Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = spiking motifs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4048 KB  
Article
Fractal Neural Dynamics and Memory Encoding Through Scale Relativity
by Călin Gheorghe Buzea, Valentin Nedeff, Florin Nedeff, Mirela Panaite Lehăduș, Lăcrămioara Ochiuz, Dragoș Ioan Rusu, Maricel Agop and Dragoș Teodor Iancu
Brain Sci. 2025, 15(10), 1037; https://doi.org/10.3390/brainsci15101037 - 24 Sep 2025
Viewed by 300
Abstract
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural [...] Read more.
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural propagation along fractal geodesics in a non-differentiable space-time. The objective is to link nonlinear wave dynamics with the emergence of structured memory representations in a biologically plausible manner. Methods: Neural activity was modeled using nonlinear Schrödinger-type equations derived from SRT, yielding complex wave solutions. Synaptic plasticity was coupled through a reaction–diffusion rule driven by local activity intensity. Simulations were performed in one- and two-dimensional domains using finite difference schemes. Analyses included spectral entropy, cross-correlation, and Fourier methods to evaluate the organization and complexity of the resulting synaptic fields. Results: The model reproduced core neurobiological features: localized potentiation resembling CA1 place fields, periodic plasticity akin to entorhinal grid cells, and modular tiling patterns consistent with V1 orientation maps. Interacting waveforms generated interference-dependent plasticity, modeling memory competition and contextual modulation. The system displayed robustness to noise, gradual potentiation with saturation, and hysteresis under reversal, reflecting empirical learning and reconsolidation dynamics. Cross-frequency coupling of theta and gamma inputs further enriched trace complexity, yielding multi-scale memory structures. Conclusions: Wave-driven dynamics in fractal space-time provide a hypothesis-generating framework for distributed memory formation. The current approach is theoretical and simulation-based, relying on a simplified plasticity rule that omits neuromodulatory and glial influences. While encouraging in its ability to reproduce biological motifs, the framework remains preliminary; future work must benchmark against established models such as STDP and attractor networks and propose empirical tests to validate or falsify its predictions. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

16 pages, 1307 KB  
Article
Kinetic Analysis of SARS-CoV-2 S1–Integrin Binding Using Live-Cell, Label-Free Optical Biosensing
by Nicolett Kanyo, Krisztina Borbely, Beatrix Peter, Kinga Dora Kovacs, Anna Balogh, Beatrix Magyaródi, Sandor Kurunczi, Inna Szekacs and Robert Horvath
Biosensors 2025, 15(8), 534; https://doi.org/10.3390/bios15080534 - 14 Aug 2025
Viewed by 1085
Abstract
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway [...] Read more.
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway using a live-cell, label-free resonant waveguide grating (RWG) biosensor. RWG technology allowed us to monitor real-time adhesion kinetics of live cells to RGD-displaying substrates, as well as cell adhesion to S1-coated surfaces. To characterize the strength of the integrin–S1 interaction, we determined the dissociation constant using two complementary approaches. First, we performed a live-cell competitive binding assay on RGD-displaying surfaces, where varying concentrations of soluble S1 were added to cell suspensions. Second, we recorded the adhesion kinetics of cells on S1-coated surfaces and fitted the data using a kinetic model based on coupled ordinary differential equations. By comparing the results from both methods, we estimate that approximately 33% of the S1 molecules immobilized on the Nb2O5 biosensor surface are capable of initiating integrin-mediated adhesion. These findings support the existence of an alternative integrin-dependent entry route for SARS-CoV-2 and highlight the effectiveness of label-free RWG biosensing for quantitatively probing virus–host interactions under physiologically relevant conditions without the need of the isolation of the interaction partners from the cells. Full article
(This article belongs to the Special Issue In Honor of Prof. Evgeny Katz: Biosensors: Science and Technology)
Show Figures

Figure 1

21 pages, 2089 KB  
Article
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target
by Vivany Maydel Sierra-Sánchez, Citlali Margarita Blancas-Napoles, Aina Daniela Sánchez-Maldonado, Indira Medina, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Sergio Adrian Ocampo-Ortega and Santiago Villafaña
Biomedicines 2025, 13(7), 1730; https://doi.org/10.3390/biomedicines13071730 - 15 Jul 2025
Viewed by 651
Abstract
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this [...] Read more.
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this hypothesis, we examined 104,737 SARS-CoV-2 genome fastas from GISAID genomic data, corresponding to isolates collected between 2020 and 2025 in Mexico. Specifically, we focused on the RRAR motif, a known furin-binding site for NRP-1 and the binding site for ACE2 with the spike protein. Our analysis revealed high conservation (>98%) of the RRAR domain compared to a rapidly diminishing ACE2-binding domain. A complementary analysis, using Data from Gene Expression Omnibus (GEO, GSE150316), showed that NRP1 expression in lung tissue remains relatively stable, whereas ACE2 displayed high inter-individual variability and lower abundance compared to NRP1. Based on this evidence, we designed two humans–rats NRP1 siRNAs that were tested in vivo using a melittin-induced lung injury model. Results: The RT-PCR assays confirmed an effective NRP1 knockdown, and the siRNA-treated group showed a significant reduction in the lesions severity. These findings highlight NRP1 as a stable and relevant therapeutic target and suggest the protective potential of siRNA-mediated gene silencing. Conclusions: The evidence presented here supports the rational design of NRP1-directed therapies for multiple circulating SARS-CoV-2 variants in Mexico. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 1965 KB  
Article
The Role of Long-Range Non-Specific Electrostatic Interactions in Inhibiting the Pre-Fusion Proteolytic Processing of the SARS-CoV-2 S Glycoprotein by Heparin
by Yi Du, Yang Yang, Son N. Nguyen and Igor A. Kaltashov
Biomolecules 2025, 15(6), 778; https://doi.org/10.3390/biom15060778 - 28 May 2025
Viewed by 674
Abstract
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of [...] Read more.
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of the critical importance of this step for the viral infectivity cycle, it has been a target of extensive efforts aimed at identifying highly specific protease inhibitors as potential antiviral agents. An alternative strategy to disrupt the pre-fusioviden processing of the SARS-CoV-2 S glycoprotein aims to protect the substrate rather than directly inhibit the proteases. In this work, we focused on furin, a serine protease located primarily in the Golgi apparatus, but also present on the cell membrane. Its cleavage site within the S glycoprotein is located within the stalk region of the latter and comprises an arginine-rich segment (SPRRARS), which fits the definition of the Cardin–Weintraub glycosaminoglycan recognition motif. Native mass spectrometry (MS) measurements confirmed the binding of a hexadecameric peptide representing the loop region at the S1/S2 interface and incorporating the furin cleavage site (FCS) to heparin fragments of various lengths, as well as unfractionated heparin (UFH), although at the physiological ionic strength, only UFH remains tightly bound to the FCS. The direct LC/MS monitoring of FCS digestion with furin revealed a significant impact of both heparin fragments and UFH on the proteolysis kinetics, although only the latter had IC50 values that could be considered physiologically relevant (0.6 ± 0.1 mg/mL). The results of this work highlight the importance of the long-range and relatively non-specific electrostatic interactions in modulating physiological and pathological processes and emphasize the multi-faceted role played by heparin in managing coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Mechanism and Detection of SARS-CoV-2)
Show Figures

Figure 1

13 pages, 9470 KB  
Article
The Binding of Brazilin from C. sappan to the Full-Length SARS-CoV-2 Spike Proteins
by Phonphiphat Bamrung, Borvornwat Toviwek, Firdaus Samsudin, Phoom Chairatana, Peter John Bond and Prapasiri Pongprayoon
Int. J. Mol. Sci. 2025, 26(9), 4100; https://doi.org/10.3390/ijms26094100 - 25 Apr 2025
Viewed by 728
Abstract
The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a global issue since 2019. The prominent characteristic of SARS-CoV-2 is the presence of the spike (S) protein protruding from the virus particle envelope. The S protein [...] Read more.
The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a global issue since 2019. The prominent characteristic of SARS-CoV-2 is the presence of the spike (S) protein protruding from the virus particle envelope. The S protein is a major drug and vaccine target because it initiates the key step in infection. Medicinal herbs are a potential treatment option to enhance immunity to fight viral infections. Caesalpinia sappan L. has been reported to display promising anti-viral activities. Specifically, brazilin (BRA), a major bioactive compound in C. sappan, was reported to play a role in inhibiting viral infection. Thus, the ability of BRA as a COVID-19 treatment was tested. The S protein was used as the BRA target of this work. Understanding the binding mechanism of BRA to the S protein is crucial for future utilisation of C. sappan as a COVID-19 treatment or other coronavirus-caused pandemics. Here, we performed molecular docking of BRA onto the S protein receptor binding domain (RBD) and multimerisation (MM) pockets. Molecular dynamics (MD) simulations were conducted to study the stability of binding to glycosylated and non-glycosylated S protein constructs. BRA can bind to the Receptor-binding motif (RBM) on an RBD surface stably; however, it is too large to fit into the MM pocket, resulting in dissociation. Nonetheless, BRA is bound by residues near the S1/S2 interface. We found that glycosylation has no effect on BRA binding, as the proposed binding site is far from any glycans. Our results thus indicate that C. sappan may act as a promising preventive and therapeutic alternative for COVID-19 treatment. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 2188 KB  
Article
Impact of SARS-CoV-2 RBM Mutations N501Y and E484K on ACE2 Binding: A Combined Computational and Experimental Study
by Agnieszka Rombel-Bryzek, Peicho Petkov, Elena Lilkova, Nevena Ilieva, Leandar Litov, Mariusz Kubus and Danuta Witkowska
Int. J. Mol. Sci. 2025, 26(9), 4064; https://doi.org/10.3390/ijms26094064 - 25 Apr 2025
Cited by 1 | Viewed by 1388
Abstract
The SARS-CoV-2 spike receptor-binding motif is crucial for viral entry via interaction with the human ACE2 receptor. Mutations N501Y and E484K, found in several variants of concern, impact viral transmissibility and immune escape, but experimental data on their binding effects remain inconsistent. Using [...] Read more.
The SARS-CoV-2 spike receptor-binding motif is crucial for viral entry via interaction with the human ACE2 receptor. Mutations N501Y and E484K, found in several variants of concern, impact viral transmissibility and immune escape, but experimental data on their binding effects remain inconsistent. Using isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations, we analyzed the thermodynamic and structural effects of these mutations. ITC confirmed that N501Y increases ACE2 affinity by 2.2-fold, while E484K enhances binding by 5.8-fold. The Beta/Gamma variant (carrying both mutations) showed the strongest affinity, with a 15-fold increase. E484K was enthalpy-driven, while N501Y introduced entropy-driven effects, suggesting hydrophobic interactions and conformational changes. MD simulations revealed distinct binding poses, with Beta/Gamma peptides interacting with a secondary ACE2 site. A strong correlation was found between entropy contributions and hydrophobic contacts. Additionally, a convolutional neural network was used to estimate the free binding energy of these complexes. Our findings confirm that N501Y and E484K enhance ACE2 binding, with the greatest effect when combined, providing insights into SARS-CoV-2 variant evolution and potential therapeutic strategies. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
Show Figures

Figure 1

20 pages, 4035 KB  
Article
Deep Learning-Based Comparative Prediction and Functional Analysis of Intrinsically Disordered Regions in SARS-CoV-2
by Sidra Ilyas, Abdul Manan and Donghun Lee
Int. J. Mol. Sci. 2025, 26(7), 3411; https://doi.org/10.3390/ijms26073411 - 5 Apr 2025
Cited by 2 | Viewed by 879
Abstract
This study explores the role of intrinsically disordered regions (IDRs) in the SARS-CoV-2 proteome and their potential as targets for small-molecule drug discovery. Experimentally validated intrinsic disordered regions from the literature were utilized to assess the prediction of intrinsic disorder across a selection [...] Read more.
This study explores the role of intrinsically disordered regions (IDRs) in the SARS-CoV-2 proteome and their potential as targets for small-molecule drug discovery. Experimentally validated intrinsic disordered regions from the literature were utilized to assess the prediction of intrinsic disorder across a selection of SARS-CoV-2 proteins. The disorder propensities of proteins using four deep learning-based disorder prediction models: ADOPT, PONDR®VLXT, PONDR®VSL2, and flDPnn, were analyzed. ADOPT, VSL2, and VLXT identified a flexible linker (129–147), while VSL2 and VLXT predicted disorder in the Cu(II) binding region (163–167) of NSP1. ADOPT did not predict disordered regions in NSP11; however, VSL2 and VLXT identified disorder in the experimentally validated regions. The IDR in ORF3a is crucial for protein localization and immune modulation, affecting inflammatory pathways. VSL2 predicted significant disorder in the N-terminal domain (18–23), which aligns with experimental data (1–41), overlapping with the TRAF-binding motif, while ADOPT indicated high disorder in the C-terminal domain (255–275), consistent with VSL2 and flDPnn. All tools identified disorder in the N-terminal (1–68), central linker (181–248), and C-terminal (370–419) regions of the nucleocapsid (N) protein, suggesting flexibility and accuracy. The S2 subunit of the spike protein displayed more predicted disorder than the S1 subunit across ADOPT, VSL2, and flDPnn. These IDRs are essential for viral functions, like protein localization, immune modulation, receptor binding, and membrane fusion. This study highlights the importance of IDR in modulating key inflammatory pathways, suggesting that they could serve as promising targets for small-molecule drug development to combat COVID-19. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

22 pages, 13568 KB  
Article
Molecular Basis of High-Blood-Pressure-Enhanced and High-Fever-Temperature-Weakened Receptor-Binding Domain/Peptidase Domain Binding: A Molecular Dynamics Simulation Study
by Xubin Xie, Yu Zhang, Ying Fang, Jianhua Wu and Quhuan Li
Int. J. Mol. Sci. 2025, 26(7), 3250; https://doi.org/10.3390/ijms26073250 - 31 Mar 2025
Viewed by 1019
Abstract
The entry and infection of the Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) involve recognition and binding of the receptor-binding domain (RBD) of the virus surface spike protein to the peptidase domain (PD) of the host cellular Angiotensin-Converting Enzyme-2 (ACE2) receptor. ACE2 [...] Read more.
The entry and infection of the Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) involve recognition and binding of the receptor-binding domain (RBD) of the virus surface spike protein to the peptidase domain (PD) of the host cellular Angiotensin-Converting Enzyme-2 (ACE2) receptor. ACE2 is also involved in normal blood pressure control. An association between hypertension and COVID-19 severity and fatality is evident, but how hypertension predisposes patients diagnosed with COVID-19 to unfavorable outcomes remains unclear. High temperature early during SARS-CoV-2 infection impairs binding to human cells and retards viral progression. Low body temperature can prelude poor prognosis. In this study, all-atom molecular dynamics simulations were performed to examine the effects of high pressure and temperature on RBD/PD binding. A high blood pressure of 940 mmHg enhanced RBD/PD binding. A high temperature above 315 K significantly weakened RBD/PD binding, while a low temperature of 305 K enhanced binding. The curvature of the PD α1-helix and proximity of the PD β3β4-hairpin tip to the RBM motif affected the compactness of the binding interface and, hence, binding affinity. These findings provide novel insights into the underlying mechanisms by which hypertension predisposes patients to unfavorable outcomes in COVID-19 and how an initial high temperature retards viral progression. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Figure 1

14 pages, 2281 KB  
Article
Development and Efficacy Evaluation of a Novel Nanoparticle-Based Hemagglutination Inhibition Assay for Serological Studies of Porcine Epidemic Diarrhea Virus
by Fengyan Liang, Wenyue Qiao, Mengjia Zhang, Zhangtiantian Hu, Shan Zhao, Qigui Yan, Wentao Li and Yifei Lang
Vet. Sci. 2025, 12(2), 101; https://doi.org/10.3390/vetsci12020101 - 1 Feb 2025
Viewed by 1643
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen that causes serious economic losses to the swine industry. To aid PEDV clinical diagnosis and vaccine development, sensitive and precise serological methods are demanded for rapid detection of (neutralizing) antibodies. Aiming for the development [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a major pathogen that causes serious economic losses to the swine industry. To aid PEDV clinical diagnosis and vaccine development, sensitive and precise serological methods are demanded for rapid detection of (neutralizing) antibodies. Aiming for the development of a novel virus-free hemagglutination inhibition (HI) assay, the N-terminal region of the PEDV S1 subunit, encompassing the sialic acid-binding motif, was first expressed as an Fc-fusion protein with a C-terminal Spy Tag (S10A-Spy). The S10A-Spy protein was then presented on SpyCatcher-mi3 nanoparticles, forming virus-like particles designated S10A-NPs. Electron microscopy and dynamic light scattering analysis confirmed its topology, and the hemagglutination assay showed that S10A-NPs can efficiently agglutinate red blood cells. The HI assay based on S10A-NPs was then validated with PEDV-positive and -negative samples. The results showed that the HI assay had high specificity for the detection of PEDV antibodies. Next, a total of 253 clinical serum samples were subjected to the HI testing along with virus neutralization (VN) assay. The area under the receiver operating characteristic curve with VN was 0.959, and the kappa value was 0.759. Statistical analysis of the results indicated that the HI titers of the samples tested exhibited high consistency with the VN titers. Taken together, a novel virus-free HI assay based on the multivalent display of a chimeric PEDV spike protein upon self-assembling nanoparticles was established, providing a new approach for PEDV serological diagnosis. Full article
Show Figures

Figure 1

11 pages, 1896 KB  
Communication
Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6, and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated Human Microglia
by Irene Tsilioni, Duraisamy Kempuraj and Theoharis C. Theoharides
Int. J. Mol. Sci. 2025, 26(2), 636; https://doi.org/10.3390/ijms26020636 - 14 Jan 2025
Cited by 3 | Viewed by 2765
Abstract
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) and eriodictyol (3′,4′,5,7-tetraxydroxyflavanone) on human microglia cell line activation [...] Read more.
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) and eriodictyol (3′,4′,5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h. The inflammatory mediators interleukin-1 beta (IL-1β), chemokine (C-X-C motif) ligand 8 (CXCL8), IL-6, and matrix metalloproteinase-9 (MMP-9) were quantified in the cell culture supernatant by enzyme-linked immunosorbent assay (ELISA). Both nobiletin and eriodictyol significantly inhibited the LPS, FL-Spike, and OTA-stimulated release of IL-1β, CXCL8, IL-6, and MMP-9 at 50 and 100 µM, while, in most cases, nobiletin was also effective at 10 µM, with the most pronounced reductions at 100 µM. These findings suggest that both nobiletin and eriodictyol are potent inhibitors of the pathogen-stimulated microglial release of inflammatory mediators, highlighting their potential for therapeutic application in neuroinflammatory diseases, such as long COVID. Full article
(This article belongs to the Special Issue Natural Bioactives and Inflammation, 2nd Edition)
Show Figures

Figure 1

16 pages, 13527 KB  
Article
Enhanced Humoral and Cellular Immune Responses Elicited by Adenoviral Delivery of SARS-CoV-2 Receptor-Binding Motif Fused to Human Fc
by Yea-Jin Lee, Maheswaran Easwaran, Yong-Sam Jung, Yingjuan Qian and Hyun-Jin Shin
Vaccines 2024, 12(11), 1247; https://doi.org/10.3390/vaccines12111247 - 1 Nov 2024
Cited by 1 | Viewed by 1947
Abstract
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed [...] Read more.
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed an adenoviral vector expressing the RBM from the SARS-CoV-2 spike protein that fused to the human Fc (hFc) domain. Methods: The recombinant RBM_hFc fusion protein was successfully cloned into the pacAd5CMV-N-pA (pAd5) vector and expressed in HEK293 cells as a ~40 kDa protein. A recombinant adenovirus encoding RBM_hFc was subsequently generated and confirmed by cytopathic effect assay. Results: Western blot analysis verified the expression of RBM_hFc in the adenovirus (AdV). ELISA assays, validated for IgG detection, demonstrated a twofold increase in IgG antibody levels (M–1.090 at 450 nm; SD—±0.326; and 95% CI—0.250 [0.839 to 1.340]) in sera from BALB/c mice immunized with Ad/RBM_hFc, compared to the negative control group. Result suggests a robust humoral immune response induced by the Ad/RBM_hFc vaccine. Moreover, ELISpot assays demonstrated a tenfold increase in IFN-γ -producing cells (M—440 spot-forming cells; SD—±124.976; and 95% CI—75.522 [364.478 to 515.522]) in mice immunized with AdV/RBM_hFc compared to the negative control group. Result proved that AdV/RBM_hFc-stimulated a robust cellular immune response in animal model. Conclusions: Our findings indicate that the RBM_hFc fusion protein enhances both humoral and cellular immune responses. These results suggest the potential of adenoviral vectors carrying RBM_hFc as vaccine candidates. However, comprehensive evaluation of the protective efficacy of these adenoviral vectors will necessitate rigorous experimental studies. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

14 pages, 3551 KB  
Article
Genome-Wide Identification and Expression Analysis of SNAP Gene Family in Wheat
by Xiaohan Zhang, Yanan Yu, Yumeng Sun, Yan Bai, Yongjun Shu and Changhong Guo
Genes 2024, 15(10), 1311; https://doi.org/10.3390/genes15101311 - 11 Oct 2024
Viewed by 1888
Abstract
Background/Objectives: The SNAP gene family is a class of proteins containing a SNAP domain, which plays a crucial role in the growth and development of plants. Methods: Bioinformatics methods were used to systematically analyze the gene structure, phylogenetic evolution, chromosomal distribution, [...] Read more.
Background/Objectives: The SNAP gene family is a class of proteins containing a SNAP domain, which plays a crucial role in the growth and development of plants. Methods: Bioinformatics methods were used to systematically analyze the gene structure, phylogenetic evolution, chromosomal distribution, physicochemical properties, conserved motifs, and cis-acting elements of the TaSNAP family members. Results: The TaSNAP family comprises members that encode proteins ranging between 120 and 276 amino acids, with isoelectric points spanning from 4.87 to 7.92. Phylogenetic analysis elucidated the categorization of the eight TaSNAP into three distinct subfamilies, wherein members of the same subfamily display marked similarities in their gene structures. Chromosomal mapping revealed the distribution of TaSNAP family members across chromosomes 2A, 2B, 2D, 7A, 7B, and 7D. Utilizing the Plant CARE tool, we identified ten elements linked to plant hormones and four associated with stress responses. Expression analysis via qRT-PCR was performed to assess the levels of the eight TaSNAP genes in various tissues and under diverse abiotic stress conditions. The results indicated heightened expression of most genes in roots compared to spikes. Notably, under ABA stress, the majority of genes exhibited upregulation, whereas certain genes were downregulated under PEG stress, implying a substantial role for SNAP protein in wheat growth and development. Conclusions: This study conducted a comprehensive bioinformatics analysis of each member of the wheat SNAP family, laying a crucial foundation for future functional investigations. Full article
(This article belongs to the Special Issue Genes and Genomics of Plants Under Abiotic Stresses)
Show Figures

Figure 1

21 pages, 11870 KB  
Article
Detection and Characterisation of SARS-CoV-2 in Eastern Province of Zambia: A Retrospective Genomic Surveillance Study
by Doreen Mainza Shempela, Herman M. Chambaro, Jay Sikalima, Fatim Cham, Michael Njuguna, Linden Morrison, Steward Mudenda, Duncan Chanda, Maisa Kasanga, Victor Daka, Geoffrey Kwenda, Kunda Musonda, Sody Munsaka, Roma Chilengi, Karen Sichinga and Edgar Simulundu
Int. J. Mol. Sci. 2024, 25(12), 6338; https://doi.org/10.3390/ijms25126338 - 7 Jun 2024
Cited by 1 | Viewed by 1795
Abstract
Mutations have driven the evolution and development of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with potential implications for increased transmissibility, disease severity and vaccine escape among others. Genome sequencing is a technique that allows scientists to read the [...] Read more.
Mutations have driven the evolution and development of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with potential implications for increased transmissibility, disease severity and vaccine escape among others. Genome sequencing is a technique that allows scientists to read the genetic code of an organism and has become a powerful tool for studying emerging infectious diseases. Here, we conducted a cross-sectional study in selected districts of the Eastern Province of Zambia, from November 2021 to February 2022. We analyzed SARS-CoV-2 samples (n = 76) using high-throughput sequencing. A total of 4097 mutations were identified in 69 SARS-CoV-2 genomes with 47% (1925/4097) of the mutations occurring in the spike protein. We identified 83 unique amino acid mutations in the spike protein of the seven Omicron sublineages (BA.1, BA.1.1, BA.1.14, BA.1.18, BA.1.21, BA.2, BA.2.23 and XT). Of these, 43.4% (36/83) were present in the receptor binding domain, while 14.5% (12/83) were in the receptor binding motif. While we identified a potential recombinant XT strain, the highly transmissible BA.2 sublineage was more predominant (40.8%). We observed the substitution of other variants with the Omicron strain in the Eastern Province. This work shows the importance of pandemic preparedness and the need to monitor disease in the general population. Full article
Show Figures

Figure 1

12 pages, 6196 KB  
Article
Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes
by Maria E. S. Monteiro, Guilherme C. Lechuga, Paloma Napoleão-Pêgo, João P. R. S. Carvalho, Larissa R. Gomes, Carlos M. Morel, David W. Provance and Salvatore G. De-Simone
Vaccines 2024, 12(4), 342; https://doi.org/10.3390/vaccines12040342 - 22 Mar 2024
Cited by 5 | Viewed by 2759
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior [...] Read more.
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD’s crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses. Full article
(This article belongs to the Special Issue Advances in Vaccines Against Infectious Diseases)
Show Figures

Graphical abstract

22 pages, 2784 KB  
Article
Toward a SARS-CoV-2 VLP Vaccine: HBc/G as a Carrier for SARS-CoV-2 Spike RBM and Nucleocapsid Protein-Derived Peptides
by Ivars Petrovskis, Dace Skrastina, Juris Jansons, Andris Dislers, Janis Bogans, Karina Spunde, Anastasija Neprjakhina, Jelena Zakova, Anna Zajakina and Irina Sominskaya
Vaccines 2024, 12(3), 267; https://doi.org/10.3390/vaccines12030267 - 4 Mar 2024
Cited by 1 | Viewed by 2812
Abstract
Virus-like particles (VLPs) offer an attractive possibility for the development of vaccines. Recombinant core antigen (HBc) of Hepatitis B virus (HBV) was expressed in different systems, and the E. coli expression system was shown to be effective for the production of HBc VLPs. [...] Read more.
Virus-like particles (VLPs) offer an attractive possibility for the development of vaccines. Recombinant core antigen (HBc) of Hepatitis B virus (HBV) was expressed in different systems, and the E. coli expression system was shown to be effective for the production of HBc VLPs. Here, we used HBc of the HBV genotype G (HBc/G) as a technologically promising VLP carrier for the presentation of spike RBM and nucleocapsid protein-derived peptides of the SARS-CoV-2 Delta variant for subsequent immunological evaluations of obtained fusion proteins. The major immunodominant region (MIR) of the HBc/G protein was modified through the insertion of a receptor binding motif (RBM) from the S protein or B-cell epitope-containing peptide from the N protein. The C-terminus of the two truncated HBc/G proteins was used for the insertion of a group of five cytotoxic T lymphocyte (CTL) epitopes from the N protein. After expression in E. coli, the MIR-derived proteins were found to be insoluble and were recovered through step-wise solubilization with urea, followed by refolding. Despite the lack of correct VLPs, the chimeric proteins induced high levels of antibodies in BALB/c mice. These antibodies specifically recognized either eukaryotically expressed hRBD or bacterially expressed N protein (2–220) of SARS-CoV-2. CTL-epitope-containing proteins were purified as VLPs. The production of cytokines was analyzed through flow cytometry after stimulation of T-cells with target CTL peptides. Only a protein with a deleted polyarginine (PA) domain was able to induce the specific activation of T-cells. At the same time, the T-cell response against the carrier HBc/G protein was detected for both proteins. The neutralization of SARS-CoV-2 pseudotyped murine retrovirus with anti-HBc/G-RBM sera was found to be low. Full article
Show Figures

Figure 1

Back to TopTop