Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = spectral line broadening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2328 KiB  
Review
The g-Strained EPR Line Shape of Transition-Ion Complexes and Metalloproteins: Four Decades of Misunderstanding and Its Consequences
by Wilfred R. Hagen
Molecules 2025, 30(15), 3299; https://doi.org/10.3390/molecules30153299 - 6 Aug 2025
Abstract
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of [...] Read more.
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of individual molecules as well as a notion of their physical origin. Spectral features sharpen up with decreasing temperature until the limit of constant linewidth of inhomogeneous broadening. At and below this temperature limit, each molecule has a linewidth that slightly differs from those of its congeners, and which is not related in a simple way to lifetime broadening. Choice of the model not only affects precise assignment of g-values, but also concentration determination (‘spin counting’), and therefore, calculation of stoichiometries in multi-center complexes. Forty years ago, the theoretically and experimentally well-founded statistical theory of g-strain was developed as a prime model for EPR powder patterns. In the intervening years until today, this model was universally ignored in favor of models that are incompatible with physical reality, resulting in many mistakes in EPR spectral interpretation. The purpose of this review is to outline the differences between the models, to reveal where analyses went astray, and thus to turn a very long standstill in EPR powder shape understanding into a new start towards proper methodology. Full article
Show Figures

Graphical abstract

12 pages, 4676 KiB  
Article
Comprehensive Study of Electrolytic Plasma Nitriding of Austenitic Stainless Steels
by Bauyrzhan Rakhadilov, Zarina Satbayeva, Almasbek Maulit, Rauan Kozhanova, Rinat Kurmangaliyev and Anuar Rustemov
Crystals 2025, 15(5), 456; https://doi.org/10.3390/cryst15050456 - 13 May 2025
Viewed by 375
Abstract
The study investigates the spectral, structural, and phase changes occurring in austenitic steel 12Kh18N10T during cathodic electrolytic plasma nitriding (EPN) in a Na2CO3–CO(NH2)2–NH4Cl electrolyte at 550 °C for 10 min. Emission spectroscopy revealed [...] Read more.
The study investigates the spectral, structural, and phase changes occurring in austenitic steel 12Kh18N10T during cathodic electrolytic plasma nitriding (EPN) in a Na2CO3–CO(NH2)2–NH4Cl electrolyte at 550 °C for 10 min. Emission spectroscopy revealed active plasma components: N2+, N I, Hα, and O I. The electron density, calculated from the Hα line broadening, was approximately 8.5 × 1018 cm−3. X-ray phase analysis revealed the formation of CrN, Fe3N phases, and a solid solution of nitrogen in γ-Fe. SEM analysis revealed a three-layer structure of the nitrided layer: a nitride zone, a transition region, and the austenitic matrix. The EDS profile confirmed a decrease in nitrogen concentration, accompanied by a reduction in microhardness from a maximum of 480 HV at the surface, both gradually decreasing with depth. The friction coefficient decreased from ~0.8 (in the initial state) to ~0.6 after EPN. The results confirm the effectiveness of EPN in strengthening and improving the wear resistance of stainless steel. Full article
Show Figures

Figure 1

13 pages, 3590 KiB  
Article
Study on the Wavelength-Dependent Temporal Waveform Characteristics of a High-Pressure CO2 Master Oscillator Power Amplifier System
by Zefan Huang, Ming Wen, Ziren Zhu, Jinzhou Bai, Jingjin Fu, Heng Wang, Tianjian Wan, Rongqing Tan and Yijun Zheng
Photonics 2025, 12(4), 346; https://doi.org/10.3390/photonics12040346 - 8 Apr 2025
Viewed by 323
Abstract
This study systematically investigates the temporal characteristics of a high-pressure CO2 master oscillator power amplifier (MOPA) system under tunable spectral lines. Based on a continuously tunable CO2 oscillator–amplifier system, we experimentally measured the variation in the laser pulse width before and [...] Read more.
This study systematically investigates the temporal characteristics of a high-pressure CO2 master oscillator power amplifier (MOPA) system under tunable spectral lines. Based on a continuously tunable CO2 oscillator–amplifier system, we experimentally measured the variation in the laser pulse width before and after amplification at different spectral lines, with the oscillator and amplifier operating at pressures of 7 atm and 3 atm, respectively. The results indicate that, for most spectral lines, the laser pulse width remained nearly unchanged after amplification. However, at certain spectral lines, a distinct phenomenon was observed: pulse broadening for strong lines and pulse narrowing for weak lines. To explain this phenomenon, theoretical calculations were conducted based on a high-pressure CO2 six-temperature model, and the experimental results were analyzed from the perspective of small-signal gain dynamics. This study reveals that variations in the laser pulse width primarily originated from differences in the gain build-up time across different spectral lines, which in turn influenced the amplification of both the pulse pedestal and the main pulse. For strong spectral lines, the amplifier gain built up rapidly, leading to more uniform amplification of the entire laser pulse and resulting in pulse broadening. Conversely, for weak spectral lines, the amplifier gain built up more slowly, with amplification primarily concentrated in the main pulse, causing a reduction in the pulse width. This finding has significant implications for optimizing narrow-pulse CO2 lasers and provides crucial insights into the temporal characteristics of applications, such as laser isotope separation and extreme ultraviolet (EUV) light source generation. Full article
Show Figures

Figure 1

15 pages, 7261 KiB  
Article
Design of Ultra-Wide-Band Fourier Transform Infrared Spectrometer
by Liangjie Zhi, Wei Han, Shuai Yuan, Fengkun Luo, Han Gao, Zixuan Zhang and Min Huang
Optics 2025, 6(1), 7; https://doi.org/10.3390/opt6010007 - 5 Mar 2025
Viewed by 1140
Abstract
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. [...] Read more.
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. The incident light of the spectrometer is constrained by a secondary imaging scheme, and switchable light sources and detectors are set to achieve an ultra-wide band coverage. A compact and highly stable double-moving mirror swing interferometer is adopted to generate optical path difference, and a controller is used to stabilize the swing of the moving mirrors. A distributed design of digital system integration and analog system integration is adopted to achieve a lightweight and low-power-consumption spectrometer. High-speed data acquisition and a transmission interface are applied to improve the real-time performance. Further, a series of experiments are performed to test the performance of the spectrometer. Finally, the experimental results show that the spectral range of the ultra-wide-band Fourier transform infrared spectrometer covers 0.770–200 μm, with an accurate wave number, a spectral resolution of 0.25 cm−1, and a signal-to-noise ratio better than 50,000:1. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

16 pages, 4784 KiB  
Article
Ultra High Efficiency Solar Capture Device Based on InAs Nanoring Microstructure
by Zao Yi, Xiangchao Yao, Qianju Song and Xianwen Wu
Coatings 2025, 15(2), 243; https://doi.org/10.3390/coatings15020243 - 19 Feb 2025
Cited by 4 | Viewed by 875
Abstract
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) [...] Read more.
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) as its foundational materials. The absorber exhibits over 90% absorption within the 280–4000 nm wavelength range and surpasses 95% absorption in the broader spectrum from 542 to 3833 nm through the cavity coupling effect of incident light excitation and the subsequent initiation of the surface plasmon resonance mechanism, thus successfully achieving the goal of broadband high absorption. Through the finite difference time domain method (FDTD) simulation, the average absorption efficiency reaches 97.38% within the range from 280 nm to 4000 nm, and it is 97.75% in the range from 542 nm to 3833 nm. At the air mass of 1.5 (AM 1.5), the average absorption efficiency of solar energy is 97.46%, and the loss of solar energy is 2.54%, which has extremely high absorption efficiency. In addition, thanks to the material considerations, the absorber adopts a variety of high-temperature resistant materials, making the thermal radiation efficiency in a high-temperature environment still good; specifically, at the temperature of 900 K, its thermal radiation efficiency can reach 97.27%, and at the extreme 1800 K temperature, it can still maintain 97.52% of high efficiency thermal radiation, further highlighting its excellent thermal stability and comprehensive performance. The structure exhibits excellent optical absorption and thermal radiation properties, which give it broad applicability as an ideal absorber or thermal emitter. More importantly, the absorber is insensitive to the polarization state of the light and can effectively handle the incident light lines in the wide-angle range. In addition, its photothermal conversion efficiency (Hereafter referred to as pc efficiency) can sustain an elevated level under various temperature conditions, which enables it to flexibly adapt to diverse environmental conditions, especially suitable for the integration and application of solar photovoltaic systems, and further broaden its potential application range in the field of renewable energy. Full article
Show Figures

Figure 1

6 pages, 218 KiB  
Data Descriptor
Data on Stark Broadening of Sn II Spectral Lines
by Milan S. Dimitrijević, Magdalena D. Christova, Cristina Yubero and Sylvie Sahal-Bréchot
Data 2025, 10(2), 14; https://doi.org/10.3390/data10020014 - 28 Jan 2025
Viewed by 789
Abstract
Data on spectral line widths and shifts broadened by interactions with charged particles, for 44 lines in the spectrum of ionized tin, for collisions with electrons and H II and HeII ions, are presented as online available tables. We obtained them by employing [...] Read more.
Data on spectral line widths and shifts broadened by interactions with charged particles, for 44 lines in the spectrum of ionized tin, for collisions with electrons and H II and HeII ions, are presented as online available tables. We obtained them by employing the semiclassical perturbation theory for temperatures, T, within the 5000–100,000 K range, and for a grid of perturber densities from 1014 cm−3 to 1020 cm−3. The presented Stark broadening data are of interest for the analysis and synthesis of ionized tin lines in the spectra of hot and dense stars, such as, for example, for white dwarfs and hot subwarfs, and for the modelling of their atmospheres. They are also useful for the diagnostics of laser-induced plasmas for high-order harmonics generation in ablated materials. Full article
8 pages, 257 KiB  
Article
The Feshbach Resonances Applied to the Calculation of Stark Broadening of Ionized Spectral Lines: An Example of Interdisciplinary Research
by Sylvie Sahal-Bréchot and Haykel Elabidi
Atoms 2025, 13(1), 7; https://doi.org/10.3390/atoms13010007 - 16 Jan 2025
Viewed by 760
Abstract
In the present paper, we revisit the determination of Feshbach resonances in the elastic and fine-structure cross-sections of the spectral lines of ionized atoms colliding with electrons. The Gailitis approximation will be recalled and used to calculate the Feshbach resonances. A historical point [...] Read more.
In the present paper, we revisit the determination of Feshbach resonances in the elastic and fine-structure cross-sections of the spectral lines of ionized atoms colliding with electrons. The Gailitis approximation will be recalled and used to calculate the Feshbach resonances. A historical point of view will be used, emphasizing the interest of interdisciplinary research, with a back and forth between physics and astrophysics. First, the theory of Feshbach (arising at end of the 1950s and beginning of the 1960s) resonances will be briefly recalled and applied to the calculation of the cross-sections. In the beginning of the 1970s, the insertion of Feshbach resonances in spectroscopic diagnostics calculations permitted researchers to interpret the intensities of solar coronal lines. Then, in the middle of the 1970s, this gave rise to the idea of including the Feshbach resonances in the calculation of electron impact broadening (the so-called “Stark” broadening) of isolated spectral lines of ionized atoms. Finally, in the recent example of the Stark broadening of the Mo VI 5d D5/225p P°3/22 line, the S-matrices will be calculated using the semi-classical perturbation formalism and will be compared to those of the more recent quantum distorted wave formalism. Full article
15 pages, 279 KiB  
Review
Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications
by Eugene Oks
Atoms 2024, 12(10), 49; https://doi.org/10.3390/atoms12100049 - 27 Sep 2024
Viewed by 1028
Abstract
We review the general principles of the spectroscopy of plasmas containing quasimonochromatic electric fields (QEFs). We demonstrate that the underlying physics is very rich due to the complicated entanglement of four characteristic times: the typical time required for the formation of the quasienergy [...] Read more.
We review the general principles of the spectroscopy of plasmas containing quasimonochromatic electric fields (QEFs). We demonstrate that the underlying physics is very rich due to the complicated entanglement of four characteristic times: the typical time required for the formation of the quasienergy states, the lifetime of the excited state of the radiator, the typical time of the formation of the homogeneous Stark broadening by the electron microfield, and the typical time of the formation of the homogeneous Stark broadening by the dynamic part of the ion microfield. We exemplified how the shape and shift of spectral lines are affected by the mutual interactions of the three subsystems. Specifically, the interaction of the radiator with the plasma can be substantially influenced by the interaction of the radiator with the QEF, and vice versa, as well as by the interaction of the QEF and the plasma with each other. We also provide some applications of these various effects. Finally, we outline directions for future research. Full article
11 pages, 1014 KiB  
Article
O4 -Symmetry-Based Non-Perturbative Analytical Calculations of the Effect of the Helical Trajectories of Electrons in Strongly Magnetized Plasmas on the Width of Hydrogen/Deuterium Spectral Lines
by Eugene Oks
Symmetry 2024, 16(8), 1009; https://doi.org/10.3390/sym16081009 - 8 Aug 2024
Cited by 1 | Viewed by 895
Abstract
The effects of the helical trajectories of the perturbing electrons in magnetized plasmas on the dynamical Stark width of hydrogen or deuterium spectral lines have been studied analytically in our previous two papers—specifically in the situation where the magnetic field B is so [...] Read more.
The effects of the helical trajectories of the perturbing electrons in magnetized plasmas on the dynamical Stark width of hydrogen or deuterium spectral lines have been studied analytically in our previous two papers—specifically in the situation where the magnetic field B is so strong that the dynamical Stark width of these lines reduces to the so-called adiabatic Stark width because the so-called nonadiabatic Stark width is completely suppressed. This situation corresponds, for example, to DA and DBA white dwarfs. We obtained those analytical results by using the formalism of the so-called conventional (or standard) theory of the impact Stark broadening: namely, by performing calculations in the second order of the Dyson perturbation expansion. The primary outcome was that the dynamical Stark broadening was found to not depend on the magnetic field B (for sufficiently strong B). In the present paper, we use the O4 symmetry of hydrogen atoms for performing the corresponding non-perturbative analytical calculations equivalent to accounting for all orders of the Dyson perturbation expansion. The results, obtained by using the O4 symmetry of hydrogen atoms, differ from our previous ones not only quantitatively, but—most importantly—qualitatively. Namely, the dynamical Stark broadening does depend on the magnetic field B, even for strong B. These results should be important for revising the interpretation of the hydrogen Balmer lines observed in DA and DBA white dwarfs. We also address confusion in the literature on this subject. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 4953 KiB  
Article
Spectral Properties of Bistatic Radar Signals Using the Ray Tracing Technique and a Facet Approach
by Mingcheng Zuo, Rukiah S. Mitri, Igor Gai, Giancorrado Brighi and Paolo Tortora
Aerospace 2024, 11(8), 615; https://doi.org/10.3390/aerospace11080615 - 26 Jul 2024
Viewed by 1140
Abstract
Bistatic radar experiments have been used to study surface characteristics of extra-terrestrial bodies in the Solar System, including the Moon, Venus, Mars, and Titan. This paper proposes a 3D model to characterize the scattered field of a gaussian rough surface on an extra-terrestrial [...] Read more.
Bistatic radar experiments have been used to study surface characteristics of extra-terrestrial bodies in the Solar System, including the Moon, Venus, Mars, and Titan. This paper proposes a 3D model to characterize the scattered field of a gaussian rough surface on an extra-terrestrial body for an orbital bistatic radar configuration. Specifically, this model will investigate how the variability of surface roughness impacts the spectral broadening of the received signal using physical optics approximations and ray tracing on a surface model using a facet approach with Gaussian properties. A linear relationship between spectral broadening of the signal and surface roughness was found. This relationship is in line with results obtained by commonly used analytical models for bistatic radar on planetary surfaces. Full article
Show Figures

Figure 1

16 pages, 459 KiB  
Article
Experimental and Theoretical Electron Collision Broadening Parameters for Several Ti II Spectral Lines of Industrial and Astrophysical Interest
by Lucía Isidoro-García, Isabel de Andrés-García, Juan Porro, Francisco Fernández and Cristóbal Colón
Atoms 2024, 12(7), 35; https://doi.org/10.3390/atoms12070035 - 9 Jul 2024
Cited by 1 | Viewed by 1607
Abstract
A Q-switched Nd:YAG laser was focused on the Pb–Ti alloy samples in several laser-induced breakdown experiments in order to measure the Stark parameters of several spectral lines (58) of singly ionized titanium, including the 3504.89 Å and 3510.83 Å lines (where we achieved [...] Read more.
A Q-switched Nd:YAG laser was focused on the Pb–Ti alloy samples in several laser-induced breakdown experiments in order to measure the Stark parameters of several spectral lines (58) of singly ionized titanium, including the 3504.89 Å and 3510.83 Å lines (where we achieved new experimental and theoretical values). The diagnostics of the laser-induced plasmas (electron density and electron temperature) were performed using Balmer’s H alpha line (6562.7 Å). The temperatures were obtained by the Boltzmann plot technique with spectral lines of Pb I (after correction for its evident self-absorption). Subsequently, the calculations by the Griem approach of the Stark broadening parameters for several spectral lines were performed using the Gaunt factors proposed by van Regemorter and those proposed by Douglas H. Sampson. In the latter case, the values obtained were very close to the experimental values. This enables us to assume that the calculations performed for the spectral lines of Ti II, without experimental information, are more accurate using the Gaunt factors proposed by Sampson. Full article
Show Figures

Figure 1

6 pages, 530 KiB  
Data Descriptor
Data on Stark Broadening of N VI Spectral Lines
by Milan S. Dimitrijević, Magdalena D. Christova and Sylvie Sahal-Bréchot
Data 2024, 9(6), 77; https://doi.org/10.3390/data9060077 - 29 May 2024
Cited by 1 | Viewed by 1209
Abstract
Data on Stark broadening parameters, spectral line widths, and shifts for 15 multiplets of N VI, whose spectral lines are broadened by collisions with electrons, protons, alpha particles (He III) and B III, B IV, B V and B VI ions, are presented. [...] Read more.
Data on Stark broadening parameters, spectral line widths, and shifts for 15 multiplets of N VI, whose spectral lines are broadened by collisions with electrons, protons, alpha particles (He III) and B III, B IV, B V and B VI ions, are presented. They have been calculated using the semiclassical perturbation theory, for temperatures from 50,000 K to 2,000,000 K, and perturber densities from 1016 cm−3 up to 1024 cm−3. The data for e, p and He III are of particular interest for the analysis and modelling of atmospheres of hot and dense stars, as, e.g., white dwarfs, and for investigation of their spectra, and data for boron ions are used for analysis and modelling of laser-driven plasma in proton–boron fusion research. Full article
(This article belongs to the Section Information Systems and Data Management)
Show Figures

Figure 1

19 pages, 470 KiB  
Article
Extracting Physical Information from the Voigt Profile Using the Lambert W Function
by Jean-Christophe Pain
Plasma 2024, 7(2), 427-445; https://doi.org/10.3390/plasma7020023 - 27 May 2024
Cited by 2 | Viewed by 1883
Abstract
Spectral line shapes are a key ingredient of hot-plasma opacity calculations. Since resorting to elaborate line-shape models remains prohibitive for intensive opacity calculations involving ions in different excitation states, with L, M, etc., shells are populated, and Voigt profiles often represent [...] Read more.
Spectral line shapes are a key ingredient of hot-plasma opacity calculations. Since resorting to elaborate line-shape models remains prohibitive for intensive opacity calculations involving ions in different excitation states, with L, M, etc., shells are populated, and Voigt profiles often represent a reliable alternative. The corresponding profiles result from the convolution of a Gaussian function (for Doppler and sometimes ionic Stark broadening) and a Lorentzian function, for radiative decay (sometimes referred to as “natural” width) and electron-impact broadening. However, their far-wing behavior is incorrect, which can lead to an overestimation of the opacity. The main goal of the present work was to determine the energy (or frequency) at which the Lorentz wings of a Voigt profile intersect with the underlying Gaussian part of the profile. It turns out that such an energy cut-off, which provides us information about the dominant line-broadening process in a given energy range, can be expressed in terms of the Lambert W function, which finds many applications in physics. We also review a number of representations of the Voigt profile, with an emphasis on the pseudo-Voigt decomposition, which lends itself particularly well to cut-off determination. Full article
Show Figures

Figure 1

13 pages, 5921 KiB  
Article
Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines
by Ibtissem Hannachi, Spiros Alexiou and Roland Stamm
Atoms 2024, 12(4), 19; https://doi.org/10.3390/atoms12040019 - 22 Mar 2024
Cited by 2 | Viewed by 1766
Abstract
Spectral line shapes code in plasmas (SLSPs) code comparison workshops have been organized in the last decade with the aim of comparing the spectra obtained with independently developed analytical and numerical models. Here, we consider the simultaneous effect of a plasma microfield and [...] Read more.
Spectral line shapes code in plasmas (SLSPs) code comparison workshops have been organized in the last decade with the aim of comparing the spectra obtained with independently developed analytical and numerical models. Here, we consider the simultaneous effect of a plasma microfield and a periodic electric field on the hydrogen lines Lyman-α, Lyman-β, Balmer-α, and Balmer-β for plasma conditions where the Stark effect usually dominates line broadening. Full article
Show Figures

Figure 1

18 pages, 10479 KiB  
Article
Optimizing the Atmospheric CO2 Retrieval Based on the NDACC-Type FTIR Mid-Infrared Spectra at Xianghe, China
by Jiaxin Wang, Minqiang Zhou, Bavo Langerock, Weidong Nan, Ting Wang and Pucai Wang
Remote Sens. 2024, 16(5), 900; https://doi.org/10.3390/rs16050900 - 3 Mar 2024
Cited by 3 | Viewed by 2273
Abstract
Carbon dioxide (CO2) is the most important long-lived greenhouse gas and can be retrieved using solar absorption spectra recorded by a ground-based Fourier-transform infrared spectrometer (FTIR). In this study, we investigate the CO2 retrieval strategy using the Network for the [...] Read more.
Carbon dioxide (CO2) is the most important long-lived greenhouse gas and can be retrieved using solar absorption spectra recorded by a ground-based Fourier-transform infrared spectrometer (FTIR). In this study, we investigate the CO2 retrieval strategy using the Network for the Detection of Atmospheric Composition Change–Infrared Working Group (NDACC–IRWG) type spectra between August 2018 and April 2022 (~4 years) at Xianghe, China, aiming to find the optimal observed spectra, retrieval window, and spectroscopy. Two spectral regions, near 2600 and 4800 cm−1, are analyzed. The differences in column-averaged dry-air mole fraction of CO2 (XCO2) derived from spectroscopies (ATM18, ATM20, HITRAN2016, and HITRAN2020) can be up to 1.65 ± 0.95 ppm and 7.96 ± 2.02 ppm for NDACC-type 2600 cm−1 and 4800 cm−1 retrievals, respectively, which is mainly due to the CO2 differences in air-broadened Lorentzian HWHM coefficient (γair) and line intensity (S). HITRAN2020 provides the best fitting, and the retrieved CO2 columns and profiles from both 2600 and 4800 cm−1 are compared to the co-located Total Column Carbon Observing Network (TCCON) measurements and the greenhouse gas reanalysis dataset from the Copernicus Atmosphere Monitoring Service (CAMS). The amplitude of XCO2 seasonal variation derived from the NDACC-type (4800 cm−1) is closer to the TCCON measurements than that from the NDACC-type (2600 cm−1). Moreover, the NDACC-type (2600 cm−1) retrievals are strongly affected by the a priori profile. For tropospheric XCO2, the correlation coefficient between NDACC-type (4800 cm−1) and CAMS model is 0.73, which is higher than that between NDACC-type (2600 cm−1) and CAMS model (R = 0.56). Full article
Show Figures

Figure 1

Back to TopTop