Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = spike protein gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2089 KiB  
Article
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target
by Vivany Maydel Sierra-Sánchez, Citlali Margarita Blancas-Napoles, Aina Daniela Sánchez-Maldonado, Indira Medina, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Sergio Adrian Ocampo-Ortega and Santiago Villafaña
Biomedicines 2025, 13(7), 1730; https://doi.org/10.3390/biomedicines13071730 - 15 Jul 2025
Viewed by 393
Abstract
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this [...] Read more.
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this hypothesis, we examined 104,737 SARS-CoV-2 genome fastas from GISAID genomic data, corresponding to isolates collected between 2020 and 2025 in Mexico. Specifically, we focused on the RRAR motif, a known furin-binding site for NRP-1 and the binding site for ACE2 with the spike protein. Our analysis revealed high conservation (>98%) of the RRAR domain compared to a rapidly diminishing ACE2-binding domain. A complementary analysis, using Data from Gene Expression Omnibus (GEO, GSE150316), showed that NRP1 expression in lung tissue remains relatively stable, whereas ACE2 displayed high inter-individual variability and lower abundance compared to NRP1. Based on this evidence, we designed two humans–rats NRP1 siRNAs that were tested in vivo using a melittin-induced lung injury model. Results: The RT-PCR assays confirmed an effective NRP1 knockdown, and the siRNA-treated group showed a significant reduction in the lesions severity. These findings highlight NRP1 as a stable and relevant therapeutic target and suggest the protective potential of siRNA-mediated gene silencing. Conclusions: The evidence presented here supports the rational design of NRP1-directed therapies for multiple circulating SARS-CoV-2 variants in Mexico. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

24 pages, 5910 KiB  
Article
Transcriptome Profiling of Spike Development Reveals Key Genes and Pathways Associated with Early Heading in Wheat–Psathyrstachys huashanica 7Ns Chromosome Addition Line
by Binwen Tan, Yangqiu Xie, Hang Peng, Miaomiao Wang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Peng Qin, Yonghong Zhou, Dandan Wu, Yinghui Li and Houyang Kang
Plants 2025, 14(13), 2077; https://doi.org/10.3390/plants14132077 - 7 Jul 2025
Viewed by 404
Abstract
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such [...] Read more.
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such as early maturity and resistance to biotic and abiotic stresses. In this study, we found that a cytogenetically stable wheat–P. huashanica 7Ns disomic addition line showed (9–11 days) earlier heading and (8–10 days) earlier maturation than its wheat parents. Morphological observations of spike differentiation revealed that the 7Ns disomic addition line developed distinctly faster than its wheat parents from the double ridge stage. To explore the potential molecular mechanisms underlying the early heading, we performed transcriptome analysis at four different developmental stages of the 7Ns disomic addition line and its wheat parents. A total of 10,043 differentially expressed genes (DEGs) were identified during spike development. Gene Ontology (GO) enrichment analysis showed that these DEGs were linked to the carbohydrate metabolic process, photosynthesis, response to abscisic acid, and the ethylene-activated signaling pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were involved in plant hormone signal transduction (ARF, AUX/IAA, SAUR, DELLA, BRI1, and ETR), starch and sucrose metabolism (SUS1 and TPP), photosynthetic antenna proteins (Lhc), and circadian rhythm (PRR37, FT, Hd3a, COL, and CDF) pathways. In addition, several DEGs annotated as transcription factors (TFs), such as bHLH, bZIP, MADS-box, MYB, NAC, SBP, WRKY, and NF-Y, may be related to flowering time. Our findings reveal spike development-specific gene expression and critical regulatory pathways associated with early heading in the wheat–P. huashanica 7Ns addition line, and provide a new genetic resource for further dissection of the molecular mechanisms underlying the heading date in wheat. Full article
(This article belongs to the Special Issue Biosystematics and Breeding Application in Triticeae Species)
Show Figures

Graphical abstract

19 pages, 4184 KiB  
Article
Host–Virus Interface in Persistent SARS-CoV-2 Infections: Viral Characteristic Evolution and Gene Expression Profiling Analysis
by Athok Shofiudin Maarif, Yukari Nishikawa, Miyako Takata, Kyosuke Kanai, Edo Riyandani, Kengo Mukuda, Momone Mimura, Kosuke Yamaguchi, Hiroyuki Kato, Ryo Okamoto, Kensaku Okada, Tsuyoshi Kitaura, Masaki Nakamoto, Akira Yamasaki, Seiji Kageyama and Hiroki Chikumi
Int. J. Mol. Sci. 2025, 26(13), 6221; https://doi.org/10.3390/ijms26136221 - 27 Jun 2025
Viewed by 501
Abstract
Persistent SARS-CoV-2 infections involve prolonged viral replication and immune system interactions, potentially driving viral evolution and immune escape. This study examines viral characteristics and host gene expression changes in persistent infections. The nasopharyngeal samples from four patients with persistent SARS-CoV-2 infections at Tottori [...] Read more.
Persistent SARS-CoV-2 infections involve prolonged viral replication and immune system interactions, potentially driving viral evolution and immune escape. This study examines viral characteristics and host gene expression changes in persistent infections. The nasopharyngeal samples from four patients with persistent SARS-CoV-2 infections at Tottori University Hospital, Japan, were analyzed. Viral isolates were cultured, and infectivity was assessed using TCID50 assays. To investigate host responses, RNA sequencing (RNA-seq) was performed to identify differentially expressed genes (DEGs), and Gene Ontology (GO) enrichment analysis mapped affected biological pathways. Viral genome sequencing detected mutations associated with prolonged infection. The results showed significant infectivity differences between early- and late-phase infection. Gene expression analysis revealed a strong early phase of pro-inflammatory response (IL6, TNF, IL1B, CXCL10) followed by immune suppression. GO enrichment analysis highlighted inflammation and cytokine-mediated immune pathways. Genomic sequencing identified mutations in ORF1ab and the spike (S) protein, potentially aiding immune escape. The findings underscore that SARS-CoV-2 adapts during persistent infections, altering infectivity and immune responses. These highlight the need for continued monitoring of prolonged infections to mitigate immune escape and viral evolution. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

13 pages, 1519 KiB  
Article
Multiplexed CRISPR Assay for Amplification-Free Detection of miRNAs
by P. I. Thilini De Silva, Keshani Hiniduma, Rachelle Canete, Ketki S. Bhalerao, Sherif M. Shawky, Hansana Gunathilaka, Jessica L. Rouge, Islam M. Mosa, David C. Steffens, Kevin Manning, Breno S. Diniz and James F. Rusling
Biosensors 2025, 15(6), 346; https://doi.org/10.3390/bios15060346 - 29 May 2025
Viewed by 852
Abstract
CRISPR-Cas proteins from bacteria are powerful tools for gene editing and molecular diagnostics. Expanding capacity of CRISPR to low cost, multiplexed assays of biomarkers is a key to future disease diagnostics, since multiple biomarker detection is essential for reliable diagnostics. Herein we describe [...] Read more.
CRISPR-Cas proteins from bacteria are powerful tools for gene editing and molecular diagnostics. Expanding capacity of CRISPR to low cost, multiplexed assays of biomarkers is a key to future disease diagnostics, since multiple biomarker detection is essential for reliable diagnostics. Herein we describe a multiplexed assay in a 3D-printed 96-well plate with CRISPR-Cas13a immobilized in each well to target three circulating blood biomarker microRNAs (miRNAs 34c-5p, 200c-3p, and 30e-5p) for Alzheimer’s disease (ALZ). Immobilized Cas13a is equipped with different crRNAs complementary to each miRNA target. MiRNA binding to crRNA complements activates the collateral RNase activity of Cas13a, cleaving a quenched fluorescent reporter (RNaseAlert) with fluorophore and quencher connected by an RNA oligonucleotide to enable fluorescence measurements. We achieved ultralow limits of detection (LOD) of 0.74 fg/mL for miRNA 34c-5p, 0.70 fg/mL for miRNA 30e-5p, and 7.4 fg/mL for miRNA 200c-3p, with dynamic ranges from LODs up to about 1800 pg/mL. The accuracy of the assay was validated by spike-recovery studies and good correlation of levels of patient plasma samples vs. a referee method. This new approach provides selective, sensitive multiplex miRNA biosensing, and simultaneously accommodates analysis of standards and controls. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

16 pages, 2368 KiB  
Article
A Luciferase-Based Approach for Functional Screening of 5′ and 3′ Untranslated Regions of the mRNA Component for mRNA Vaccines
by Maria Rubtsova, Yuliana Mokrushina, Dmitry Andreev, Maria Poteshnova, Nikita Shepelev, Mariya Koryagina, Ekaterina Moiseeva, Diana Malabuiok, Yury Prokopenko, Stanislav Terekhov, Aleksander Chernov, Elena Vodovozova, Ivan Smirnov, Olga Dontsova, Alexander Gabibov and Yury Rubtsov
Vaccines 2025, 13(5), 530; https://doi.org/10.3390/vaccines13050530 - 16 May 2025
Viewed by 1454
Abstract
Background/Objectives: The recent COVID-19 pandemic caused by SARS-CoV-2 infection has highlighted the need for protocols for rapid development of efficient screening methods to search for the optimal mRNA vaccine structures against mutable viral agents. The unmatched success of mRNA vaccines by Pfizer [...] Read more.
Background/Objectives: The recent COVID-19 pandemic caused by SARS-CoV-2 infection has highlighted the need for protocols for rapid development of efficient screening methods to search for the optimal mRNA vaccine structures against mutable viral agents. The unmatched success of mRNA vaccines by Pfizer and Moderna encoding the spike protein of SARS-CoV-2 confirms the potential of lipid nanoparticles for mRNA delivery for an accelerated development of new vaccines. The efficacy of vaccination and the production cost of mRNA-based vaccines largely depend on the composition of mRNA components, since the synthesis of an immunogenic protein requires precise and efficient translation in vivo. The composition of 5′ and 3′ UTR combinations of mRNA has a strong impact on the translation efficiency. The major objective of this study was to increase the probability of producing the immunogenic protein encoded by vaccine mRNA. For this purpose, we proposed to find a new combination of natural UTRs and, in parallel with that, to design and test the system for in vivo selection of translationally active UTRs. Methods: By using Ribo-Seq analysis, sets of candidate short UTRs were generated. These UTRs were tested both in cell cultures and in mice for effective production of secreted nanoluciferase (NLuc) and the S protein of SARS-CoV-2. A combination of the most effective UTRs was used to generate a prototype of an mRNA vaccine capable of inducing neutralizing antibodies against coronavirus. Results: The usefulness of the selected UTRs for vaccine development was tested by implicating the full-length coding sequence of SARS-CoV-2 S protein to produce the main immunogen. As a result, the system for functional screening of UTRs was created by using the NLuc gene. Conclusions: The proposed approach allows non-invasive quantitative assessment of the translational activity of UTRs in the blood serum of mice. By using the full-length sequence of SARS-CoV-2 S protein as a prototype, we demonstrated that the combination of UTRs selected using our luciferase-based reporter assay induces IgG titers and neutralization rates comparable to those obtained by using UTRs from commercial S-protein-based mRNA vaccines. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

19 pages, 7417 KiB  
Article
Optimizing Detection of Circulating Tumor Cells in Breast Cancer: Unveiling New Markers for Clinical Applications
by Amira Mehtar, Janine Wechsler, Christophe Desterke, Julien Giron-Michel, Amira Bouzidi, Aude Burlion, Fawzia Louache, Samira Kahia-Tani, Georges Uzan and Sina Naserian
Int. J. Mol. Sci. 2025, 26(10), 4714; https://doi.org/10.3390/ijms26104714 - 14 May 2025
Viewed by 2631
Abstract
Breast cancer (BC) is a heterogeneous disease with high metastasis potential, especially in the bones, liver, and lungs. Circulating tumor cells (CTCs), which emerge from active tumors, represent an early step toward metastasis and are associated with poor prognosis. CTCs of carcinoma origin [...] Read more.
Breast cancer (BC) is a heterogeneous disease with high metastasis potential, especially in the bones, liver, and lungs. Circulating tumor cells (CTCs), which emerge from active tumors, represent an early step toward metastasis and are associated with poor prognosis. CTCs of carcinoma origin are believed to express EpCAM and cytokeratins (CKs), common epithelial markers that are frequently used to identify them. However, in practice, the most aggressive CTCs lose the expression of those markers, leading to the partial loss of important information. Thus, finding some novel markers that identify CTCs regardless of their heterogeneity is crucial. A specific bioinformatics workflow integrating primary tumor and diverse BC cell lines transcriptomic expression analysis was developed and compared with single CTC transcriptomic analyses. We have identified a set of genes that are overexpressed in primary BC cells and are commonly upregulated among BC cell lines. Fifty of them were also found to be expressed in BC CTCs by single-cell transcriptomic analysis. Further in silico sorting narrowed this list to 12 genes. Using ScreenCell technology to isolate cancer cells spiked into normal blood, we tested the protein expression of all corresponding genes in vitro using the double immunocytochemistry method and validated MARCKSL1, SLC9A3R1, and RHOD as the most expressed markers. We then isolated the CTCs of 40 LN-invaded BC patients and 18 healthy donors using ScreenCell technology and showed that the combination of these three markers resulted in significantly better recognition of CTCs compared to EpCAM and CK conventional markers. Employing these novel markers, we found a clear distinction between blood samples from patients and healthy donors. In conclusion, through a specific bioinformatics workflow, in addition to in vitro and further clinical validations, we found three novel markers to precisely identify CTCs. These markers, when used together, enable a significantly more efficient identification of CTCs compared to conventional epithelial markers. Full article
Show Figures

Figure 1

22 pages, 6216 KiB  
Article
Efficient Delivery of SARS-CoV-2 Plasmid DNA in HEK-293T Cells Using Chitosan Nanoparticles
by Citlali Cecilia Mendoza-Guevara, Alejandro Martinez-Escobar, María del Pilar Ramos-Godínez, José Esteban Muñoz-Medina and Eva Ramon-Gallegos
Pharmaceuticals 2025, 18(5), 683; https://doi.org/10.3390/ph18050683 - 5 May 2025
Viewed by 806
Abstract
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a [...] Read more.
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a potential solution. This study focuses on designing a SARS-CoV-2 plasmid DNA (pDNA) conjugated with CNPs and evaluating its in vitro delivery efficiency. Methods: The Omicron Spike DNA sequence was inserted into the pIRES2-eGFP expression vector, and CNPs were synthesized with optimized physicochemical properties to enhance stability, cellular uptake, and transfection efficiency. The conjugate was characterized using UV-Vis, FT-IR, DLS, and TEM techniques. Transfection efficiency was assessed and compared to the commercially available TurboFect reagent as a control. Results: CNPs-pDNA polyplexes with an average size of 159.0 ± 33.1 nm (TEM), a zeta potential of +19.7 ± 0.3 mV, and 100% ± 0.0 encapsulation efficiency were developed as a non-viral delivery system. CNPs efficiently serve as a delivery vehicle for the constructed pDNA without altering cell morphology, achieving transfection efficiencies of 62–74%, compared to 55–70% for TurboFect. Furthermore, RT-qPCR confirmed the expression of Spike mRNA, and Western blot assays validated the expression of Spike protein. Notably, Spike protein expression from CNPs was found to be two-fold higher than the control at 96 h post-transfection. Conclusions: These findings suggest that CNPs are a promising and versatile platform for delivering genetic material. Importantly, this study highlights the intrinsic properties of chitosan, without the use of additional ligands, as a key factor in achieving efficient gene delivery. Full article
Show Figures

Figure 1

21 pages, 2969 KiB  
Article
Genetic and Phenotypic Investigations of Viral Subpopulations Detected in Different Tissues of Laying Hens Following Infectious Bronchitis Virus Infection
by Ahmed Ali, Ryan Rahimi, Motamed Elsayed Mahmoud, Adel A. Shalaby, Rodrigo A. Gallardo and Mohamed Faizal Abdul-Careem
Viruses 2025, 17(4), 527; https://doi.org/10.3390/v17040527 - 4 Apr 2025
Viewed by 754
Abstract
Infectious bronchitis virus (IBV) commonly produces a range of genetic sequences during replication, particularly in the spike 1 (S1)-coding portion of the S gene, leading to distinct subpopulations within the broader viral population. It has been shown that certain microenvironments exert selective pressure [...] Read more.
Infectious bronchitis virus (IBV) commonly produces a range of genetic sequences during replication, particularly in the spike 1 (S1)-coding portion of the S gene, leading to distinct subpopulations within the broader viral population. It has been shown that certain microenvironments exert selective pressure on the S1-coding sequences and their encoded proteins, influencing the selection of viral subpopulations in these environments. In this study, high-throughput next-generation sequencing (NGS) was used to analyze the S1-coding sequences from tissues of the respiratory, digestive, renal, and reproductive systems of specific pathogen-free (SPF) laying hens. These tissues were collected nine days after infection with the California 1737/04 (CA1737/04) IBV strain, which is known to cause varying degrees of pathology in these tissues. Using a specific bioinformatics pipeline, 27 single nucleotide variants (SNVs) were detected in the S1-coding sequences derived from different tissues. These SNVs shaped multiple subpopulations (SP1–SP15), with SP1 being the core subpopulation present in all tissues, while others were tissue-specific. The IBV RNA loads in the tissues were negatively correlated with the number of SNVs or the Shannon entropy values, and phylogenetic analysis revealed a genetic divergence in the S1-coding sequences from certain tissues with lower viral RNA loads, particularly those from the trachea and ovary. Furthermore, the SNVs were associated with nonsynonymous mutations, primarily located in hypervariable region 2 (HVR 2) within the N-terminal domain of S1 (S1-NTD), except for those in SP7, which was exclusive to the trachea and contained changes in HVR 3 in the C-terminal domain of S1 (S1-CTD). Overall, this study adds to the existing knowledge about IBV evolution by highlighting the role of tissue-specific environments in shaping viral genetic diversity. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals and Birds: Volume 5)
Show Figures

Figure 1

15 pages, 2074 KiB  
Article
The ACE2 Receptor from Common Vampire Bat (Desmodus rotundus) and Pallid Bat (Antrozous pallidus) Support Attachment and Limited Infection of SARS-CoV-2 Viruses in Cell Culture
by Abhijeet Bakre, Ryan Sweeney, Edna Espinoza, David L. Suarez and Darrell R. Kapczynski
Viruses 2025, 17(4), 507; https://doi.org/10.3390/v17040507 - 31 Mar 2025
Viewed by 583
Abstract
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to [...] Read more.
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to gain cellular entry and begin the replication cycle. In previous studies, we demonstrated that human and various bat ACE2 proteins can be utilized by SC2 viruses for entry. Bats are a suspected natural host of SC2 because of genetic homology with other bat coronaviruses. In this work, we demonstrate that expression of ACE2 genes from the common vampire bat (CVB) (Desmodus rotundus) and the pallid bat (PB) (Antrozous pallidus), supports infection and replication of some SC2 viruses in cell culture. Two cell lines were produced, CVB-ACE2 and PB-ACE2, expressing ACE2 from these bat species along with human TMPRSS2, in a model previously established using a non-permissive chicken DF-1 cell line. Results demonstrate that the original Wuhan lineage (WA1) virus and the Delta variant were able to infect and replicate in either of the bat ACE2 cell lines. In contrast, the Lambda and Omicron variant viruses infected both cell lines, but viral titers did not increase following infection. Viral detection using immunofluorescence demonstrated abundant spike (S) protein staining for the WA1 and Delta variants but little signal for the Lambda and Omicron variants. These studies demonstrate that while ACE2 from CVB and PB can be utilized by SC2 viruses to gain entry for infection, later variants (Lambda and Omicron) replicate poorly in these cell lines. These observations suggest more efficient human adaption in later SC2 variants that become less fit for replication in other animal species. Full article
(This article belongs to the Special Issue Multiple Hosts of SARS-CoV-2, 3rd Edition)
Show Figures

Figure 1

14 pages, 6295 KiB  
Article
Anther Transcriptome Analysis of Two Heat Tolerance-Differentiated Indica Rice Restorer Lines Reveals the Importance of Non-Structural Carbohydrates and ATP in the Regulation of Heat Tolerance
by Jieqiang Zhou, Yingfeng Wang, Jiangfeng Li, Zijian Song, Yunhua Xiao, Huabing Deng, Xiong Liu, Qiuhong Chen, Wenbang Tang and Guilian Zhang
Int. J. Mol. Sci. 2025, 26(7), 3161; https://doi.org/10.3390/ijms26073161 - 29 Mar 2025
Viewed by 438
Abstract
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain [...] Read more.
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain unclear. This study compared the gene expression patterns of two hybrid rice restorer lines with differing heat resistances under HS and discusses the mechanisms of the heat response in rice. Under heat stress, 247 DEGs were co-expressed across varieties and were involved in biological processes such as protein processing and carbon metabolism, with heat shock proteins being the most ubiquitous. Interestingly, a substantial enrichment of genes related to non-structural carbohydrates and ATP was observed among the unique DEGs in R996 and R4628. Simultaneously, the contents of non-structural carbohydrates and ATP levels in the young spikes of R996 were significantly higher than those in R4628. This suggests that starch, soluble sugars and ATP play significant roles in heat tolerance during the flowering stage of rice. Overall, this study provides novel insights into the molecular mechanisms underlying heat stress resistance in indica rice restorer lines and informs future strategies for the genetic improvement of heat tolerance in these varieties. Full article
Show Figures

Figure 1

18 pages, 2098 KiB  
Article
The Half-Heading Stage May Represent the Optimal Harvest Time for the First Cut of Tall Wheatgrass
by Wei Li, Qiang Xiao, Zhengwu Fang, Qi Zheng, Hongwei Li and Zhensheng Li
Agronomy 2025, 15(4), 763; https://doi.org/10.3390/agronomy15040763 - 21 Mar 2025
Viewed by 431
Abstract
Timely harvest is pivotal for the pasture management of tall wheatgrass, which has recently been suggested for coastal saline and alkaline soils. In this work, different culm parts in the top three internodes of tall wheatgrass during various heading stages were investigated to [...] Read more.
Timely harvest is pivotal for the pasture management of tall wheatgrass, which has recently been suggested for coastal saline and alkaline soils. In this work, different culm parts in the top three internodes of tall wheatgrass during various heading stages were investigated to explore the precise harvesting time for the first cut, factors influencing forage quality, and correlations between the expression levels of genes involved in cellulose and lignin biosynthesis and forage nutritive value. The results show that the culms clipped at the half heading stage produced the highest crude protein (CP) yield. The top three leaves contributed the greatest proportion of total culm CP yield, accounting for 49%, 40%, and 30% of total culm CP yield at the just, half, and full heading stages, respectively. By contrast, the leaves and spikes produced lower yields of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), crude cellulose (CC), and hemicellulose (HC) than leaf sheaths and stems, indicating that the leaf/stem ratio can be used as an index for the cultivation and genetic improvement of tall wheatgrass. The lignin and cellulose biosynthesis genes expressed differentially in different culm parts of tall wheatgrass in response to the heading stage. The expression levels of HCT, encoding a hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase, were negatively correlated with the CP content and relative feed value, but positively correlated with the yields of dry matter, NDF, ADF, CC, and HC, suggesting that it may be used as a marker gene linked to the forage quality of tall wheatgrass. Full article
Show Figures

Figure 1

19 pages, 1616 KiB  
Review
Renal Implications of Dysregulated Protein Homeostasis: Insights into Ubiquitin–Proteasome and Autophagy Systems
by Charlotte Delrue and Marijn M. Speeckaert
Biomolecules 2025, 15(3), 349; https://doi.org/10.3390/biom15030349 - 28 Feb 2025
Viewed by 995
Abstract
The ubiquitin–proteasome system (UPS) and autophagy maintain protein homeostasis, which is critical to cellular function and survival. The dysregulation of these pathways has been recognized as a hallmark of acute kidney injury and chronic kidney disease. This review elucidates the role of the [...] Read more.
The ubiquitin–proteasome system (UPS) and autophagy maintain protein homeostasis, which is critical to cellular function and survival. The dysregulation of these pathways has been recognized as a hallmark of acute kidney injury and chronic kidney disease. This review elucidates the role of the UPS and autophagy in kidney disease, namely through inflammation, oxidative stress, fibrosis and apoptosis. The pathways of NF-κB, TGF-β and mitochondrial failure result in glomerular injury and tubulointerstitial fibrosis due to impaired proteostasis in podocytes and tubular epithelial cells. Recent studies have revealed a connection between the autophagic process and the UPS, wherein compensatory mechanisms aim to spike down proteotoxic stress but eventually seem inadequate in cases of chronic derangement. Low-dose pharmacological inhibitors, autophagy modulators, and new gene and nanotechnology-based treatments may all help to restore the protein balance and reduce kidney injury. A more thorough understanding of these pathways is needed to develop kidney-protective and disease-modifying therapeutic interventions. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

10 pages, 1177 KiB  
Article
Sequential SARS-CoV-2 mRNA Vaccination Induces Anti-Idiotype (Anti-ACE2) Antibodies in K18 Human ACE2 Transgenic Mice
by Craig P. Collins, Christian Herzog, Logan V. Vick, Ryan Nielsen, Yanping Izak Harville, Dan L. Longo, John M. Arthur and William J. Murphy
Vaccines 2025, 13(3), 224; https://doi.org/10.3390/vaccines13030224 - 24 Feb 2025
Cited by 1 | Viewed by 1128
Abstract
Background/Objectives: Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing [...] Read more.
Background/Objectives: Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing vaccine formulations. The immunoregulatory aspects involved in such vaccine approaches remain unclear. Antibodies, due to inherent immunogenicity by VDJ gene rearrangement, have the potential to induce antibodies directed towards them called anti-idiotype antibodies, which can play a downregulatory role in responses. The paratope of some of these anti-idiotype antibodies can also act as a mirror to the original antigen, which, in the case of SARS-CoV-2 vaccines, would be to the spike protein and, therefore, also be capable of binding its target, ACE2, potentially causing adverse effects. Methods: To investigate if sequential SARS-CoV-2 mRNA vaccination can induce anti-idiotype antibody responses, K18 hACE2 transgenic mice were serially vaccinated with a SARS-CoV-2 mRNA construct to determine the kinetics of anti-spike and anti-ACE2 responses via custom-made ELISAs. Results: While sequential vaccination produced robust anti-spike responses, anti-ACE2 levels were also detected and gradually amplified with each boost. These anti-ACE2 antibodies persisted for 3 months after the final vaccination and showed evidence of hACE2 binding, as levels were lower in K18 mice in comparison to the wild type. Conclusions: These data would suggest that sequential SARS-CoV-2 mRNA vaccination has the potential to induce anti-ACE2 antibodies in mice, with each boost amplifying the amount of antibody. Full article
(This article belongs to the Special Issue Analysis of Vaccine-Induced Adaptive Immune Responses)
Show Figures

Graphical abstract

16 pages, 3711 KiB  
Article
Novel Vaccines Targeting the Highly Conserved SARS-CoV-2 ORF3a Ectodomain Elicit Immunogenicity in Mouse Models
by Jacob Meza, Elizabeth Glass, Avinaash K. Sandhu, Yangchen Li, Styliani Karanika, Kaitlyn Fessler, Yinan Hui, Courtney Schill, Tianyin Wang, Jiaqi Zhang, Rowan E. Bates, Alannah D. Taylor, Aakanksha R. Kapoor, Samuel K. Ayeh, Petros C. Karakousis, Richard B. Markham and James T. Gordy
Vaccines 2025, 13(3), 220; https://doi.org/10.3390/vaccines13030220 - 22 Feb 2025
Viewed by 2151
Abstract
Background: The majority of antigen-based SARS-CoV-2 (SCV2) vaccines utilized in the clinic have had the Spike protein or domains thereof as the immunogen. While the Spike protein is highly immunogenic, it is also subject to genetic drift over time, which has led to [...] Read more.
Background: The majority of antigen-based SARS-CoV-2 (SCV2) vaccines utilized in the clinic have had the Spike protein or domains thereof as the immunogen. While the Spike protein is highly immunogenic, it is also subject to genetic drift over time, which has led to a series of variants of concern that continue to evolve, requiring yearly updates to the vaccine formulations. In this study, we investigate the potential of the N-terminal ectodomain of the ORF3a protein encoded by the orf3a gene of SCV2 to be an evolution-resistant vaccine antigen. This domain is highly conserved over time, and, unlike many other SCV2 conserved proteins, it is present on the exterior of the virion, making it accessible to antibodies. ORF3a is also important for eliciting robust anti-SARS-CoV-2 T-cell responses. Methods: We designed a DNA vaccine by fusing the N-terminal ectodomain of orf3a to macrophage-inflammatory protein 3α (MIP3α), which is a chemokine utilized in our laboratory that enhances vaccine immunogenicity by targeting an antigen to its receptor CCR6 present on immature dendritic cells. The DNA vaccine was tested in mouse immunogenicity studies, vaccinating by intramuscular (IM) electroporation and by intranasal (IN) with CpG adjuvant administrations. We also tested a peptide vaccine fusing amino acids 15–28 of the ectodomain to immunogenic carrier protein KLH, adjuvanted with Addavax. Results: The DNA IM route was able to induce 3a-specific splenic T-cell responses, showing proof of principle that the region can be immunogenic. The DNA IN route further showed that we could induce ORF3a-specific T-cell responses in the lung, which are critical for potential disease mitigation. The peptide vaccine elicited a robust anti-ORF3a antibody response systemically, as well as in the mucosa of the lungs and sinus cavity. Conclusions: These studies collectively show that this evolutionarily stable region can be targeted by vaccination strategies, and future work will test if these vaccines, alone or in combination, can result in reduced disease burden in animal challenge models. Full article
(This article belongs to the Special Issue Recent Discoveries and Developments in RNA and DNA Vaccines)
Show Figures

Figure 1

35 pages, 10583 KiB  
Article
Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Reda Nacif ElAlaoui, Mohammed Cherkaoui and Maged Gomaa Hemida
Int. J. Mol. Sci. 2025, 26(3), 1328; https://doi.org/10.3390/ijms26031328 - 4 Feb 2025
Cited by 1 | Viewed by 1289
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. [...] Read more.
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/−) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication. Full article
(This article belongs to the Special Issue Molecular Design of Artificial Receptors Using Virtual Approaches)
Show Figures

Figure 1

Back to TopTop