Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyakonov, M.I.; Perel, V.I. Possibility of orienting electron spins with current. JETP Lett. 1971, 13, 467–469. [Google Scholar]
- Dyakonov, M.I.; Perel, V.I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 1971, 35, 459–460. [Google Scholar] [CrossRef]
- Hirsch, J.E. Spin Hall Effect. Phys. Rev. Lett. 1999, 83, 1834–1837. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.K.; Myers, R.C.; Gossard, A.C.; Awschalom, D.D. Observation of the spin hall effect in semiconductors. Science 2004, 306, 1910–1913. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, S.; Valenzuela, S.; Saitoh, E.; Kimura, T. Spin Current; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 2000, 85, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, S.O.; Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 2006, 442, 176–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitoh, E.; Ueda, M.; Miyajima, H.; Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 2006, 88, 1–4. [Google Scholar] [CrossRef]
- Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef] [Green Version]
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260. [Google Scholar] [CrossRef]
- Hoffmann, A. Spin Hall Effects in Metals. IEEE Trans. Magn. 2013, 49, 5172–5193. [Google Scholar] [CrossRef]
- Gradhand, M.; Fedorov, D.V.; Zahn, P.; Mertig, I. Extrinsic spin hall effect from first principles. Phys. Rev. Lett. 2010, 104, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, J. The Spontaneous Hall Effect in Ferromagnets. Physica 1958, 24, 39–51. [Google Scholar] [CrossRef]
- Berger, L. Side-jump mechanism for the hall effect of ferromagnets. Phys. Rev. B 1970, 2, 4559–4566. [Google Scholar] [CrossRef]
- Sinova, J.; Culcer, D.; Niu, Q.; Sinitsyn, N.A.; Jungwirth, T.; MacDonald, A.H. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 2004, 92, 126603. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Nagaosa, N.; Zhang, S.C. Dissipationless Quantum Spin Current at Room Temperature. Science 2003, 301, 1348–1351. [Google Scholar] [CrossRef] [Green Version]
- Clancy, J.P.; Chen, N.; Kim, C.Y.; Chen, W.F.; Plumb, K.W.; Jeon, B.C.; Noh, T.W.; Kim, Y.J. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Phys. Rev. B 2012, 86, 195131. [Google Scholar] [CrossRef] [Green Version]
- Butler, S.R.; Gillson, J.L. Crystal growth, electrical resistivity and lattice parameters of RuO2 and IrO2. Mater. Res. Bull. 1971, 6, 81–89. [Google Scholar] [CrossRef]
- Fujiwara, K.; Fukuma, Y.; Matsuno, J.; Idzuchi, H.; Niimi, Y.; Otani, Y.; Takagi, H. 5d iridium Oxide As a Material for Spin-Current Detection. Nat. Commun. 2013, 4, 2893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuhira, K.; Wakeshima, M.; Nakanishi, R.; Yamada, T.; Nakamura, A.; Kawano, W.; Takagi, S.; Hinatsu, Y. Metal-insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Sm, and Eu). J. Phys. Soc. Jpn. 2007, 76, 043706. [Google Scholar] [CrossRef]
- Yang, B.J.; Kim, Y.B. Topological insulators and metal-insulator transition in the pyrochlore iridates. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 085111. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuji, S.; MacHida, Y.; Maeno, Y.; Tayama, T.; Sakakibara, T.; Van Duijn, J.; Balicas, L.; Millican, J.N.; MacAluso, R.T.; Chan, J.Y. Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7. Phys. Rev. Lett. 2006, 96, 087204. [Google Scholar] [CrossRef] [Green Version]
- Disseler, S.M.; Giblin, S.R.; Dhital, C.; Lukas, K.C.; Wilson, S.D.; Graf, M.J. Magnetization and Hall effect studies on the pyrochlore iridate Nd2Ir2O7. Phys. Rev. B 2013, 87, 060403. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Ohsumi, H.; Komesu, T.; Sakai, S.; Morita, T.; Takagi, H.; Arima, T. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4. Science 2009, 323, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, C.H.; Jeong, H.; Jin, H.; Yu, J. Strain-induced topological insulator phase and effective magnetic interactions in Li2IrO3. Phys. Rev. B 2013, 87, 165117. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Hou, D.; Kikkawa, T.; Uchida, K.I.; Saitoh, E. All-oxide spin Seebeck effects. Appl. Phys. Express 2015, 8, 083001. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K.; Ishida, M.; Kikkawa, T.; Kirihara, A.; Murakami, T.; Saitoh, E. Longitudinal spin seebeck effect: From fundamentals to applications. J. Phys. Condens. Matter 2014, 26, 343202. [Google Scholar] [CrossRef] [PubMed]
- Adachi, H.; Uchida, K.I.; Saitoh, E.; Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 2013, 76, 036501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sola, A.; Basso, V.; Kuepferling, M.; Pasquale, M.; Ne Meier, D.C.; Reiss, G.; Kuschel, T.; Kikkawa, T.; Uchida, K.I.; Saitoh, E.; et al. Spincaloritronic Measurements: A Round Robin Comparison of the Longitudinal Spin Seebeck Effect. IEEE Trans. Instrum. Meas. 2019, 68, 1765–1773. [Google Scholar] [CrossRef] [Green Version]
- Bauer, G.E.W.; Saitoh, E.; Wees, B.J.V.; St, P. Spin caloritronics. Nat. Publ. Group 2012, 11, 391–399. [Google Scholar] [CrossRef]
- Mattheiss, L.F. Electronic structure of RuO2, OsO2, and IrO2. Phys. Rev. B 1976, 13, 2433–2450. [Google Scholar] [CrossRef]
- Wertheim, G.K.; Guggenheim, H.J. Conduction-electron screening in metallic oxides: IrO2. Phys. Rev. B 1980, 22, 4680–4683. [Google Scholar] [CrossRef]
- Kahk, J.M.; Poll, C.G.; Oropeza, F.E.; Ablett, J.M.; Céolin, D.; Rueff, J.P.; Agrestini, S.; Utsumi, Y.; Tsuei, K.D.; Liao, Y.F.; et al. Understanding the Electronic Structure of IrO2 Using Hard-X-ray Photoelectron Spectroscopy and Density-Functional Theory. Phys. Rev. Lett. 2014, 112, 117601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ping, Y.; Galli, G.; Goddard, W.A. Electronic Structure of IrO2: The Role of the Metal d Orbitals. J. Phys. Chem. C 2015, 119, 11570–11577. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Liu, C.X.; Felser, C.; Yan, B. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys. Rev. B 2017, 95, 235104. [Google Scholar] [CrossRef] [Green Version]
- Das, P.K.; Sławińska, J.; Vobornik, I.; Fujii, J.; Regoutz, A.; Kahk, J.M.; Scanlon, D.O.; Morgan, B.J.; McGuinness, C.; Plekhanov, E.; et al. Role of spin-orbit coupling in the electronic structure of IrO2. Phys. Rev. Mater. 2018, 2, 065001. [Google Scholar] [CrossRef] [Green Version]
- Daniels, R.R.; Margaritondo, G.; Georg, C.A.; Lévy, F. Electronic states of rutile dioxides: RuO2, IrO2, and RuxIr1-xO2. Phys. Rev. B 1984, 29, 1813–1818. [Google Scholar] [CrossRef]
- De Almeida, J.S.; Ahuja, R. Electronic and optical properties of RuO2 and IrO2. Phys. Rev. B 2006, 73, 165102. [Google Scholar] [CrossRef]
- Hirata, Y.; Ohgushi, K.; Yamaura, J.i.; Ohsumi, H.; Takeshita, S.; Takata, M.; Arima, T.h. Complex orbital state stabilized by strong spin-orbit coupling in a metallic iridium oxide IrO2. Phys. Rev. B 2013, 87, 161111. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, J.K.; Uchida, M.; Paik, H.; Schlom, D.G.; Shen, K.M. Evolution of electronic correlations across the rutile, perovskite, and Ruddelsden-Popper iridates with octahedral connectivity. Phys. Rev. B 2016, 94, 121104. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.J.; Kim, S.Y.; Kim, C.H.; Sohn, C.H.; Korneta, O.B.; Chae, S.C.; Noh, T.W. Spin-orbit coupling induced band structure change and orbital character of epitaxial IrO2 films. Phys. Rev. B 2016, 93, 045104. [Google Scholar] [CrossRef]
- Riga, J.; Tenret-Noël, C.; Pireaux, J.J.; Caudano, R.; Verbist, J.J.; Gobillon, Y. Electronic structure of rutile oxides TiO2, RuO2 and IrO2 studied by X-ray Photoelectron Spectroscopy. Phys. Scr. 1977, 16, 351–354. [Google Scholar] [CrossRef]
- Jiménez-Cavero, P.; Lucas, I.; Anadón, A.; Ramos, R.; Niizeki, T.; Aguirre, M.H.; Algarabel, P.A.; Uchida, K.; Ibarra, M.R.; Saitoh, E.; et al. Spin Seebeck effect in insulating epitaxial γ-Fe2O3 thin films. APL Mater. 2017, 5, 026103. [Google Scholar] [CrossRef] [Green Version]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Ming, X.; Yamauchi, K.; Oguchi, T.; Picozzi, S. Metal-Insulator Transition and Jeff = 1/2 Spin-Orbit Insulating State in Rutile-based IrO2/TiO2 Superlattices. arXiv 2017, arXiv:1702.04408. [Google Scholar]
- Castel, V.; Vlietstra, N.; Ben Youssef, J.; Van Wees, B.J. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 2012, 101, 132414. [Google Scholar] [CrossRef] [Green Version]
- Saiga, Y.; Mizunuma, K.; Kono, Y.; Ryu, J.C.; Ono, H.; Kohda, M.; Okuno, E. Platinum thickness dependence and annealing effect of the spin-Seebeck voltage in platinum/yttrium iron garnet structures. Appl. Phys. Express 2014, 7, 093001. [Google Scholar] [CrossRef]
- Sushkov, O.P.; Milstein, A.I.; Mori, M.; Maekawa, S. Relativistic effects in scattering of polarized electrons. EPL Europhys. Lett. 2013, 103, 47003. [Google Scholar] [CrossRef]
- Fert, A.; Levy, P.M. Spin Hall Effect Induced by Resonant Scattering on Impurities in Metals. Phys. Rev. Lett. 2011, 106, 157208. [Google Scholar] [CrossRef] [Green Version]
- Chadova, K.; Fedorov, D.V.; Herschbach, C.; Gradhand, M.; Mertig, I.; Ködderitzsch, D.; Ebert, H. Separation of the individual contributions to the spin Hall effect in dilute alloys within the first-principles Kubo-Středa approach. Phys. Rev. B 2015, 92, 045120. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hou, D.; Ye, L.; Tian, Y.; Xu, J.; Su, G.; Jin, X. Evidence of the side jump mechanism in the anomalous Hall effect in paramagnets. EPL Europhys. Lett. 2015, 110, 27002. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Ye, L.; Jin, X. Proper Scaling of the Anomalous Hall Effect. Phys. Rev. Lett. 2009, 103, 087206. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.; Jin, X. Towards a Better Understanding of the Anomalous Hall Effect. J. Phys. Soc. Jpn. 2017, 86, 011006. [Google Scholar] [CrossRef]
- Bose, A.; Nelson, J.N.; Zhang, X.S.; Jadaun, P.; Jain, R.; Schlom, D.G.; Ralph, D.C.; Muller, D.A.; Shen, K.M.; Buhrman, R.A. Effects of Anisotropic Strain on Spin-Orbit Torque Produced by the Dirac Nodal Line Semimetal IrO2. ACS Appl. Mater. Interfaces 2020, 12, 55411–55416. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; Vilela-Leão, L.H.; Rodríguez-Suárez, R.L.; Lacerda Santos, A.F.; Rezende, S.M. Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys. Rev. B 2011, 83, 144402. [Google Scholar] [CrossRef]
- Zhang, W.; Vlaminck, V.; Pearson, J.E.; Divan, R.; Bader, S.D.; Hoffmann, A. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect. Appl. Phys. Lett. 2013, 103, 242414. [Google Scholar] [CrossRef]
- Rojas-Sánchez, J.C.; Reyren, N.; Laczkowski, P.; Savero, W.; Attané, J.P.; Deranlot, C.; Jamet, M.; George, J.M.; Vila, L.; Jaffrès, H. Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces. Phys. Rev. Lett. 2014, 112, 106602. [Google Scholar] [CrossRef] [PubMed]
- Isasa, M.; Villamor, E.; Hueso, L.E.; Gradhand, M.; Casanova, F. Temperature dependence of spin diffusion length and spin Hall angle in Au and Pt. Phys. Rev. B 2015, 91, 024402. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Liu, Q.; Miao, B.; Yu, R.; Feng, Z.; Sun, L.; You, B.; Du, J.; Chen, K.; Zhang, S.; et al. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: The role of the interface spin loss. Sci. Adv. 2018, 4, eaat1670. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Cavero, P.; Lucas, I.; Ara-Arteaga, J.; Ibarra, M.R.; Algarabel, P.A.; Morellón, L. Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films. Nanomaterials 2021, 11, 1478. https://doi.org/10.3390/nano11061478
Jiménez-Cavero P, Lucas I, Ara-Arteaga J, Ibarra MR, Algarabel PA, Morellón L. Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films. Nanomaterials. 2021; 11(6):1478. https://doi.org/10.3390/nano11061478
Chicago/Turabian StyleJiménez-Cavero, Pilar, Irene Lucas, Jorge Ara-Arteaga, M. Ricardo Ibarra, Pedro A. Algarabel, and Luis Morellón. 2021. "Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films" Nanomaterials 11, no. 6: 1478. https://doi.org/10.3390/nano11061478
APA StyleJiménez-Cavero, P., Lucas, I., Ara-Arteaga, J., Ibarra, M. R., Algarabel, P. A., & Morellón, L. (2021). Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO2 Thin Films. Nanomaterials, 11(6), 1478. https://doi.org/10.3390/nano11061478