Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (647)

Search Parameters:
Keywords = spectral synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2943 KB  
Article
Genomic and Metabolomic Insights into Metabolites of a Streptomyces Isolate Associated with Chromodoris quadricolor, a Red Sea Nudibranch
by Samar M. Abdelrahman, Zoe A. Pratte, Manar El Samak, Noura S. Dosoky, Amro M. S. Hanora, Frank J. Stewart and Nicole B. Lopanik
Mar. Drugs 2025, 23(10), 404; https://doi.org/10.3390/md23100404 - 17 Oct 2025
Viewed by 266
Abstract
The marine invertebrate-associated microbiome has garnered significant interest in recent years due to its wealth of novel genes that can be explored for biomining. By combining genomics with untargeted data-dependent mass spectrometry (MS) and molecular networking, we characterized the secreted metabolome of Streptomyces [...] Read more.
The marine invertebrate-associated microbiome has garnered significant interest in recent years due to its wealth of novel genes that can be explored for biomining. By combining genomics with untargeted data-dependent mass spectrometry (MS) and molecular networking, we characterized the secreted metabolome of Streptomyces sp. In a previous study, we isolated and characterized a strain of Streptomyces, designated as strain 34, from the nudibranch Chromodoris quadricolor, collected by SCUBA diving in the Red Sea near El Tor in the Gulf of Suez, Egypt. In the present study, the Streptomyces isolate was identified as Streptomyces tunisiensis GCF 039538125 1 (p-value: 0). Genomic and metabolomic analysis reveal 36 predicted biosynthetic gene clusters. A total of 569 metabolites were detected in the culture, with 86 of these being identified based on standards and public spectral libraries. Moreover, a single lassopeptide synthesis gene cluster was found in both the genome and the metabolic extract, along with various sets of siderophores identified in the metabolic extract. Since the metabolic processes of marine invertebrate microbiomes are poorly understood, our findings are a significant addition to the research on metabolism in host microbiomes. Full article
(This article belongs to the Special Issue Marine Genomics and Metabolomics)
Show Figures

Graphical abstract

29 pages, 1708 KB  
Article
Speech Recognition and Synthesis Models and Platforms for the Kazakh Language
by Aidana Karibayeva, Vladislav Karyukin, Balzhan Abduali and Dina Amirova
Information 2025, 16(10), 879; https://doi.org/10.3390/info16100879 - 10 Oct 2025
Viewed by 597
Abstract
With the rapid development of artificial intelligence and machine learning technologies, automatic speech recognition (ASR) and text-to-speech (TTS) have become key components of the digital transformation of society. The Kazakh language, as a representative of the Turkic language family, remains a low-resource language [...] Read more.
With the rapid development of artificial intelligence and machine learning technologies, automatic speech recognition (ASR) and text-to-speech (TTS) have become key components of the digital transformation of society. The Kazakh language, as a representative of the Turkic language family, remains a low-resource language with limited audio corpora, language models, and high-quality speech synthesis systems. This study provides a comprehensive analysis of existing speech recognition and synthesis models, emphasizing their applicability and adaptation to the Kazakh language. Special attention is given to linguistic and technical barriers, including the agglutinative structure, rich vowel system, and phonemic variability. Both open-source and commercial solutions were evaluated, including Whisper, GPT-4 Transcribe, ElevenLabs, OpenAI TTS, Voiser, KazakhTTS2, and TurkicTTS. Speech recognition systems were assessed using BLEU, WER, TER, chrF, and COMET, while speech synthesis was evaluated with MCD, PESQ, STOI, and DNSMOS, thus covering both lexical–semantic and acoustic–perceptual characteristics. The results demonstrate that, for speech-to-text (STT), the strongest performance was achieved by Soyle on domain-specific data (BLEU 74.93, WER 18.61), while Voiser showed balanced accuracy (WER 40.65–37.11, chrF 80.88–84.51) and GPT-4 Transcribe achieved robust semantic preservation (COMET up to 1.02). In contrast, Whisper performed weakest (WER 77.10, BLEU 13.22), requiring further adaptation for Kazakh. For text-to-speech (TTS), KazakhTTS2 delivered the most natural perceptual quality (DNSMOS 8.79–8.96), while OpenAI TTS achieved the best spectral accuracy (MCD 123.44–117.11, PESQ 1.14). TurkicTTS offered reliable intelligibility (STOI 0.15, PESQ 1.16), and ElevenLabs produced natural but less spectrally accurate speech. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 2300 KB  
Article
Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems
by Yoanna Kostova, Pavletta Shestakova and Albena Bachvarova-Nedelcheva
Pharmaceuticals 2025, 18(10), 1505; https://doi.org/10.3390/ph18101505 - 7 Oct 2025
Viewed by 336
Abstract
Background/Objectives: The present work deals with the sol–gel synthesis of hybrid materials based on a silica–polyvinylpyrrolidone (Si-PVP) system. Methods: The nanohybrids have been prepared using an acidic catalyst at ambient temperature. Ibuprofen (IBP) was used as a model substance in the obtained model [...] Read more.
Background/Objectives: The present work deals with the sol–gel synthesis of hybrid materials based on a silica–polyvinylpyrrolidone (Si-PVP) system. Methods: The nanohybrids have been prepared using an acidic catalyst at ambient temperature. Ibuprofen (IBP) was used as a model substance in the obtained model drug systems, while tetraethyl orthosilicate (TEOS) was used as a silica precursor. Poly(vinylpyrrolidone) (PVP) and IBP were introduced into the reaction mixture as solutions in ethanol using two different approaches: (i) a direct introduction of a drug solution into the reaction mixture during sol–gel synthesis, and (ii) a solvent deposition technique. Results: XRD data provide evidence that IBP entrapped in the silica–PVP network is in an amorphous state. By SEM it was revealed that in the adsorbate, the IBP particles possess an average particle size of about 20 μm. Based on the obtained IR and UV-Vis spectral results, the existence of hydrogen bonding of IBF with silica and PVP could be suggested. Solid-state NMR analysis allowed the identification of the presence of both crystalline-like and amorphous phases in the hybrid material prepared by the sol–gel method, while it was demonstrated that in the adsorbate, the rigid crystalline dimeric structure of the drug has been preserved. Conclusions: The overall analysis of the structural characteristics of the two materials indicated that in the hybrid material obtained by the sol–gel method, the interactions between the amorphous drug, PVP, and the silica matrix are more pronounced as compared to the adsorbate. An improvement of the drug’s aqueous solubility as well of in vitro drug release profile (up to 8 h) was achieved, demonstrating the potential of the developed drug–silica–organic polymer nanohybrid as a promising drug delivery system. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

14 pages, 3118 KB  
Article
Reconstruction Modeling and Validation of Brown Croaker (Miichthys miiuy) Vocalizations Using Wavelet-Based Inversion and Deep Learning
by Sunhyo Kim, Jongwook Choi, Bum-Kyu Kim, Hansoo Kim, Donhyug Kang, Jee Woong Choi, Young Geul Yoon and Sungho Cho
Sensors 2025, 25(19), 6178; https://doi.org/10.3390/s25196178 - 6 Oct 2025
Viewed by 380
Abstract
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this [...] Read more.
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this study, we present a framework for reconstructing brown croaker vocalizations by integrating fk14 wavelet synthesis, PSO-based parameter optimization (with an objective combining correlation and normalized MSE), and deep learning-based validation. Sensitivity analysis using a normalized Bartlett processor identified delay and scale (length) as the most critical parameters, defining valid ranges that maintained waveform similarity above 98%. The reconstructed signals matched measured calls in both time and frequency domains, replicating single-pulse morphology, inter-pulse interval (IPI) distributions, and energy spectral density. Validation with a ResNet-18-based Siamese network produced near-unity cosine similarity (~0.9996) between measured and reconstructed signals. Statistical analyses (95% confidence intervals; residual errors) confirmed faithful preservation of SPL values and minor, biologically plausible IPI variations. Under noisy conditions, similarity decreased as SNR dropped, indicating that environmental noise affects reconstruction fidelity. These results demonstrate that the proposed framework can reliably generate acoustically realistic and morphologically consistent fish vocalizations, even under data-limited scenarios. The methodology holds promise for dataset augmentation, PAM applications, and species-specific call simulation. Future work will extend this framework by using reconstructed signals to train generative models (e.g., GANs, WaveNet), enabling scalable synthesis and supporting real-time adaptive modeling in field monitoring. Full article
Show Figures

Figure 1

20 pages, 7958 KB  
Article
Copper-Mediated Homocoupling of N-propargylcytisine—Synthesis and Spectral Characterization of Novel Cytisine-Based Diyne Dimer
by Anna K. Przybył, Adam Huczyński and Ewa Krystkowiak
Molecules 2025, 30(19), 3955; https://doi.org/10.3390/molecules30193955 - 1 Oct 2025
Viewed by 471
Abstract
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the [...] Read more.
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the development of new cytisine derivatives. Among these, N-propargylcytisine combines the biological activity of the parent compound with the synthetic versatility of the terminal alkyne group. Herein, we report the synthesis and characterization of N-propargylcytisine, and its symmetrical dimer linked through 1,3-diyne moiety obtained via a copper-mediated Glaser–Hay oxidative coupling. The products were analyzed by NMR, FT-IR, and mass spectrometry, confirming the introduction of the propargyl moiety and the formation of the diyne bridge. Solvatochromic study of both compounds were performed using UV-VIS absorption spectroscopy in solvents of varying polarity, including protic solvents capable of hydrogen bonding. The 1,3-diyne motif, commonly found in bioactive natural products, endows the resulting dimer with potential for further derivatization and biological evaluation. This study demonstrates the utility of the Glaser–Hay reaction in the functionalization of alkaloid scaffolds and highlights the prospects of N-propargylcytisine derivatives in drug discovery targeting the central nervous system. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Figure 1

20 pages, 2906 KB  
Article
Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood
by Luzia Barcelos Deknes, Karen Keli Barbosa Abrantes, Renan Falcioni, Caio Almeida de Oliveira, Glaucio Leboso Alemparte Abrantes dos Santos, Marcos Rafael Nanni, Juarez Benigno Paes and Lúcio Cardozo-Filho
Polymers 2025, 17(19), 2614; https://doi.org/10.3390/polym17192614 - 27 Sep 2025
Viewed by 448
Abstract
Cellulose and lignin are biopolymers with significant potential for chemical synthesis and energy production; however, their heterogeneous composition presents challenges for their use as raw material sources. This study employed near-infrared (NIR) spectroscopy coupled with partial least-squares regression (PLSR) to predict cellulose and [...] Read more.
Cellulose and lignin are biopolymers with significant potential for chemical synthesis and energy production; however, their heterogeneous composition presents challenges for their use as raw material sources. This study employed near-infrared (NIR) spectroscopy coupled with partial least-squares regression (PLSR) to predict cellulose and lignin content in sapwood and heartwood of Eucalyptus urophylla and sapwood of Pinus taeda, all impregnated with black liquor under high pressure. Samples were analyzed across three longitudinal sections (top, middle, base), with no significant compositional variation detected. Near-infrared spectral data (1100–2500 nm) and pre-processed using the standard normal variate (SNV) method, yielded high predictive accuracy: R2 values of 0.98–0.99 for cellulose and 0.94–0.96 for lignin, with root mean square error (RMSE) values of 0.2–0.3 and 0.1, respectively. Principal component analysis (PCA) explained 98% of sample variance, revealing clear distinctions between E. urophylla sapwood and heartwood. These findings confirm the efficacy of NIR-PLSR as a nondestructive, reliable alternative to conventional chemical analyses, with implications for improved quality control and decision-making in the wood treatment industry. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

20 pages, 1568 KB  
Review
Probiotics and Postbiotics for Green Control of Foodborne Pathogens: Intelligent Detection and Biopreservation Strategies for Safer Foods
by Alice N. Mafe and Dietrich Büsselberg
Foods 2025, 14(18), 3281; https://doi.org/10.3390/foods14183281 - 22 Sep 2025
Viewed by 1521
Abstract
The extensive use of chemical preservatives in the food industry has raised concerns over their association with gut microbiota imbalance, allergenic reactions, and potential carcinogenicity. Growing consumer demand for “clean label” products, coupled with regulatory pressures, has accelerated the search for safer and [...] Read more.
The extensive use of chemical preservatives in the food industry has raised concerns over their association with gut microbiota imbalance, allergenic reactions, and potential carcinogenicity. Growing consumer demand for “clean label” products, coupled with regulatory pressures, has accelerated the search for safer and more sustainable alternatives. In this study, it is reported for the first time that the synthesis of AIEE-type Supra-CDs using p-phenylenediamine (p-PA) and thiourea (TU), a breakthrough that provides a new class of nanomaterials with superior optical and antimicrobial properties. More importantly, the study demonstrates a quantitative improvement of spectral overlap through controllable inner filter effect (IFE), establishing a reliable strategy to enhance detection sensitivity and broaden applicability in food safety monitoring. Beyond their intrinsic antimicrobial potential, these Supra-CDs integrate seamlessly with intelligent detection platforms such as biosensors, CRISPR-based assays, and AI-assisted analytics, enabling real-time evaluation of probiotic- and postbiotic-based preservation systems. By combining novel material synthesis with precision monitoring technologies, this work offers a dual innovation: reducing reliance on synthetic additives while providing scalable tools for sustainable food preservation. The findings not only advance the frontier of biopreservation research but also align with global initiatives for consumer health and environmental sustainability. Full article
Show Figures

Figure 1

17 pages, 529 KB  
Article
LED Light Treatments Induce Activation of the Antioxidant Defense System in Thymus mastichina L.
by Gustavo J. Cáceres-Cevallos, Almudena Bayo-Canha, María Quílez and María J. Jordán
Plants 2025, 14(18), 2930; https://doi.org/10.3390/plants14182930 - 20 Sep 2025
Viewed by 414
Abstract
This study investigated how different spectral ranges of LED light affect the synthesis of photosynthetic pigments and antioxidant systems in Thymus mastichina L., focusing on two ecotypes with distinct chemotypes: linalool and eucalyptol. The ecotypes were exposed to white, red, blue, red-blue (70:30), [...] Read more.
This study investigated how different spectral ranges of LED light affect the synthesis of photosynthetic pigments and antioxidant systems in Thymus mastichina L., focusing on two ecotypes with distinct chemotypes: linalool and eucalyptol. The ecotypes were exposed to white, red, blue, red-blue (70:30), white-blue, or white-red light for 30 days under a 16/8 h light/dark cycle (115 μmol/m2s). Photosynthetic pigment content, lipid oxidative damage, antioxidant capacities, and both enzymatic (SOD, CAT) and non-enzymatic (tocopherols and polyphenols) antioxidant systems were assessed. For the linalool chemotype, red-blue light significantly increased carotenoid content, antioxidant capacity, and catalase activity, while elevating levels of plastochromanol-8 and phenolic compounds such as salvianolic acid B, rosmarinic acid, and 6-OH-apigenin-7-hexoside, thereby reducing oxidative stress. In contrast, for the eucalyptol chemotype, pure red light produced the most significant enhancements in carotenoid synthesis and antioxidant defenses, substantial increases in key compounds such as salvianic, neochlorogenic, rosmarinic, and lithospermic acids, and salvianolic acids E and B, and higher levels of plastochromanol-8. Additionally, both SOD and CAT activities increased, providing greater protection against lipid oxidation. These findings highlight the importance of customizing light treatments not only based on plant species but also according to chemotype to obtain optimal biochemical and physiological outcomes. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 3596 KB  
Article
Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis
by George Mogildea, Marian Mogildea, Sorin I. Zgura, Natalia Mihailescu, Doina Craciun, Valentin Craciun, Oana Brincoveanu, Alexandra Mocanu, Vasilica Tucureanu, Cosmin Romanitan, Alexandru Paraschiv, Bogdan S. Vasile and Catalin-Daniel Constantinescu
Int. J. Mol. Sci. 2025, 26(18), 8981; https://doi.org/10.3390/ijms26188981 - 15 Sep 2025
Viewed by 394
Abstract
We present a novel approach for the synthesis of crystalline zinc oxide (ZnO) nanopowders based on the direct interaction of high-power microwave radiation with a zinc wire in atmospheric air. The process utilizes a localized microwave-induced plasma to rapidly vaporize the metal, followed [...] Read more.
We present a novel approach for the synthesis of crystalline zinc oxide (ZnO) nanopowders based on the direct interaction of high-power microwave radiation with a zinc wire in atmospheric air. The process utilizes a localized microwave-induced plasma to rapidly vaporize the metal, followed by oxidation and condensation, resulting in the deposition of ZnO nanostructures on glass substrates. Plasma diagnostics confirmed the generation of a plasma in local thermodynamic equilibrium (LTE), characterized by high electron temperatures. Optical emission spectroscopy highlighted atomic species such as ZnI, ZnII, OI, OII, and NI, as well as molecular species including OH, N2 and O2. The spectral fingerprint of N2 molecules reveals the presence of high energy electrons, while the persistent occurrence of OI and OII emission lines throughout the plasma spectrum reveals that ZnO formation is mainly driven by the continuous dissociation of molecular oxygen. High crystallinity and chemical purity of the synthesized ZnO nanoparticles were confirmed through SEM, TEM, XRD, FTIR, and EDX characterization. The resulting nanorods exhibit a rod-like morphology, with diameters ranging from 12 nm to 63 nm and lengths between 58 nm and 354 nm. This low-cost, high-yield method offers a scalable and efficient route for metal oxide nanomaterial fabrication via direct metal–microwave coupling, providing a promising alternative to conventional physical and chemical synthesis techniques. Full article
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Luminescence of (YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce Radiation-Synthesized Ceramics
by Aida Tulegenova, Victor Lisitsyn, Gulnur Nogaibekova, Renata Nemkayeva and Aiymkul Markhabayeva
Ceramics 2025, 8(3), 112; https://doi.org/10.3390/ceramics8030112 - 5 Sep 2025
Viewed by 406
Abstract
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the [...] Read more.
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the corresponding oxide components. Five-component ceramics were obtained from oxide powders of Y2O3, Lu2O3, Gd2O3, Al2O3, Ga2O3, and Ce2O3 in less than 1 s, without the use of any additional reagents or process stimulants. The average productivity of the synthesis process was approximately 5 g/s. The reaction yield, defined as the mass ratio of the synthesized ceramic to the initial mixture, ranged from 94% to 99%. The synthesized ceramics exhibit photoluminescence when excited by radiation in the 340–450 nm spectral range. The position of the luminescence bands depends on the specific composition, with the emission maxima located within the 525–560 nm range. It is suggested that under high radiation power density, the element exchange rate between the particles of the initial materials is governed by the formation of an ion–electron plasma. Full article
Show Figures

Figure 1

11 pages, 2162 KB  
Article
Synthesis and Purification of [Eu(BA)4(pip)] Rare-Earth Molecular Crystals
by Xiangtai Xi, Wenli Fan, Jun Huang, Haoyang Chen, Huan Chen, Zhengkun Fu and Zhenglong Zhang
Nanomaterials 2025, 15(17), 1348; https://doi.org/10.3390/nano15171348 - 2 Sep 2025
Viewed by 685
Abstract
Europium mononuclear complexes are able to form organic molecular crystals by aggregation of molecules through non-covalent bonding interactions. These crystals have many unique optical properties. However, this kind of crystal still faces some difficulties and challenges in the process of research and application, [...] Read more.
Europium mononuclear complexes are able to form organic molecular crystals by aggregation of molecules through non-covalent bonding interactions. These crystals have many unique optical properties. However, this kind of crystal still faces some difficulties and challenges in the process of research and application, such as the high difficulty of synthesis and purification, and the difficulty of spectral property modulation. In this work, an europium-containing rare-earth molecular crystal material [Eu(BA)4(pip)], was prepared via a solvothermal method. It is characterized by low melting point, low polarity, stable structure, high luminescence intensity, and has the potential for the preparation of quantum optical devices. After that, optimized the structure of the molecular crystals by petroleum ether solvent. Through the recrystallization process, a uniform and continuous film was formed, which resulted with a more regular surface morphology, and the changes in the optimized crystal structure had an effect on the europium ion electron-leap energy level, the fluorescence emission spectra also showed higher fluorescence resolving ratio. This study particular emphasis on enhancing the quality of [Eu(BA)4(pip)] molecular crystals and investigating their impact on their spectral properties. Full article
Show Figures

Graphical abstract

24 pages, 2706 KB  
Article
Functionalized Indolizines as Potential Anticancer Agents: Synthetic, Biological and In Silico Investigations
by Roxana Ciorteanu, Catalina Ionica Ciobanu, Narcis Cibotariu, Sergiu Shova, Vasilichia Antoci, Ionel I. Mangalagiu and Ramona Danac
Int. J. Mol. Sci. 2025, 26(17), 8368; https://doi.org/10.3390/ijms26178368 - 28 Aug 2025
Viewed by 777
Abstract
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was [...] Read more.
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was carried out using the 1,3-dipolar cycloaddition of pyridinium N-ylides to ethyl propiolate as a key step. Spectral characterization (using NMR, FT-IR, HRMS and X-ray diffraction) showed that two types of cycloadducts 5af and 6af were obtained when the ylides generated by the 3-bromopyridinium salts were used as 1,3-dipoles in Huisgen cycloaddition reactions to ethyl propiolate. The anticancer effect of selected compounds was in vitro assessed against the National Cancer Institute (NCI) panel of 60 human tumor cells, at 10 μM concentration, with three compounds (5c, 6c and 7g) showing promising inhibitory activity on the growth of several cell lines including lung, brain, renal cancer and melanoma, as well as a cytotoxic effect against HOP-62 non-small cell lung cells (34% for compound 5c and 15% for compound 7g) and SNB-75 glioblastoma cells (15% for compound 5c and 14% for derivative 7c). Molecular docking revealed favorable binding affinities for 5c, 6c and 7g (–9.22 to –9.88 kcal/mol) at the colchicine-binding site of tubulin with key interactions involving βASN-258, βALA-317, and βLYS-352 residues for 5c, βASN-258 in case of 6c, and αVAL-181 and βLYS-254 for derivative 7g. According to the in silico ADMET analysis, the active compounds are predicted to exhibit good oral bioavailability, promising drug-like qualities and low toxicity risks. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

20 pages, 4252 KB  
Article
Spectral Analysis of Star-Forming Galaxies at z < 0.4 with FADO: Impact of Nebular Continuum on Galaxy Properties
by Yaosong Yu, Qihang Chen, Liang Jing, Ciro Pappalardo and Henrique Miranda
Universe 2025, 11(9), 285; https://doi.org/10.3390/universe11090285 - 24 Aug 2025
Viewed by 510
Abstract
The star formation rate (SFR) is a crucial astrophysical characteristic for understanding the formation and evolution of galaxies, determining the interplay between the interstellar medium and stellar activity. The mainstream approach to studying stellar properties in galaxies relies on stellar population synthesis models. [...] Read more.
The star formation rate (SFR) is a crucial astrophysical characteristic for understanding the formation and evolution of galaxies, determining the interplay between the interstellar medium and stellar activity. The mainstream approach to studying stellar properties in galaxies relies on stellar population synthesis models. However, these methods neglect nebular emission, which can bias SFR estimates. Recent studies have indicated that nebular emission is non-negligible in strongly star-forming regions. However, targeted research is currently limited, particularly regarding galaxies at slightly higher redshifts (z<0.4). In this work, 696 star-formation galaxies with stellar mass in 1091011M are selected from the SDSS-DR18 and their spectra are fitted via the fitting analysis using differential evolution optimization (FADO) technique. FADO self-consistently fits both stellar and nebular emissions in galaxy spectra. The results show that the median Hα flux from FADO fitting differs from that of qsofitmore by approximately 0.028 dex. Considering the stellar mass effect, we found that although the nebular emission contribution (Nebular Ratio hereafter) is minimal, it increases modestly with redshift. We advocate explicitly accounting for nebular emission in the spectral fitting of higher-redshift galaxies, as its inclusion is essential to obtaining higher precision in future analyses. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

16 pages, 1328 KB  
Article
Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions
by Justinas Glemža, Ingrida Pliaterytė, Jonas Matukas, Rimantas Gudaitis, Andrius Vasiliauskas, Šarūnas Jankauskas and Šarūnas Meškinis
Crystals 2025, 15(9), 747; https://doi.org/10.3390/cryst15090747 - 22 Aug 2025
Viewed by 994
Abstract
Graphene/h-BN/Si heterostructures show considerable potential for future use in infrared detection and photovoltaic technologies due to their adjustable electrical behavior and well-matched interfacial structure. The near-lattice match between graphene and hexagonal boron nitride (h-BN) enables the deposition of low-defect-density graphene on h-BN surfaces. [...] Read more.
Graphene/h-BN/Si heterostructures show considerable potential for future use in infrared detection and photovoltaic technologies due to their adjustable electrical behavior and well-matched interfacial structure. The near-lattice match between graphene and hexagonal boron nitride (h-BN) enables the deposition of low-defect-density graphene on h-BN surfaces. This study presents a thorough exploration of the low-frequency electrical noise behavior of graphene/h-BN/Si heterojunctions under both forward and reverse bias conditions at room temperature. Graphene nanolayers were directly grown on h-BN films using microwave plasma-enhanced CVD. The h-BN layers were formed by reactive high-power impulse magnetron sputtering (HIPIMS). Four h-BN thicknesses were examined: 1 nm, 3 nm, 5 nm, and 15 nm. A reference graphene/Si junction (without h-BN) prepared under identical synthesis conditions was also studied for comparison. Low-frequency noise analysis enabled the identification of dominant charge transport mechanisms in the different device structures. Our results demonstrate that grain boundaries act as dominant defects contributing to increased noise intensity under high forward bias. Statistical analysis of voltage noise spectral density across multiple samples, supported by Raman spectroscopy, reveals that hydrogen-related defects significantly contribute to 1/f noise in the linear region of the junction’s current–voltage characteristics. This study provides the first in-depth insight into the impact of h-BN interlayers on low-frequency noise in graphene/Si heterojunctions. Full article
(This article belongs to the Special Issue Recent Advances in Graphene and Other Two-Dimensional Materials)
Show Figures

Figure 1

30 pages, 4444 KB  
Article
Unveiling the Potential of Novel Ternary Chalcogenide SrHfSe3 for Eco-Friendly, Self-Powered, Near-Infrared Photodetectors: A SCAPS-1D Simulation Study
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Sanjida Akter, Haroldo Hattori, Nicholas Kanizaj and Andrey E. Miroshnichenko
Sci 2025, 7(3), 113; https://doi.org/10.3390/sci7030113 - 6 Aug 2025
Viewed by 1022
Abstract
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. [...] Read more.
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. However, their relatively large bandgaps often limit their suitability for near-infrared (NIR) photodetectors. Here, we conducted a comprehensive investigation of SrHfSe3, a ternary chalcogenide with an orthorhombic crystal structure and distinctive needle-like morphology, as a promising candidate for NIR photodetection. SrHfSe3 exhibits a direct bandgap of 1.02 eV, placing it well within the NIR range. Its robust structure, high temperature stability, phase stability and natural abundance make it a compelling material for next-generation, self-powered NIR photodetectors. An in-depth analysis of the SrHfSe3-based photodetector was performed using SCAPS-1D simulations, focusing on key performance metrics such as J–V behavior, photoresponsivity, and specific detectivity. Device optimization was achieved by thoroughly altering each layer thickness, doping concentrations, and defect densities. Additionally, the influence of interface defects, absorber bandgap, and operating temperature was assessed to enhance the photoresponse. Under optimal conditions, the device achieved a short-circuit current density (Jsc) of 45.88 mA/cm2, an open-circuit voltage (Voc) of 0.7152 V, a peak photoresponsivity of 0.85 AW−1, and a detectivity of 2.26 × 1014 Jones at 1100 nm. A broad spectral response spanning 700–1200 nm confirms its efficacy in the NIR region. These results position SrHfSe3 as a strong contender for future NIR photodetectors and provide a foundation for experimental validation in advanced optoelectronic applications. Full article
Show Figures

Figure 1

Back to TopTop