Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,474)

Search Parameters:
Keywords = speeding behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3251 KB  
Article
Classifying Advanced Driver Assistance System (ADAS) Activation from Multimodal Driving Data: A Real-World Study
by Gihun Lee, Kahyun Lee and Jong-Uk Hou
Sensors 2025, 25(19), 6139; https://doi.org/10.3390/s25196139 (registering DOI) - 4 Oct 2025
Abstract
Identifying the activation status of advanced driver assistance systems (ADAS) in real-world driving environments is crucial for safety, responsibility attribution, and accident forensics. Unlike prior studies that primarily rely on simulation-based settings or unsynchronized data, we collected a multimodal dataset comprising synchronized controller [...] Read more.
Identifying the activation status of advanced driver assistance systems (ADAS) in real-world driving environments is crucial for safety, responsibility attribution, and accident forensics. Unlike prior studies that primarily rely on simulation-based settings or unsynchronized data, we collected a multimodal dataset comprising synchronized controller area network (CAN)-bus and smartphone-based inertial measurement unit (IMU) signals from drivers on consistent highway sections under both ADAS-enabled and manual modes. Using these data, we developed lightweight classification pipelines based on statistical and deep learning approaches to explore the feasibility of distinguishing ADAS operation. Our analyses revealed systematic behavioral differences between modes, particularly in speed regulation and steering stability, highlighting how ADAS reduces steering variability and stabilizes speed control. Although classification accuracy was moderate, this study provides one of the first data-driven demonstrations of ADAS status detection under naturalistic conditions. Beyond classification, the released dataset enables systematic behavioral analysis and offers a valuable resource for advancing research on driver monitoring, adaptive ADAS algorithms, and accident forensics. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Automotive Engineering)
Show Figures

Figure 1

46 pages, 3204 KB  
Review
Recent Advances in Sliding Mode Control Techniques for Permanent Magnet Synchronous Motor Drives
by Tran Thanh Tuyen, Jian Yang, Liqing Liao and Nguyen Gia Minh Thao
Electronics 2025, 14(19), 3933; https://doi.org/10.3390/electronics14193933 - 3 Oct 2025
Abstract
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control [...] Read more.
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control strategy that is widely employed not only in PMSM drive systems, but also across broader power and industrial control domains. This technique effectively mitigates key challenges associated with PMSMs, such as nonlinear behavior and susceptibility to external disturbances, thereby enhancing the precision of speed and torque regulation. This paper provides a thorough review and evaluation of recent advancements in SMC as applied to PMSM control. It outlines the fundamentals of SMC, explores various SMC-based strategies, and introduces integrated approaches that combine SMC with optimization algorithms. Furthermore, it compares these methods, identifying their respective strengths and limitations. This paper concludes by discussing current trends and potential future developments in the application of SMC for PMSM systems. Full article
(This article belongs to the Special Issue Next-Generation Control Systems for Power Electronics in the AI Era)
23 pages, 730 KB  
Article
She Wants Safety, He Wants Speed: A Mixed-Methods Study on Gender Differences in EV Consumer Behavior
by Qi Zhu and Qian Bao
Systems 2025, 13(10), 869; https://doi.org/10.3390/systems13100869 - 3 Oct 2025
Abstract
Against the backdrop of the rapid proliferation of electric vehicles (EVs), gender-oriented behavioral mechanisms remain underexplored, particularly the unique pathways of female users in usage experience, value assessment, and purchase decision-making. This study constructs an integrated framework based on the Stimulus–Organism–Response (SOR) model, [...] Read more.
Against the backdrop of the rapid proliferation of electric vehicles (EVs), gender-oriented behavioral mechanisms remain underexplored, particularly the unique pathways of female users in usage experience, value assessment, and purchase decision-making. This study constructs an integrated framework based on the Stimulus–Organism–Response (SOR) model, leveraging social media big data to analyze in depth how gender differences influence EV users’ purchase intentions. By integrating natural language processing techniques, grounded theory coding, and structural equation modeling (SEM), this study models and analyzes 272,083 pieces of user-generated content (UGC) from Chinese social media platforms, identifying key functional and emotional factors shaping female users’ perceptions and attitudes. The results reveal that esthetic value, safety, and intelligent features more strongly drive emotional responses among female users’ decisions through functional cognition, with gender significantly moderating the pathways from perceived attributes to emotional resonance and cognitive evaluation. This study further confirms the dual mediating roles of functional cognition and emotional experience and identifies a masking (suppression) effect for the ‘intelligent perception’ variable. Methodologically, it develops a novel hybrid paradigm that integrates data-driven semantic mining with psychological behavioral modeling, enhancing the ecological validity of consumer behavior research. Practically, the findings provide empirical support for gender-sensitive EV product design, personalized marketing strategies, and community-based service innovations, while also discussing research limitations and proposing future directions for cross-cultural validation and multimodal analysis. Full article
35 pages, 2599 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
14 pages, 2100 KB  
Article
Recovery of Copper from Pregnant Leach Solutions of Copper Concentrate Using Aluminum Shavings
by Oscar Joaquín Solís Marcial, Alfonso Nájera-Bastida, Orlando Soriano-Vargas, José Pablo Ruelas Leyva, Alfonso Talavera-López, Horacio Inchaurregui and Roberto Zárate Gutiérrez
Minerals 2025, 15(10), 1048; https://doi.org/10.3390/min15101048 - 2 Oct 2025
Abstract
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction [...] Read more.
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction rates. However, this process has not found widespread industrial application due to operational challenges and the complexity associated with the selective recovery of copper ions from the Pregnant Leach Solution (PLS), especially due to the coexistence of copper and iron ions, complicating the efficient separation of both metals. In this work, the use of aluminum shavings as a cementation agent is proposed, analyzing variables such as the initial shaving concentration (2.5, 5, 10, 15, and 20 g/L), the agitation speed (0, 200, and 400 rpm), and a temperature of 20, 30, and 40 °C. The results demonstrated selective copper cementation, achieving a 100% recovery in 30 min under stirring conditions of 400 rpm. The analysis performed using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) revealed the formation of solid phases such as metallic copper (Cu), aluminum hydroxide [Al(OH)3], and elemental sulfur (S). Additionally, it was observed that the iron ion concentration remained constant throughout the experiment, indicating a high selectivity in the process. The kinetic analysis revealed that the reaction follows a first-order model without stirring. An activation energy of 62.6 kJ/mol was determined within the experimental temperature range of 20–40 °C, confirming that the process fits the chemical reaction model. These findings provide a deeper understanding of the system’s behavior, highlighting its feasibility and potential for industrial-scale applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 7782 KB  
Article
Numerical Investigation on Safety Assessment of Gas Dispersion from Vent Mast for LNG-Powered Vessels
by Zhaowen Wang, Zhangjian Wang and Gang Chen
J. Mar. Sci. Eng. 2025, 13(10), 1892; https://doi.org/10.3390/jmse13101892 - 2 Oct 2025
Abstract
Conducting a safety simulation assessment of gas release from the vent mast during the design stage holds significant importance for ship design and system operation safety on LNG-powered vessels. Based on a large-scale practical LNG-powered vessel, this paper employs the CFD method to [...] Read more.
Conducting a safety simulation assessment of gas release from the vent mast during the design stage holds significant importance for ship design and system operation safety on LNG-powered vessels. Based on a large-scale practical LNG-powered vessel, this paper employs the CFD method to carry out a safety assessment of the natural gas dispersion, and proposes an optimization design method to address the issue where the vent mast height of large-scale LNG-powered vessels fails to meet specifications. The influencing factors of gas dispersion are discussed. The simulation results indicate that the vent mast height, wind direction, and wind velocity significantly affect the gas dispersion behavior. A lower vent mast height results in a greater risk of flammable gas clouds accumulating on the deck surface. Hazards analysis of the 6 m vent mast condition with windless suggests that a cryogenic explosion hazard zone is formed on the deck centered around the mast position, with the maximum gas concentration reaching 30% and the minimum temperature below −55 °C. The gas cloud spreads along the wind direction, and the extension distance is positively correlated with wind speed. With the increase in wind velocity, the height and volume of flammable gas clouds decrease. When the wind speed is 15 m/s, the volume of the flammable gas cloud is less than half of that at 5 m/s and less than one-tenth of that at 0 m/s. Higher wind velocity can notably promote gas diffusion. Full article
(This article belongs to the Special Issue Maritime Transportation Safety and Risk Management)
Show Figures

Figure 1

13 pages, 1900 KB  
Article
Simulation-Based Design of a Silicon SPAD with Dead-Space-Aware Avalanche Region for Picosecond-Resolved Detection
by Meng-Jey Youh, Hsin-Liang Chen, Nen-Wen Pu, Mei-Lin Liu, Yu-Pin Chou, Wen-Ken Li and Yi-Ping Chou
Sensors 2025, 25(19), 6054; https://doi.org/10.3390/s25196054 - 2 Oct 2025
Abstract
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are [...] Read more.
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are introduced to improve electric field confinement and suppress edge breakdown. Simulation results show that the optimized device achieves a peak electric field of 7 × 107 V/m, a stable gain slope of −0.414, and consistent avalanche triggering across bias voltages. Transient analysis further confirms sub-20 ps response time under −6.5 V bias, validated by a full-width at half-maximum (FWHM) of ~17.8 ps. Compared to conventional structures without guard rings, the proposed design exhibits enhanced breakdown localization, reduced gain sensitivity, and improved timing response. These results highlight the potential of the proposed SPAD for integration into next-generation quantum imaging, time-of-flight LiDAR, and high-speed optical communication systems. Full article
Show Figures

Graphical abstract

27 pages, 2745 KB  
Article
Energy Optimization of Compressed Air Systems with Screw Compressors Under Variable Load Conditions
by Guillermo José Barroso García, José Pedro Monteagudo Yanes, Luis Angel Iturralde Carrera, Carlos D. Constantino-Robles, Brenda Juárez Santiago, Juan Manuel Olivares Ramírez, Omar Rodriguez Abreo and Juvenal Rodríguez-Reséndiz
Math. Comput. Appl. 2025, 30(5), 107; https://doi.org/10.3390/mca30050107 - 1 Oct 2025
Abstract
This study evaluates the energy performance of a BOGE C 22-2 oil-injected rotary screw compressor under real industrial conditions. Using direct measurements with a power quality analyzer and thermodynamic modeling, key performance indicators such as compression work, mass flow rate, compressor efficiency, and [...] Read more.
This study evaluates the energy performance of a BOGE C 22-2 oil-injected rotary screw compressor under real industrial conditions. Using direct measurements with a power quality analyzer and thermodynamic modeling, key performance indicators such as compression work, mass flow rate, compressor efficiency, and motor efficiency were determined. The results revealed actual efficiencies of 27–48%, significantly lower than the expected 60–70% for this type of equipment, mainly due to partial-load operation and low airflow demand. A low power factor of approximately 0.72 was also observed, caused by a high share of reactive power consumption. To address these inefficiencies, the study recommends the installation of an automatic capacitor bank to improve power quality and the integration of a secondary variable speed compressor to enhance performance under low-demand conditions. These findings underscore the importance of assessing compressor behavior in real-world environments and implementing techno-economic strategies to increase energy efficiency and reduce industrial electricity consumption. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
24 pages, 8077 KB  
Article
A Cooperative Car-Following Eco-Driving Strategy for a Plug-In Hybrid Electric Vehicle Platoon in the Connected Environment
by Zhenwei Lv, Tinglin Chen, Junyan Han, Kai Feng, Cheng Shen, Xiaoyuan Wang, Jingheng Wang, Quanzheng Wang, Longfei Chen, Han Zhang and Yuhan Jiang
Vehicles 2025, 7(4), 111; https://doi.org/10.3390/vehicles7040111 - 1 Oct 2025
Abstract
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the [...] Read more.
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the Connected and Autonomous Plug-in Hybrid Electric Vehicle (CAPHEV) platoon. To this end, a hierarchical eco-driving strategy is proposed, which aims to enhance driving efficiency and fuel economy while ensuring the safety and comfort of the platoon. Firstly, an improved car-following model is proposed, which considers the motion states of multiple preceding vehicles. On this basis, a platoon cooperative car-following decision-making method based on model predictive control is designed. Secondly, a distributed energy management strategy is constructed, and a bionic optimization algorithm based on the behavior of nutcrackers is introduced to solve nonlinear problems, so as to solve the energy distribution and management problems of powertrain systems. Finally, the tests are conducted under the driving cycle of the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET). The results show that the proposed strategy can ensure the driving safety of the CAPHEV platoon in different scenes, and has excellent tracking accuracy and driving comfort. Compared with the rule-based strategy, the equivalent energy consumption of UDDS and HWFET is reduced by 20.7% and 5.5% in the battery’s healthy charging range, respectively. Full article
Show Figures

Figure 1

14 pages, 3885 KB  
Article
A Novel Desired-State-Based Car-Following Model for Describing Asymmetric Acceleration and Deceleration Phenomena
by Han Xing and Gangqiao Wang
Appl. Sci. 2025, 15(19), 10650; https://doi.org/10.3390/app151910650 - 1 Oct 2025
Abstract
This paper addresses the modeling challenge of significant asymmetry between acceleration and deceleration processes in car-following behavior by proposing an Asymmetric Acceleration and Deceleration Car Following (AAD-CF) model. The model characterizes driving decisions using both desired speed and desired spacing, and incorporates an [...] Read more.
This paper addresses the modeling challenge of significant asymmetry between acceleration and deceleration processes in car-following behavior by proposing an Asymmetric Acceleration and Deceleration Car Following (AAD-CF) model. The model characterizes driving decisions using both desired speed and desired spacing, and incorporates an asymmetric correction factor to capture differences in acceleration and deceleration behavior. Based on real vehicle trajectory data from the I-80 dataset, the model was compared at the microscopic level against classical models such as Gipps in terms of trajectory fitting error. The results show that the AAD-CF model consistently achieves lower trajectory fitting errors across different simulation time-steps, with error reduction exceeding 10%. At the macroscopic traffic flow level, the model successfully reproduced three-phase traffic flow states—free flow, synchronized flow, and wide moving jams. By implementing both startup and emergency braking scenarios, it was further revealed that braking waves propagate approximately 40% faster than startup waves, demonstrating asymmetric wave propagation. This study provides quantitative evidence for understanding the intrinsic relationship between microscopic driving behavior and macroscopic traffic phenomena, and the proposed model can support traffic simulation systems and theoretical analysis. Full article
(This article belongs to the Section Transportation and Future Mobility)
23 pages, 5139 KB  
Article
An Original Concept Solution of a Novel Elasto-Poro-Hydrodynamic Damper: Quasi-Static Analysis
by Ionuț-Răzvan Nechita, Mircea Dumitru Pascovici, Petrică Turtoi, Aurelian Fatu and Traian Cicone
Appl. Sci. 2025, 15(19), 10648; https://doi.org/10.3390/app151910648 - 1 Oct 2025
Abstract
This work proposes a novel design configuration for an elasto-poro-hydrodynamic damper (EPHD damper) that consists of an imbibed, soft, elastic, porous material enclosed by a rubber membrane. The core innovation lies in the device’s ability to collect and re-imbibe expelled fluid during decompression, [...] Read more.
This work proposes a novel design configuration for an elasto-poro-hydrodynamic damper (EPHD damper) that consists of an imbibed, soft, elastic, porous material enclosed by a rubber membrane. The core innovation lies in the device’s ability to collect and re-imbibe expelled fluid during decompression, ensuring potential functionality and durability across repetitive loading cycles. Damping is achieved through the synergy of three mechanisms: friction of the membrane and of the piston with solid boundaries, squeeze flow inside the porous layer, and compression of the poro-elastic structure. The EPHD damper’s behavior was evaluated both theoretically and experimentally through quasi-static, low-speed compression tests, with dynamic evaluation being reserved for future work. A numerical model successfully validated stress-deformation behavior against experimental data, with a simplified analytical model providing a good approximation. The study also identifies that the piston–membrane friction coefficient significantly influences the EPHD damper’s performance. These findings provide a valuable framework for optimizing the design and expanding its potential application to repetitive damping systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

31 pages, 1379 KB  
Article
Functional Impairment in Behavioral Variant Frontotemporal Dementia: Cognitive, Behavioral, Personality, and Brain Perfusion Contributions
by Electra Chatzidimitriou, Georgios Ntritsos, Roza Lagoudaki, Eleni Poptsi, Emmanouil Tsardoulias, Andreas L. Symeonidis, Magda Tsolaki, Eleni Konstantinopoulou, Kyriaki Papadopoulou, Panos Charalambous, Katherine P. Rankin, Eleni Aretouli, Chrissa Sioka, Ioannis Iakovou, Theodora Afrantou, Panagiotis Ioannidis and Despina Moraitou
J. Pers. Med. 2025, 15(10), 466; https://doi.org/10.3390/jpm15100466 - 1 Oct 2025
Abstract
Background/Objectives: Behavioral variant frontotemporal dementia (bvFTD), the most prevalent clinical subtype within the frontotemporal lobar degeneration spectrum disorders, is characterized by early and prominent changes that significantly disrupt everyday functioning. This study aims to identify the key correlates of functional status in bvFTD [...] Read more.
Background/Objectives: Behavioral variant frontotemporal dementia (bvFTD), the most prevalent clinical subtype within the frontotemporal lobar degeneration spectrum disorders, is characterized by early and prominent changes that significantly disrupt everyday functioning. This study aims to identify the key correlates of functional status in bvFTD by investigating the relative contributions of cognitive deficits, behavioral disturbances, personality changes, and brain perfusion abnormalities. Additionally, it seeks to develop a theoretical framework to elucidate how these factors may interconnect and shape unique functional profiles. Methods: A total of 26 individuals diagnosed with bvFTD were recruited from the 2nd Neurology Clinic of “AHEPA” University Hospital in Thessaloniki, Greece, and underwent a comprehensive neuropsychological assessment to evaluate their cognitive functions. Behavioral disturbances, personality traits, and functional status were rated using informant-based measures. Regional cerebral blood flow was assessed using Single Photon Emission Computed Tomography (SPECT) imaging to evaluate brain perfusion patterns. Penalized Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to identify the most robust correlates of functional impairment, followed by path analyses using structural equation modeling to explore how these factors may interrelate and contribute to functional disability. Results: The severity of negative behavioral symptoms (e.g., apathy), conscientiousness levels, and performance on neuropsychological measures of semantic verbal fluency, visual attention, visuomotor speed, and global cognition were identified as the strongest correlates of performance in activities of daily living. Neuroimaging analysis revealed hypoperfusion in the right prefrontal (Brodmann area 8) and inferior parietal (Brodmann area 40) cortices as statistically significant neural correlates of functional impairment in bvFTD. Path analyses indicated that reduced brain perfusion was associated with attentional and processing speed deficits, which were further linked to more severe negative behavioral symptoms. These behavioral disturbances were subsequently correlated with declines in global cognition and conscientiousness, which were ultimately associated with poorer daily functioning. Conclusions: Hypoperfusion in key prefrontal and parietal regions, along with the subsequent cognitive and neuropsychiatric manifestations, appears to be associated with the pronounced functional limitations observed in individuals with bvFTD, even in early stages. Understanding the key determinants of the disease can inform the development of more targeted, personalized treatment strategies aimed at mitigating functional deterioration and enhancing the quality of life for affected individuals. Full article
(This article belongs to the Special Issue Personalized Diagnosis and Treatment for Neurological Diseases)
Show Figures

Figure 1

27 pages, 7591 KB  
Article
Switching Frequency Figure of Merit for GaN FETs in Converter-on-Chip Power Conversion
by Liron Cohen, Joseph B. Bernstein, Roni Zakay, Aaron Shmaryahu and Ilan Aharon
Electronics 2025, 14(19), 3909; https://doi.org/10.3390/electronics14193909 - 30 Sep 2025
Abstract
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon [...] Read more.
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon devices. Despite this promise, the potential of GaN technology remains underutilized. This paper explores the feasibility of achieving sub-gigahertz switching frequencies using GaN-based switch-mode power converters, a regime currently inaccessible to silicon-based counterparts. To reach such operating speeds, it is essential to understand and quantify the intrinsic frequency limitations imposed by GaN device physics and associated parasitics. Existing power conversion topologies and control techniques are unsuitable at these frequencies due to excessive switching losses and inadequate drive capability. This work presents a detailed, systematic study of GaN transistor behavior at high frequencies, aiming to identify both fundamental and practical switching limits. A compact analytical model is developed to estimate the maximum soft-switching frequency, considering only intrinsic device parameters. Under idealized converter conditions, this upper bound is derived as a function of internal losses and the system’s target efficiency. From this, a soft-switching figure of merit is proposed to guide the design and layout of GaN field-effect transistors for highly integrated power systems. The key contribution of this study lies in its analytical insight into the performance boundaries of GaN transistors, highlighting the roles of parasitic elements and loss mechanisms. These findings provide a foundation for developing next-generation, high-frequency, chip-scale power converters. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

27 pages, 20226 KB  
Article
Mitigation of Switching Ringing of GaN HEMT Based on RC Snubbers
by Xi Liu, Hui Li, Jinshu Lin, Chen Song, Honglang Zhang, Yuxiang Xue and Hengbin Zhang
Aerospace 2025, 12(10), 885; https://doi.org/10.3390/aerospace12100885 - 30 Sep 2025
Abstract
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these [...] Read more.
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these devices highly sensitive to circuit parasitic parameters. Conventional circuit design methodologies often induce severe issues such as overshoot and high-frequency oscillations, which significantly constrain the realization of their high-frequency performance. To solve this problem, this paper investigates the nonlinear dynamic behavior of GaN HEMTs during switching transients by establishing an equivalent impedance model. Based on this model, a detailed analysis is implemented to elucidate the mechanism by which RC Snubber circuits influence the system’s resonance frequency and the amplitude at the resonant frequency. Through this analysis, an optimal RC Snubber circuit parameter is derived, enabling effective suppression of high-frequency oscillations during the switching transient of GaN HEMT. Experimental results demonstrate that the proposed design achieves a maximum reduction of 40% in voltage overshoot, shortens the ringing time to one-twentieth of the original value, and suppresses noise by 20 dB in the high-frequency range of 20 MHz to 30 MHz, thereby significantly enhancing the stability and reliability of circuit operation. Additionally, considering the heat dissipation requirements in high power density scenarios, this work optimizes the layout of devices, and heat sinks to maintain operational temperatures within safe limits, further mitigating the impact of parasitic parameters on overall system performance. Full article
(This article belongs to the Section Aeronautics)
25 pages, 7449 KB  
Article
Influence of Volumetric Geometry on Meteorological Time Series Measurements: Fractality and Thermal Flows
by Patricio Pacheco Hernández, Gustavo Navarro Ahumada, Eduardo Mera Garrido and Diego Zemelman de la Cerda
Fractal Fract. 2025, 9(10), 639; https://doi.org/10.3390/fractalfract9100639 - 30 Sep 2025
Abstract
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The [...] Read more.
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The study region is Santiago, the capital of Chile. The measurement location is in a rugged basin geography with a nearly pristine atmospheric environment. The time series are analyzed through chaos theory, demonstrating that they are chaotic through the calculation of the parameters Lyapunov exponent (λ > 0), correlation dimension (DC < 5), Kolmogorov entropy (SK > 0), Hurst exponent (0.5 < H < 1), and Lempel–Ziv complexity (LZ > 0). These series are simultaneous measurements of the variables of interest, before and after, of three different volumetric geometries arranged as obstacles: a parallelepiped, a cylinder, and a miniature mountain. The three geometries are subject to the influence of the wind and present the same cross-sectional area facing the measuring instruments oriented in the same way. The entropies calculated for each variable in each geometry are compared. It is demonstrated, in a first approximation, that volumetric geometry impacts the magnitude of the entropic fluxes associated with the measured variables, which can affect micrometeorology and, by extension, the climate in general. Furthermore, the study examines which geometry favors greater information loss or greater fractality in the measured variables. Full article
(This article belongs to the Special Issue Fractals in Earthquake and Atmospheric Science)
Show Figures

Figure 1

Back to TopTop