 13, e05980. [Google Scholar] [CrossRef]
- Feng, H.; Sekaran, U.; Wang, T.; Kumar, S. On-farm assessment of cover cropping effects on soil C and N pools, enzyme activities, and microbial community structure. J. Agric. Sci. 2021, 159, 216–226. [Google Scholar] [CrossRef]
- Harrison, A.F. Soil organic phosphorus. In A Review of World Literature; C.A.B. International: Wallingford, UK, 1987; p. 257. [Google Scholar]
- Cavadini, J.S.; Kladivko, E.J. Oilseed radish/cereal cover crop bicultures and soil phosphorus distribution. J. Soil. Water Conserv. 2025, 80, 76–90. [Google Scholar] [CrossRef]
- Singh, G.; Bhattacharyya, R.; Das, T.; Sharma, A.; Ghosh, A.; Das, S.; Jha, P. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the indo-gangetic plains. Soil. Tillage Res. 2018, 184, 291–300. [Google Scholar] [CrossRef]
- Ashworth, A.; Allen, F.; Tyler, D.; Pote, D.H.; Shipitalo, M.J. Earthworm populations are affected from long-term crop sequences and bio-covers under no-tillage. Pedobiologia 2017, 60, 27–33. [Google Scholar] [CrossRef]
- Wittwer, R.A.; Dorn, B.; Jossi, W.; Van der Heijden, M.G. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef]
- Euteneuer, P.; Wagentristl, H.; Steinkellner, S.; Scheibreithner, C.; Zaller, J.G. Earthworms affect decomposition of soil-borne plant pathogen Sclerotinia sclerotiorum in a cover crop field experiment. Appl. Soil. Ecol. 2019, 138, 88–93. [Google Scholar] [CrossRef]
- Roarty, S.; Hackett, R.A.; Schmidt, O. Earthworm populations in twelve cover crop and weed management combinations. Appl. Soil. Ecol. 2017, 114, 142–151. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Claassen, M.; Presley, D. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 2012, 104, 137–147. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A. Investigating the short time effect of cover crops on physical and biological properties of soil. J. Water Soil. Conserv. 2020, 26, 277–290. [Google Scholar] [CrossRef]
- Basche, A.D.; DeLonge, M.S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 2019, 14, e0215702. [Google Scholar] [CrossRef] [PubMed]
- Camargo Silva, G.; Bagavathiannan, M. Mechanisms of weed suppression by cereal rye cover crop: A review. Agron. J. 2023, 115, 1571–1585. [Google Scholar] [CrossRef]
- Manisha, V.; David, A.A.; Thomas, T.; Swaroop, N.; Hasan, A. Effect of integrated nutrient management practices on soil health, quality and yield of spinach (Beta vulgaris L.) grown on alluvial soil. Pharma Innov. 2021, 10, 2068–2071. [Google Scholar]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Knezevic, S.Z. Cover crop for early season weed suppression in crops: Systematic review and meta-analysis. Agron. J. 2018, 110, 2211–2221. [Google Scholar] [CrossRef]
- Kaur, H.; Brar, G.S.; Shete, P.P. A review on different weed management approaches. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2854–2859. [Google Scholar] [CrossRef]
- Korav, S.; Ram, V.; Ray, L.I.; Krishnappa, R.; Singh, N.; Premaradhya, N. Weed pressure on growth and yield of groundnut (Arachis hypogaea L.) in Meghalaya, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2852–2858. [Google Scholar] [CrossRef]
- Thompson, C.R.; Dille, J.A.; Peterson, D.E. Weed competition and management in sorghum. In Sorghum: A State of the Art and Future Perspetives; Wiley: Hoboken, NJ, USA, 2019; Volume 58, pp. 347–360. [Google Scholar] [CrossRef]
Soil Texture | Sand | Silt | Clay | OC | CaCO3 | N | P | K | EC | pH |
---|---|---|---|---|---|---|---|---|---|---|
------ (%wt) ------ | ------ (%) ------ | ------ (mg/kg−1) ----- | dS/m | |||||||
loam | 35 | 42 | 23 | 0.6 | 14.5 | 0.06 | 8.2 | 202 | 2.6 | 8 |
Seedling Ratio | Oat (g per Plot) | Daikon Radish (g per Plot) |
---|---|---|
Oat (O) | 120 | 0 |
Daikon radish (D) | 0 | 24 |
90:10 (O:D) | 108 | 2.4 |
70:30 (O:D) | 84 | 7.2 |
50:50 (O:D) | 60 | 12 |
30:70 (O:D) | 36 | 16.8 |
10:90 (O:D) | 12 | 21.6 |
Control | – | – |
Treatments | Total Cover Crops (g m−2) | Land Equivalence Ratio (LER) | Carbon-to-Nitrogen (C:N) | |
---|---|---|---|---|
Years | 2020–2021 | 242.7 ± 98.3 b | 0.95 ± 0.08 a | 19.1 ± 2.4 b |
2021–2022 | 264.5 ± 105.3 a | 0.99 ± 0.05 a | 20.2 ± 2.1 a | |
LSD5% | 9.0 | 0.04 | 0.9 | |
Cover crops ratio | Oat (O) | 338.7 ± 25.5 a | – | 23.0 ± 1.4 a |
Daikon radish (D) | 256.1 ± 10.4 e | – | 19.1 ± 1.4 c | |
90:10 (O:D) | 312.6 ± 16.3 b | 0.95 ± 0.07 b | 21.2 ± 1.9 b | |
70:30 (O:D) | 292.7 ± 17.0 c | 0.93 ± 0.03 b | 19.8 ± 1.0 bc | |
50:50 (O:D) | 281.6 ± 16.9 cd | 0.95 ± 0.04 b | 19.5 ± 1.5 bc | |
30:70 (O:D) | 272.4 ± 22.7 de | 0.97 ± 0.05 ab | 18.2 ± 1.7 cd | |
10:90 (O:D) | 274.8 ± 26.2 cd | 1.03 ± 0.1 a | 16.7 ± 0.7 d | |
Control | 0.0 ± 0.0 f | – | – | |
LSD5% | 18.0 | 0.06 | 1.7 | |
F Value | Year (Y) | 5682.4 ** | 0.011 ns | 13.3 * |
Cover crops (Cc) | 67,021.0 ** | 0.010 * | 24.8 ** | |
Y × Cc | 228.3 ns | 0.001 ns | 0.5 ns | |
CV (%) | 6.0 | 5.6 | 7.3 |
Treatments | Soil Organic Carbon (%) | Soil Organic Carbon Stock (kg ha−1) | Soil Microbial Population (Most Probable Number per g−1 Soil) | Earthworm Populations (Number per Cubic−3) | |
---|---|---|---|---|---|
Years | 2020–2021 | 0.82 ± 0.1 b | 149.5 ± 11.6 a | 9.6 × 10−4 ± 2.1 × 10−4 b | 2.16 ± 0.7 b |
2021–2022 | 0.84 ± 0.1 a | 150.9 ± 10.6 a | 10.3 × 10−4 ± 2.0 × 10−4 a | 2.45 ± 0.7 a | |
LSD5% | 0.01 | 2.9 | 1.8 × 10−3 | 0.2 | |
Cover crops ratio | Oat (O) | 0.80 ± 0.018 d | 161.2 ± 5.5 a | 8.9 × 10−4 ± 3.5 × 10−3 e | 2.00 ± 0.00 cd |
Daikon radish (D) | 0.87 ± 0.015 c | 133.0 ± 1.3 c | 10.5 × 10−4 ± 4.7 × 10−3 d | 2.66 ± 0.57 abc | |
90:10 (O:D) | 0.82 ± 0.011 d | 159.9 ± 1.9 a | 8.4 × 10−4 ± 4.2 × 10−3 f | 2.33 ± 0.57 bc | |
70:30 (O:D) | 0.78 ± 0.024 e | 145.0 ± 6.9 b | 7.6 × 10−4 ± 1.0 × 10−4 f | 2.00 ± 1.00 cd | |
50:50 (O:D) | 0.88 ± 0.022 c | 156.4 ± 7.8 a | 11.8 × 10−4 ± 4.8 × 10−3 c | 3.00 ± 0.00 ab | |
30:70 (O:D) | 0.96 ± 0.016 a | 159.4 ± 2.9 a | 12.3 × 10−4 ± 4.0 × 10−3 b | 3.33 ± 0.57 a | |
10:90 (O:D) | 0.94 ± 0.021 b | 149.0 ± 1.7 b | 12.8 × 10−4 ± 4.8 × 10−3 a | 3.00 ± 0.00 ab | |
Control | 0.62 ± 0.014 f | 137.7 ± 3.9 c | 7.4 × 10−4 ± 3.1 × 10−3 g | 1.33 ± 0.57 d | |
LSD5% | 0.01 | 5.9 | 3.7 × 10−3 | 0.8 | |
F Value | Year (Y) | 0.006 ** | 25.36 ns | 5.64 × 10−8 ** | 1.02 * |
Cover crops (Cc) | 0.072 ** | 700.89 ** | 2.78 × 10−9 ** | 2.35 ** | |
Y × Cc | 0.0001 ns | 8.08 ns | 3.76 × 10−8 * | 0.11 ns | |
CV (%) | 1.7 | 3.3 | 3.2 | 20.5 |
Treatments | Dehydrogenase Enzyme (µg Triphenylformazan g Soil−1 16 h−1) | β-Glucosidase Enzyme (µg p-Nitrophenol g Soil−1 h−1) | Urease Enzyme (µg N-NH4 g Soil−1 2 h−1) | Alkaline Phosphatase Enzyme (µg p-Nitrophenol g Soil−1 h−1) | |
---|---|---|---|---|---|
Years | 2020–2021 | 1351 ± 136.3 a | 34.07 ± 2.0 b | 827.8 ± 69.6 a | 31.3 ± 4.0 b |
2021–2022 | 1351 ± 128.7 a | 36.95 ± 2.6 a | 836.5 ± 66.3 a | 34.2 ± 4.0 a | |
LSD5% | 25.1 | 0.5 | 11.7 | 0.5 | |
Cover crops ratio | Oat (O) | 1217 ± 2.5 d | 34.7 ± 0.6 c | 841 ± 22.5 c | 29.4 ± 0.8 d |
Daikon radish (D) | 1427 ± 3.7 b | 35.3 ± 1.1 c | 883 ± 14.0 ab | 33.72 ± 0.4 c | |
90:10 (O:D) | 1250 ± 4.1 cd | 37.6 ± 0.7 b | 846 ± 12.5 c | 34.64 ± 0.7 c | |
70:30 (O:D) | 1341 ± 15.1 bc | 38.4 ± 0.7 b | 760 ± 36.0 d | 36.21 ± 0.8 b | |
50:50 (O:D) | 1420 ± 16.4 b | 38.3 ± 2.1 b | 855 ± 16.0 bc | 38.02 ± 0.1 a | |
30:70 (O:D) | 1533 ± 4.5 a | 40.5 ± 1.2 a | 907 ± 11.0 a | 38.10 ± 1.2 a | |
10:90 (O:D) | 1438 ± 2.5 ab | 38.1 ± 1.2 b | 886 ± 9.2 ab | 37.16 ± 0.6 ab | |
Control | 1183 ± 13.5 d | 32.5 ± 0.5 d | 711 ± 11.5 e | 26.59 ± 0.9 e | |
LSD5% | 104.7 | 1.8 | 32.5 | 1.4 | |
F Value | Year (Y) | 1.68 ns | 99.76 ** | 910.02 ns | 100.94 ** |
Cover crops (Cc) | 102,096.66 ** | 32.12 ** | 28,525.59 ** | 104.18 ** | |
Y × Cc | 2035.16 ns | 0.65 ns | 30.40 ns | 0.96 ns | |
CV (%) | 3.1 | 2.5 | 2.3 | 2.6 |
Treatments | Soil Moisture (%) | Bulk Density (g cm−3) | Soil Porosity (%) | Water Infiltration Time (s) | |
---|---|---|---|---|---|
Years | 2020–2021 | 17.6 ± 2.4 b | 1.2 ± 0.1 a | 53.8 ± 5.6 b | 6.3 ± 1.1 a |
2021–2022 | 19.0 ± 3.0 a | 1.2 ± 0.1 b | 54.6 ± 5.8 b | 6.0 ± 1.1 b | |
LSD5% | 0.6 | 0.01 | 0.6 | 0.2 | |
Cover crops ratio | Oat (O) | 21.0 ± 0.3 abc | 1.3 ± 0.03 b | 50.0 ± 1.1 e | 7.0 ± 0.1 b |
Daikon radish (D) | 18.0 ± 1.7 de | 1.0 ± 0.01 f | 61.8 ± 0.3 a | 4.6 ± 0.5 d | |
90:10 (O:D) | 22.7 ± 0.8 a | 1.2 ± 0.01 b | 51.6 ± 0.3 e | 6.9 ± 0.3 b | |
70:30 (O:D) | 21.5 ± 1.3 ab | 1.2 ± 0.03 c | 53.8 ± 1.1 d | 6.0 ± 0.02 c | |
50:50 (O:D) | 19.6 ± 1.0 bcd | 1.1 ± 0.04 d | 55.9 ± 1.5 c | 5.8 ± 0.09 c | |
30:70 (O:D) | 19.1 ± 1.1 cde | 1.0 ± 0.01 e | 58.8 ± 0.3 b | 5.2 ± 0.1 d | |
10:90 (O:D) | 17.3 ± 1.1 e | 1.0 ± 0.005 f | 60.8 ± 0.2 a | 4.8 ± 0.5 d | |
Control | 13.1 ± 1.0 f | 1.4 ± 0.04 a | 43.8 ± 1.5 f | 7.9 ± 0.07 a | |
LSD5% | 2.1 | 0.04 | 1.8 | 0.5 | |
F Value | Year (Y) | 24.96 ** | 0.005 * | 7.12 * | 0.73 * |
Cover crops (Cc) | 45.47 ** | 0.148 ** | 211.44 ** | 7.80 ** | |
Y × Cc | 0.64 ns | 0.0002 ns | 0.38 ns | 0.06 ns | |
CV (%) | 5.5 | 2.4 | 2.0 | 5.9 |
Treatments | C. album (Plants m−2) | A. azurea (Plants m−2) | F. officinalis (Plants m−2) | Total Weeds (Plants m−2) | |
---|---|---|---|---|---|
Years | 2020–2021 | 14.5 ± 3.9 b | 13.8 ± 4.6 b | 12.1 ± 3.6 b | 40.5 ± 11.4 b |
2021–2022 | 17.8 ± 4.2 a | 19.8 ± 4.7 a | 17.0 ± 4.5 a | 54.7 ± 13.1 a | |
LSD5% | 0.4 | 0.6 | 0.5 | 1.1 | |
Cover crops ratio × Weed strategy | Cover crops × Hand weeding | ||||
Oat (O) | 11.3 ± 1.7 hg | 11.0 ± 2.3 h | 8.8 ± 3.3 g | 31.1 ± 7.0 i | |
Daikon radish (D) | 14.6 ± 1.0 f | 14.0 ± 2.3 f | 11.1 ± 2.7 f | 39.8 ± 5.5 g | |
90:10 (O:D) | 12.3 ± 1.0 g | 12.1 ± 2.9 gh | 9.0 ± 2.3 g | 33.5 ± 5.9 i | |
70:30 (O:D) | 10.5 ± 1.8 h | 14.0 ± 2.3 f | 12.1 ± 2.1 ef | 36.6 ± 5.8 h | |
50:50 (O:D) | 14.1 ± 1.4 f | 14.1 ± 3.2 f | 12.0 ± 3.2 ef | 40.3 ± 7.6 g | |
30:70 (O:D) | 16.1 ± 1.4 e | 17.0 ± 3.7 e | 13.0 ± 2.4 de | 46.1 ± 7.3 f | |
10:90 (O:D) | 17.0 ± 2.3 de | 17.6 ± 4.1 de | 15.5 ± 1.8 c | 50.1 ± 8.2 de | |
Control | 21.0 ± 2.3 b | 23.6 ± 4.1 b | 16.3 ± 3.1 c | 61.0 ± 9.2 b | |
Cover crops × No Hand weeding | |||||
Oat (O) | 14.0 ± 2.0 f | 13.5 ± 2.8 fg | 13.0 ± 2.3 de | 40.5 ± 6.9 g | |
Daikon radish (D) | 17.3 ± 1.6 cd | 15.0 ± 4.9 f | 15.1 ± 1.9 c | 47.5 ± 7.9 ef | |
90:10 (O:D) | 14.0 ± 2.3 f | 14.1 ± 3.1 f | 13.6 ± 1.6 d | 41.8 ± 6.7 g | |
70:30 (O:D) | 14.6 ± 2.1 f | 17.5 ± 3.5 de | 15.1 ± 3.3 c | 47.3 ± 8.4 f | |
50:50 (O:D) | 16.8 ± 2.6 de | 18.0 ± 3.7 de | 16.0 ± 3.4 c | 50.8 ± 9.5 d | |
30:70 (O:D) | 18.3 ± 3.1 c | 19.0 ± 5.5 cd | 18.5 ± 3.9 b | 55.8 ± 12.3 c | |
10:90 (O:D) | 20.0 ± 4.4 b | 20.3 ± 5.2 c | 19.5 ± 5.0 b | 59.8 ± 14.4 b | |
Control | 26.5 ± 1.0 a | 28.8 ± 1.7 a | 24.3 ± 4.3 a | 79.6 ± 6.7 a | |
LSD5% | 1.1 | 1.5 | 1.3 | 2.6 | |
F Value | Year (Y) | 256.76 ** | 864.00 ** | 580.16 ** | 4830.84 ** |
Cover crops (Cc) | 169.17 ** | 233.73 ** | 120.21 ** | 1493.37 ** | |
Y × Cc | 4.51 * | 7.38 * | 3.80 ns | 31.08 ** | |
Weed strategy (W) | 225.09 ** | 192.66 ** | 522.66 ** | 2677.59 ** | |
Cc × W | 4.45 * | 5.04 * | 6.92 * | 35.21 ** | |
CV (%) | 7.3 | 8.9 | 9.7 | 6.0 |
Treatments | C. album (g m−2) | A. azurea (g m−2) | F. officinalis (g m−2) | Total Weeds (g m−2) | |
---|---|---|---|---|---|
Years | 2020–2021 | 4.3 ± 1.7 b | 4.8 ± 1.4 b | 5.4 ± 2.3 b | 14.7 ± 4.9 b |
2021–2022 | 5.6 ± 2.1 a | 6.2 ± 0.9 a | 6.6 ± 2.6 a | 18.6 ± 6.3 a | |
LSD5% | 0.4 | 0.3 | 0.3 | 0.7 | |
Cover crops ratio | Oat (O) | 3.2 ± 1.0 d | 4.4 ± 1.0 c | 4.6 ± 1.4 d | 12.3 ± 2.9 f |
Daikon radish (D) | 5.4 ± 1.3 b | 5.8 ± 1.0 b | 6.1 ± 0.7 b | 17.4 ± 2.4 b | |
90:10 (O:D) | 3.9 ± 1.0 cd | 4.6 ± 1.1 c | 5.3 ± 1.1 bcd | 14.0 ± 2.8 de | |
70:30 (O:D) | 4.4 ± 1.0 c | 4.3 ± 1.0 c | 4.8 ± 0.8 d | 13.6 ± 2.1 ef | |
50:50 (O:D) | 4.4 ± 1.1 c | 5.0 ± 1.1 bc | 4.9 ± 0.9 d | 14.4 ± 2.3 de | |
30:70 (O:D) | 4.8 ± 1.6 cb | 5.5 ± 1.3 b | 5.1 ± 0.8 cd | 15.4 ± 2.7 cd | |
10:90 (O:D) | 4.8 ± 0.9 cb | 5.4 ± 1.1 b | 5.7 ± 0.7 bc | 16.0 ± 1.8 bc | |
Control | 8.8 ± 2.1 a | 9.1 ± 1.9 a | 11.9 ± 2.2 a | 29.8 ± 5.5 a | |
LSD5% | 0.9 | 0.7 | 0.7 | 1.4 | |
Weed strategy | Hand weeding | 4.6 ± 1.9 b | 5.1 ± 1.6 b | 5.7 ± 2.3 b | 15.5 ± 5.5 b |
No hand weeding | 5.3 ± 2.1 a | 5.9 ± 1.9 a | 6.4 ± 2.6 a | 17.7 ± 6.2 a | |
LSD5% | 0.4 | 0.3 | 0.3 | 0.7 | |
F Value | Year (Y) | 42.00 ** | 46.34 ** | 34.34 ** | 366.67 ** |
Cover crops (Cc) | 33.29 ** | 28.06 ** | 68.99 ** | 368.12 ** | |
Y × Cc | 2.14 ns | 1.09 ns | 2.23 * | 12.18 * | |
Weed strategy (W) | 12.68 * | 16.91 ** | 9.74 * | 116.55 ** | |
Cc × W | 0.24 ns | 0.75 ns | 0.49 ns | 3.54 ns | |
CV (%) | 23.1 | 17.0 | 16.0 | 10.8 |
F Value | Spinach Yield (g m−2) |
---|---|
Year (Y) | 7341.77 ** |
Cover crops (Cc) | 192,903.07 ** |
Y × Cc | 2739.26 ** |
Weed strategy (W) | 37,459.03 ** |
Cc × W | 662.58 * |
CV (%) | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadnia, F.; Ebadi, A.; Alebrahim, M.T.; Hashemi, M. Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield. Agriculture 2025, 15, 2002. https://doi.org/10.3390/agriculture15192002
Ahmadnia F, Ebadi A, Alebrahim MT, Hashemi M. Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield. Agriculture. 2025; 15(19):2002. https://doi.org/10.3390/agriculture15192002
Chicago/Turabian StyleAhmadnia, Fatemeh, Ali Ebadi, Mohammad Taghi Alebrahim, and Masoud Hashemi. 2025. "Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield" Agriculture 15, no. 19: 2002. https://doi.org/10.3390/agriculture15192002
APA StyleAhmadnia, F., Ebadi, A., Alebrahim, M. T., & Hashemi, M. (2025). Impact of Monoculture and Various Ratios of Intercropped Oats and Daikon Radish Cover Crops on Soil Properties, Weed Suppression, and Spinach Yield. Agriculture, 15(19), 2002. https://doi.org/10.3390/agriculture15192002