Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = spin-to-charge current conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3302 KB  
Article
Multi-Strategy Catalysis of Mn-TiO2/TiO2 Composite Photoanode with Built-In Electric Field to Enhance the Charging Performance of Solar Flow Batteries
by Ping Lu, Yan Xie, Xin Zhou, Wei Lu and Qian Xu
Catalysts 2026, 16(2), 112; https://doi.org/10.3390/catal16020112 - 23 Jan 2026
Viewed by 249
Abstract
The synthesis of Mn-TiO2/TiO2, together with its application as a photoanode for solar flow batteries (SFBs), is reported herein. Both the pure TiO2 electrode and the Mn-TiO2/TiO2 based composite electrode were prepared using the sol–gel [...] Read more.
The synthesis of Mn-TiO2/TiO2, together with its application as a photoanode for solar flow batteries (SFBs), is reported herein. Both the pure TiO2 electrode and the Mn-TiO2/TiO2 based composite electrode were prepared using the sol–gel spin-coating technique. The incorporation of a Mn-TiO2 layer led to the enhancement of the built-in electric field within the composite photoanode. This enhancement not only improved the light-harvesting capability of the photoanode but also suppressed the recombination of charge carriers, consequently enhancing the photocatalytic efficiency. Furthermore, the optimal annealing temperature and the optimum TiO2 loading were systematically controlled and optimized to maximize the photoelectric conversion efficiency of the composite photoanode. Ultimately, the optimized Mn-TiO2 composite photoanode was integrated into a monolithic solar flow battery. The results demonstrate that the battery’s photocharging current density reaches 300 μA·cm−2. The photocharging current density was relatively increased by 150%. Full article
Show Figures

Graphical abstract

18 pages, 1106 KB  
Article
Edelstein Effect in Isotropic and Anisotropic Rashba Models
by Irene Gaiardoni, Mattia Trama, Alfonso Maiellaro, Claudio Guarcello, Francesco Romeo and Roberta Citro
Condens. Matter 2025, 10(1), 15; https://doi.org/10.3390/condmat10010015 - 4 Mar 2025
Cited by 1 | Viewed by 3227
Abstract
We investigate spin-to-charge conversion via the Edelstein effect in a 2D Rashba electron gas using the semiclassical Boltzmann approach. We analyze the magnetization arising from the direct Edelstein effect, taking into account an anisotropic Rashba model. We study how this effect depends on [...] Read more.
We investigate spin-to-charge conversion via the Edelstein effect in a 2D Rashba electron gas using the semiclassical Boltzmann approach. We analyze the magnetization arising from the direct Edelstein effect, taking into account an anisotropic Rashba model. We study how this effect depends on the effective masses and Rashba spin–orbit coupling parameters, extracting analytical expressions for the high electronic density regime. Indeed, it is possible to manipulate the anisotropy introduced into the system through these parameters to achieve a boost in the Edelstein response compared to the isotropic Rashba model. We also discuss the theoretical framework to study the inverse Edelstein effect and calculate self-consistently the electric current induced by the proximity of the system to a ferromagnet. These results provide insights into the role of Rashba spin–orbit coupling and anisotropic effects in spin–charge conversion phenomena. Full article
Show Figures

Figure 1

14 pages, 18487 KB  
Article
Synthesis of Carbon Nanofibers from Lignin Using Nickel for Supercapacitor Applications
by Meruyert Nazhipkyzy, Anar B. Maltay and Tulegen M. Seilkhanov
Fibers 2024, 12(10), 87; https://doi.org/10.3390/fib12100087 - 9 Oct 2024
Cited by 2 | Viewed by 2395
Abstract
Carbon fiber is known for being lightweight and adaptable, making it useful for various current and future applications. However, to broaden the use of carbon fibers beyond niche applications, production costs must be lowered. A potential approach to achieving this is by using [...] Read more.
Carbon fiber is known for being lightweight and adaptable, making it useful for various current and future applications. However, to broaden the use of carbon fibers beyond niche applications, production costs must be lowered. A potential approach to achieving this is by using more affordable raw materials, such as lignin, which is renewable, cost-effective, and widely available compared with the materials commonly used in industry today. This study explores the impact of metal ions on the quality of carbon fiber derived from lignin, focusing on its mechanical and electrochemical properties and morphology. The effect of a specific metal ion (Ni(NO3)2·6H2O) was examined by incorporating it into the spinning solution. The carbonization stage of the fiber was conducted at temperatures of 800, 900, and 1000 °C in an inert atmosphere. Scanning electron microscopy (SEM) analysis showed no defects or damage in any of the fibers. Therefore, it was concluded that moderate concentrations of Ni2+ ions in the fibers do not influence the stabilization or carbonization processes, thus leaving the mechanical properties of the final carbon fiber unchanged. These carbon nanofibers were also tested as a sustainable alternative to the non-renewable materials used in electrodes for energy storage and conversion devices, such as supercapacitors. Electrochemical performance was assessed in a 6 M KOH solution using a two-electrode cell configuration. Galvanostatic charge–discharge tests were performed at different current densities (0.1, 0.25, 0.5, 1.0, and 2.0 A g−1). The specific capacitance of the carbon nanofibers was determined from CVA data at various scan rates: 5, 10, 20, 40, 80, and 160 mV s−1. The results indicated that at 0.1 A g−1, the capacitance reached 108 F g−1, and at a scan rate of 5 mV s−1, it was 91 F g−1. The innovation of this work lies in its use of lignin, a renewable and widely available material, to produce carbon fibers, reducing costs compared with traditional methods. Additionally, the incorporation of nickel ions enhances the electrochemical properties of the fibers for supercapacitor applications without compromising their mechanical performance. Full article
Show Figures

Figure 1

12 pages, 3259 KB  
Article
Highly Efficient Layer-by-Layer Organic Photovoltaics Enabled by Additive Strategy
by Yuheng Ni, Hongyue Tian, Ruifeng Gong, Hang Zhou, Wenjing Xu, Jian Wang, Xiaoling Ma and Fujun Zhang
Energies 2024, 17(16), 4022; https://doi.org/10.3390/en17164022 - 14 Aug 2024
Cited by 3 | Viewed by 1736
Abstract
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate [...] Read more.
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate with the L8-BO solutions. The power conversion efficiency (PCE) of LbL OPVs was considerably enhanced from 17.43% to 18.50% by employing TCB as the additive, profiting by the concurrently increased short-circuit current density (JSC) of 26.74 mA cm−2 and a fill factor (FF) of 76.88%. The increased JSCs of LbL OPVs with TCB as additive were ascribed to the tilted-up absorption edge in the long wavelength range and the external quantum-efficiency spectral difference between LbL OPVs with and without TCB as an additive. The molecular arrangement of L8-BO and the PM1 domain was enhanced with TCB as an additive, which was most likely responsible for the increased charge mobilities in the layered films processed with additives. It was indicated that the dynamic film-forming process of the acceptor layers plays a vital role in achieving efficient LbL OPVs by employing additive strategy. Over 6% PCE improvement of the LbL OPVs with PM1/L8-BO as the active layers can be achieved by employing TCB as additive. Full article
Show Figures

Figure 1

12 pages, 4922 KB  
Article
An Anthocyanin-Based Eco-Friendly Triboelectric Nanogenerator for pH Monitoring and Energy Harvesting
by Wuliang Sun, Junhui Dong, Wenbo Li, Xiaobo Gao, Jun Liu and Ding Nan
Molecules 2024, 29(9), 1925; https://doi.org/10.3390/molecules29091925 - 23 Apr 2024
Cited by 2 | Viewed by 1954
Abstract
In recent years, renewable and sustainable triboelectric nanogenerators have attracted attention due to their high energy conversion rate, and enhancing their functionality further contributes to their applicability across various fields. A pH-sensitive triboelectric nanogenerator (pH-TENG) has been prepared by electrostatic spinning technology, with [...] Read more.
In recent years, renewable and sustainable triboelectric nanogenerators have attracted attention due to their high energy conversion rate, and enhancing their functionality further contributes to their applicability across various fields. A pH-sensitive triboelectric nanogenerator (pH-TENG) has been prepared by electrostatic spinning technology, with anthocyanin as the pH indicator and environmentally friendly polyvinyl alcohol (PVA) as the substrate. Among many friction-negative materials, the pH-TENG exhibits the best combination with fluorinated ethylene propylene (FEP) and yields an open-circuit voltage of 62 V, a short-circuit current of 370 nA, and a transferred charge of 21.8 nC. At a frequency of 3 Hz, it can charge a 4.7 μF capacitor to 2 V within 45 s, effectively powering a thermometer. Furthermore, the presence of anthocyanin does not affect the pH-TENG’s power generation performance and enables the monitoring of a wide range of environmental pH changes, with an ΔE change of 28.8 ± 7.6. Therefore, pH-TENG prepared with environmentally friendly materials can bring new available materials to the biological and medical fields. Full article
Show Figures

Graphical abstract

12 pages, 2324 KB  
Article
Longitudinal Spin Seebeck Effect Thermopiles Based on Flexible Co-Rich Amorphous Ribbons/Pt Thin-Film Heterostructures
by Marcio A. Correa, Andrey V. Svalov, Armando Ferreira, Matheus Gamino, Edimilson F. da Silva, Felipe Bohn, Filipe Vaz, Danniel F. de Oliveira and Galina V. Kurlyandskaya
Sensors 2023, 23(18), 7781; https://doi.org/10.3390/s23187781 - 10 Sep 2023
Cited by 2 | Viewed by 2411
Abstract
Thermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having [...] Read more.
Thermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having complex shape surfaces. Here, we reveal that Pt promotes an enhancement of the thermoelectric response in Co-rich ribbon/Pt heterostructures due to the spin-to-charge conversion. Moreover, we demonstrated that the employment of the thermopiles configuration in this system increases the induced thermoelectric current, a fact related to the considerable decrease in the electric resistance of the system. By comparing present findings with the literature, we were able to design a flexible thermopile based on LSSE without the lithography process. Additionally, the thermoelectric voltage found in the studied flexible heterostructures is comparable to the ones verified for rigid systems. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

18 pages, 2471 KB  
Article
Simulations of Dynamical Electronic Vortices in Charge and Spin Density Waves
by Natasha Kirova and Serguei Brazovskii
Symmetry 2023, 15(4), 915; https://doi.org/10.3390/sym15040915 - 14 Apr 2023
Cited by 1 | Viewed by 2323
Abstract
Charge and spin density waves are typical symmetry broken states of quasi one-dimensional electronic systems. They demonstrate such common features of all incommensurate electronic crystals as a spectacular non-linear conduction by means of the collective sliding and susceptibility to the electric field. These [...] Read more.
Charge and spin density waves are typical symmetry broken states of quasi one-dimensional electronic systems. They demonstrate such common features of all incommensurate electronic crystals as a spectacular non-linear conduction by means of the collective sliding and susceptibility to the electric field. These phenomena ultimately require for emergence of static and transient topological defects: there are dislocations as space vortices and space-time vortices known as phase slip centers, i.e., a kind of instantons. Dislocations are statically built-in under a transverse electric field; their sweeping provides a conversion among the normal carriers and condensate which ensures the onset of the collective sliding. A special realization in a high magnetic field, when the density wave is driven by the Hall voltage, originated by quantized normal carriers, reveals the dynamic vorticity serving to annihilate compensating normal and collective currents. Spin density waves, with their rich multiplicative order parameter, bring to life complex objects with half-integer topologically bound vorticities in charge and spin degrees of freedom. We present the basic concepts and modelling results of the stationary states and their transient dynamics involving vorticity. The models take into account multiple fields in their mutual non-linear interactions: the complex order parameter, the self-consistent electric field, and the reaction of normal carriers. We explore the traditional time-dependent Ginzburg–Landau approach and introduce its generalization allowing the treatment of intrinsic normal carriers. The main insights and illustrations come from numerical solutions to partial differential equations for the dissipative dynamics of one and two space dimensions. Full article
(This article belongs to the Special Issue Topological Objects in Correlated Electronic Systems)
Show Figures

Figure 1

10 pages, 2210 KB  
Article
Terahertz Emission Spectroscopy of Ultrafast Coupled Spin and Charge Dynamics in Nanometer Ferromagnetic Heterostructures
by Zhangshun Li, Yexin Jiang, Zuanming Jin, Zhuoyi Li, Xianyang Lu, Zhijiang Ye, Jin-Yi Pang, Yongbing Xu and Yan Peng
Nanomaterials 2022, 12(23), 4267; https://doi.org/10.3390/nano12234267 - 30 Nov 2022
Cited by 6 | Viewed by 3344
Abstract
Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, [...] Read more.
Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, by changing the order of the conductive HM coating on the FM nanometer film, the dominant electric dipole contribution to the laser-induced THz radiation can be unraveled from the ultrafast magnetic dipole. Furthermore, to take charge equilibration into account, we separate the femtosecond laser-induced spin-to-charge converted current and the instantaneous discharging current within the illuminated area. The THz emission spectroscopy gives us direct information into the coupled spin and charge dynamics during the first moments of the light–matter interaction. Our results also open up new perspectives to manipulate and optimize the ultrafast charge current for promising high-performance and broadband THz radiation. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

12 pages, 1617 KB  
Article
RETRACTED: Bi and Sn Doping Improved the Structural, Optical and Photovoltaic Properties of MAPbI3-Based Perovskite Solar Cells
by Muhammad I. Khan, Sumra Yasmin, Norah Alwadai, Muhammad Irfan, Ikram-ul-Haq, Hind Albalawi, Aljawhara H. Almuqrin, Maha M. Almoneef and Munawar Iqbal
Materials 2022, 15(15), 5216; https://doi.org/10.3390/ma15155216 - 28 Jul 2022
Cited by 20 | Viewed by 3671 | Retraction
Abstract
One of the most amazing photovoltaic technologies for the future is the organic–inorganic lead halide perovskite solar cell, which exhibits excellent power conversion efficiency (PCE) and can be produced using a straightforward solution technique. Toxic lead in perovskite can be replaced by non-toxic [...] Read more.
One of the most amazing photovoltaic technologies for the future is the organic–inorganic lead halide perovskite solar cell, which exhibits excellent power conversion efficiency (PCE) and can be produced using a straightforward solution technique. Toxic lead in perovskite can be replaced by non-toxic alkaline earth metal cations because they keep the charge balance in the material and some of them match the Goldschmidt rule’s tolerance factor. Therefore, thin films of MAPbI3, 1% Bi and 0%, 0.5%, 1% and 1.5% Sn co-doped MAPbI3 were deposited on FTO-glass substrates by sol-gel spin-coating technique. XRD confirmed the co-doping of Bi–Sn in MAPbI3. The 1% Bi and 1% Sn co-doped film had a large grain size. The optical properties were calculated by UV-Vis spectroscopy. The 1% Bi and 1% Sn co-doped film had small Eg, which make it a good material for perovskite solar cells. These films were made into perovskite solar cells. The pure MAPbI3 film-based solar cell had a current density (Jsc) of 9.71 MA-cm−2, its open-circuit voltage (Voc) was 1.18 V, its fill factor (FF) was 0.609 and its efficiency (η) was 6.98%. All of these parameters were improved by the co-doping of Bi–Sn. The cell made from a co-doped MAPbI3 film with 1% Bi and 1% Sn had a high efficiency (10.03%). Full article
Show Figures

Figure 1

11 pages, 3143 KB  
Article
Polymer Blends and Polymer Nanocomposites for Photovoltaic (PV) Cells and an Investigation of the Material Deposition Techniques in PV Cell Fabrication
by George Ntanovasilis, Ioannis Zaverdas, Tarig Ahmed, Foivos Markoulidis and Constantina Lekakou
J. Compos. Sci. 2021, 5(10), 263; https://doi.org/10.3390/jcs5100263 - 9 Oct 2021
Cited by 13 | Viewed by 2890
Abstract
Polymer photovoltaics (PV) offer the advantage of low-cost, mass-produced, flexible PV films, but they generally suffer from a low-power conversion efficiency (PCE) compared to silicon. This paper studies ITO/PEDOT:PSS/bulk heterojunction/Al PV cells, where two different bulk heterojunction blends are researched: P3HT/PC61BM [...] Read more.
Polymer photovoltaics (PV) offer the advantage of low-cost, mass-produced, flexible PV films, but they generally suffer from a low-power conversion efficiency (PCE) compared to silicon. This paper studies ITO/PEDOT:PSS/bulk heterojunction/Al PV cells, where two different bulk heterojunction blends are researched: P3HT/PC61BM and PCDTBT/PC70BM. The addition of multiwall carbon nanotubes (CNT) is explored as a conductive network to accelerate the electron transport and extraction to the outer aluminium current collector while reducing the chance of charge recombinations. Several layer deposition techniques are investigated: spin coating and casting, as well as techniques that would induce transverse orientation of polymer grains, including inkjet printing, electrophoresis and the application of a transverse AC field during annealing. Transverse orientation techniques produced architectures that would facilitate charge transport without recombinations, but it is recommended to avoid such techniques for the deposition of conductive PEDOT:PSS and CNT layers as they create a high surface roughness that leads to short circuiting. The best performing PV cell is the ITO/PEDOT:PSS/PCDTBT/PC70BM/CNT/Al structure with a PCE of 11%. Full article
(This article belongs to the Special Issue Opportunities for Composites in the Future Energy Systems)
Show Figures

Figure 1

17 pages, 7524 KB  
Article
CuI/Spiro-OMeTAD Double-Layer Hole Transport Layer to Improve Photovoltaic Performance of Perovskite Solar Cells
by Chaoqun Lu, Weijia Zhang, Zhaoyi Jiang, Yulong Zhang and Cong Ni
Coatings 2021, 11(8), 978; https://doi.org/10.3390/coatings11080978 - 17 Aug 2021
Cited by 17 | Viewed by 7030
Abstract
The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new [...] Read more.
The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs. Full article
(This article belongs to the Special Issue Advanced Perovskite Films for Photovoltaic Application)
Show Figures

Figure 1

10 pages, 1041 KB  
Article
Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films
by Pilar Jiménez-Cavero, Irene Lucas, Jorge Ara-Arteaga, M. Ricardo Ibarra, Pedro A. Algarabel and Luis Morellón
Nanomaterials 2021, 11(6), 1478; https://doi.org/10.3390/nano11061478 - 2 Jun 2021
Cited by 3 | Viewed by 3618
Abstract
Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the [...] Read more.
Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO2) thin films, producing spin currents by means of the spin Seebeck effect in γFe2O3/IrO2 bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle θSH scales proportionally to the thin film resistivity, θSHρc, and obtains a value for the spin diffusion length λIrO2 of λIrO2=3.3(7) nm. In addition, we observe a negative θSH for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material. Full article
(This article belongs to the Special Issue Iron Oxide Nanomaterials)
Show Figures

Graphical abstract

11 pages, 1357 KB  
Article
Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer
by Sayed Izaz Uddin, Muhammad Tahir, Fakhra Aziz, Mahidur R. Sarker, Fida Muhammad, Dil Nawaz Khan and Sawal Hamid Md Ali
Energies 2020, 13(22), 5915; https://doi.org/10.3390/en13225915 - 13 Nov 2020
Cited by 21 | Viewed by 3669
Abstract
We report on the fabrication and study of bulk heterojunction (BHJ) solar cells based on a novel combination of a donor–acceptor poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)-N,N′di(p-butyl-oxy-pheyl)-1,4-diamino-benzene) (PFB) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) blend composed of 1:1 by volume. indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate (PEDOT:PSS)/PFB–PCBM/Ag BHJ [...] Read more.
We report on the fabrication and study of bulk heterojunction (BHJ) solar cells based on a novel combination of a donor–acceptor poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)-N,N′di(p-butyl-oxy-pheyl)-1,4-diamino-benzene) (PFB) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) blend composed of 1:1 by volume. indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate (PEDOT:PSS)/PFB–PCBM/Ag BHJ solar cells are fabricated by a facile cost-effective spin-coating technique. The thickness of the active film (PFB–PCBM) plays an important role in the efficiency of light absorption, exciton creation, and dissociation into free charges that results in higher power conversion efficiency (PCE). In order to optimize the PCE as a function of active layer thickness, a number of solar cells are fabricated with different thicknesses of PFB–PCBM films at 120, 140, 160, 180, and 200 nm, and their photovoltaic characteristics are investigated. It is observed that the device with a 180 nm thick film demonstrates a maximum PCE of 2.9% with a fill factor (FF) of 53% under standard testing conditions (STC) (25 °C, 1.5 AM global, and 100 mW/cm2). The current–voltage (I-V) properties of the ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ devices are also measured in dark conditions to measure and understand different parameters of the heterojunction. Atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) absorption spectroscopy for the PFB–PCBM film of optimal thickness (180 nm) are carried out to understand the effect of surface morphology on the PCE and bandgap of the blend, respectively. The AFM micrographs show a slightly non-uniform and rough surface with an average surface roughness (Ra) of 29.2 nm. The UV-vis measurements of the PFB–PCBM blend exhibit a reduced optical bandgap of ≈2.34 eV as compared to that of pristine PFB (2.88 eV), which results in an improved absorption of light and excitons generation. The obtained results for the ITO/PEDOT:PSS/PFB–PCBM (180 nm)/Ag BHJ device are compared with the ones previously reported for the P3HT–PCBM blend with the same film thickness. It is observed that the PFB–PCBM-based BHJ device has shown two times higher open circuit voltage (Voc) and, hence, enhanced the efficiency. Full article
Show Figures

Figure 1

12 pages, 3915 KB  
Article
Novel Conjugated Polymers Containing 3-(2-Octyldodecyl)thieno[3,2-b]thiophene as a π-Bridge for Organic Photovoltaic Applications
by Jong-Woon Ha, Jong Baek Park, Hea Jung Park and Do-Hoon Hwang
Polymers 2020, 12(9), 2121; https://doi.org/10.3390/polym12092121 - 17 Sep 2020
Cited by 8 | Viewed by 3988
Abstract
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, ( [...] Read more.
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, (PT-ODTTBT or PTT-ODTTBT respectively) through Stille polymerization. Inverted OPV devices with a structure of ITO/ZnO/polymer:PC71BM/MoO3/Ag were fabricated by spin-coating in ambient atmosphere or N2 within a glovebox to evaluate the photovoltaic performance of the synthesized polymers (effective active area: 0.09 cm2). The PTT-ODTTBT:PC71BM-based structure exhibited the highest organic photovoltaic (OPV) device performance, with a maximum power conversion efficiency (PCE) of 7.05 (6.88 ± 0.12)%, a high short-circuit current (Jsc) of 13.96 mA/cm2, and a fill factor (FF) of 66.94 (66.47 ± 0.63)%; whereas the PT-ODTTBT:PC71BM-based device achieved overall lower device performance. According to GIWAXS analysis, both neat and blend films of PTT-ODTTBT exhibited well-organized lamellar stacking, leading to a higher charge carrier mobility than that of PT-ODTTBT. Compared to PT-ODTTBT containing a thiophene donor unit, PTT-ODTTBT containing a thienothiophene donor unit exhibited higher crystallinity, preferential face-on orientation, and a bicontinuous interpenetrating network in the film, which are responsible for the improved OPV performance in terms of high Jsc, FF, and PCE. Full article
(This article belongs to the Special Issue High-Functional Polymeric Materials)
Show Figures

Graphical abstract

10 pages, 272 KB  
Article
On the Evaluation of the Spin Galvanic Effect in Lattice Models with Rashba Spin-Orbit Coupling
by Götz Seibold, Sergio Caprara, Marco Grilli and Roberto Raimondi
Condens. Matter 2018, 3(3), 22; https://doi.org/10.3390/condmat3030022 - 24 Jul 2018
Viewed by 4424
Abstract
The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a charge current and has recently attracted renewed interest due to the large conversion efficiency observed in oxide interfaces. An important factor in the SGE theory is disorder which [...] Read more.
The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a charge current and has recently attracted renewed interest due to the large conversion efficiency observed in oxide interfaces. An important factor in the SGE theory is disorder which ensures the stationarity of the conversion. Through this paper, we propose a procedure for the evaluation of the SGE on disordered lattices which can also be readily implemented for multiband systems. We demonstrate the performance of the method for a single-band Rashba model and compare our results with those obtained within the self-consistent Born approximation for a continuum model. Full article
(This article belongs to the Special Issue Selected Papers from Quantum Complex Matter 2018)
Show Figures

Figure 1

Back to TopTop