Data on Stark Broadening of Sn II Spectral Lines
Abstract
:1. Introduction
2. The Semiclassical Perturbation Method
3. Data Description
4. User Notes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, A.; Wesemael, F.; Bergeron, P. Spectroscopic studies of DB white dwarfs: Improved Stark profiles for optical transitions of neutral helium. Astrophys. J. Suppl. Ser. 1997, 108, 559–573. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Sahal-Bréchot, S. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms 2014, 2, 357–377. [Google Scholar] [CrossRef]
- Konjević, N. Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
- Torres, J.; van de Sande, M.J.; van der Mullen, J.J.A.M.; Gamero, A.; Sola, A. Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochim. Acta B 2006, 61, 58–68. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma spectroscopy in inertial confinement fusion and soft X-ray laser research. Phys. Fluids 1992, 4, 2346–2361. [Google Scholar] [CrossRef]
- Iglesas, E.; Griem, H.R.; Welch, B.; Weaver, J. UV Line Profiles of B V from a 10-Ps KrF-Laser-Produced Plasma. Astrophys. Space Sci. 1997, 256, 327–331. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; King, L.A.; Smith, B.W.; Omenetto, N.; Winefordner, J.D. Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta 1999, 54, 1207–1217. [Google Scholar] [CrossRef]
- Nicolosi, P.; Garifo, L.; Jannitti, E.; Malvezzi, A.M.; Tondello, G. Broadening and self-absorption of the resonance lines of H-like light ions in laser-produced plasmas. Nuovo C. B 1978, 48, 133–1351. [Google Scholar] [CrossRef]
- Sorge, S.; Wierling, A.; Röpke, G.; Theobald, W.; Sauerbrey, R.; Wilhein, T. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J. Phys. B 2000, 33, 2983–3000. [Google Scholar] [CrossRef]
- Wang, J.S.; Griem, H.R.; Huang, Y.W.; Böttcher, F. Measurements of line broadening of B V Hα and Lδ in a laser-produced plasma. Phys. Rev. A 1992, 45, 4010–4014. [Google Scholar] [CrossRef]
- Csillag, L.; Dimitrijević, M.S. On the Stark broadening of the 537.8 nm and 441.6 nm Cd+ lines excited in a hollow cathode laser discharge. Appl. Phys. B 2004, 78, 221–223. [Google Scholar]
- Yilbas, B.S.; Patel, F.; Karatas, C. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. Opt. Laser Technol. 2015, 74, 36–42. [Google Scholar] [CrossRef]
- Hoffman, J.; Szymański, Z.; Azharonok, V. Plasma Plume Induced During Laser Welding of Magnesium Alloys. AIP Cof. Proc. 2005, 812, 469–472. [Google Scholar]
- Ganeev, R.A. High-order harmonics generation in Cd and Pd laser-induced plasmas. Opt. Express 2023, 31, 26626–26642. [Google Scholar] [CrossRef]
- Adelman, S.-J.; Bidelman, W.P.; Pyper, D.M. The peculiar A star γ Equulei: A line identification study of λλ 3086-3807. Astrophys. J. Suppl. 1979, 40, 371–424. [Google Scholar] [CrossRef]
- Cowley, C.R.; Ryabchikova, T.; Kupka, F.; Bord, D.J.; Mathys, G.; Bidelman, W.P. Abundances in Przybylski’s star. Mon. Not. R. Astron. Soc. 2000, 317, 299–309. [Google Scholar] [CrossRef]
- Smirnov, O.M.; Ryabchikova, T.A. MultiProfile: A software package for approximation of line profiles in stellar spectra. Astron. Rep. 1995, 39, 755–760. [Google Scholar]
- Roederer, I.U.; Lawler, J.E.; Den Hartog, E.A.; Placco, V.M.; Surman, R.; Beers, T.C.; Ezzeddine, R.; Frebel, A.; Hansen, T.T.; Hattori, K.; et al. The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925. Astrophys. J. Suppl. 2022, 260, 27. [Google Scholar] [CrossRef]
- Ernandes, H.; Castro, M.J.; Barbuy, B.; Spite, M.; Hill, V.; Castilho, B.; Evans, C.J. Reanalysis of neutron-capture elements in the benchmark r-rich star CS 31082-001. Mon. Not. R. Astron. Soc. 2023, 524, 656–677. [Google Scholar] [CrossRef]
- Shah, S.P.; Ezzeddine, R.; Roederer, I.U.; Hansen, T.T.; Placco, V.M.; Beers, T.C.; Frebel, A.; Anna, J.; Alexander, P.; Holmbeck, E.M.; et al. The R-Process Alliance: Detailed chemical composition of an r-process enhanced star with UV and optical spectroscopy. Mon. Not. R. Astron. Soc. 2024, 529, 1917–1940. [Google Scholar] [CrossRef]
- Dorsch, M.; Latour, M.; Heber, U. Heavy metals in intermediate He-rich hot subdwarfs: The chemical composition of HZ 44 and HD 127493. Astron. Astrophys. 2019, 630, A130. [Google Scholar] [CrossRef]
- Dorsch, M.; Latour, M.; Heber, U.; Irrgang, A.; Charpinet, S.; Jeffery, C.S. Heavy-metal enrichment of intermediate He-sdOB stars: The pulsators Feige 46 and LS IV-14°116 revisited. Astron. Astrophys. 2020, 643, A22. [Google Scholar] [CrossRef]
- Lakićević, I.S.; Purić, J. Stark shift trends in homologous ions. J. Phys. B 1983, 16, 1525–1530. [Google Scholar] [CrossRef]
- Purić, J.; Ćuk, M.; Lakićević, I.S. Regularities and systematic trends in the Stark broadening and shift parameters of spectral lines in plasma. Phys. Rev. A 1985, 32, 1106–1114. [Google Scholar] [CrossRef]
- Djeniže, S.; Srećković, A.; Labat, J. Stark width and shift of singly-ionized tin spectral lines. Z. Phys. D 1990, 17, 85–86. [Google Scholar] [CrossRef]
- Djeniže, S.; Labat, J.; Konjević, R. On the Stark broadening regularities along a homologous sequence of the IV B subgroup in the periodic system. Contrib. Plasma Phys. 1992, 32, 69–75. [Google Scholar] [CrossRef]
- Martínez, B.; Blanco, F. Experimental and theoretical Stark width and shift parameters of neutral and singly ionized tin lines. J. Phys. B 1999, 32, 241–247. [Google Scholar] [CrossRef]
- Djeniže, S.; Srećković, A.; Nikolić, Z. On the Sn I and Sn II Stark broadening. J. Phys. B 2006, 39, 3037–3045. [Google Scholar] [CrossRef]
- Alonso-Medina, A.; Colón, C. Measured Stark widths of several Sn I and Sn II spectral lines in a laser-induced plasma. Astrophys. J. 2008, 672, 1286–1291. [Google Scholar] [CrossRef]
- Scheers, J.; Schupp, R.; Meijer, R.; Ubachs, W.; Hoekstra, R.; Versolato, O.O. Time- and space-resolved optical Stark spectroscopy in the afterglow of laser-produced tin-droplet plasma. Phys. Rev. E 2020, 102, 013204. [Google Scholar] [CrossRef]
- Miller, M.H.; Roig, R.A.; Bengtson, R.D. Experimental transition probabilities and Stark-broadening parameters of neutral and singly ionized tin. Phys. Rev. A 1979, 20, 499–506. [Google Scholar] [CrossRef]
- Konjević, N.; Lesage, A.; Fuhr, J.R.; Wiese, W.L. Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms. J. Phys. Chem. Ref. Data 2002, 31, 819–927. [Google Scholar] [CrossRef]
- Lesage, A. Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms: A critical review of selected data for the period 2001–2007. New Astron. 2009, 52, 471–535. [Google Scholar] [CrossRef]
- Blagojević, B.; Konjević, N. Semiclassical calculations of electron impact Stark widths and shifts of singly ionized atom lines revisited. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 9–24. [Google Scholar] [CrossRef]
- Hey, J.D.; Breger, P. Stark broadening of isolated lines emitted by singly-ionized tin. J. Quant. Specrosc. Radiat. Transfer 1980, 23, 311–321. [Google Scholar] [CrossRef]
- Konjević, R.; Konjević, N. Proceedings 20th SPIG; Petrović, Z.L., Ed.; Institute of Physics Publishing: Belgrade, Serbia, 2000; p. 281. [Google Scholar]
- Colón, C.; Alonso-Medina, A.; Rivero, C.; Fernández, F. Stark width and shift parameter predictions and regularities of Sn II. Phys. Scr. 2006, 73, 410–419. [Google Scholar] [CrossRef]
- Lakićević, I.S. Estimated Stark widths and shifts of neutral atom and singly charged ion resonance lines. Astron. Astrophys. 1983, 127, 37–41. [Google Scholar]
- Sahal-Bréchot, S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma. Astron. Astrophys. 1969, 1, 91–123. [Google Scholar]
- Sahal-Bréchot, S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma (Continued). Astron. Astrophys. 1969, 2, 322–354. [Google Scholar]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben Nessib, N. Widths and Shifts of Isolated Lines of Neutral and Ionized Atoms Perturbed by Collisions with Electrons and Ions: An Outline of the Semiclassical Perturbation (SCP) Method and of the Approximations Used for the Calculations. Atoms 2014, 2, 225–252. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Christova, M.D.; Yubero, C.; Sahal-Bréchot, S. Stark broadening of Sn II spectral lines. J. Quant. Spectrosc. Radiat. Transf. 2024, 330, 109241. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S. The Semiclassical Limit of the Gailitis Formula Applied to Electron Impact Broadening of Spectral Lines of Ionized Atoms. Atoms 2021, 9, 29. [Google Scholar] [CrossRef]
- Haris, K.; Kramida, A.; Tauheed, A. Extended and revised analysis of singly ionized tin: Sn II. Phys. Scr. 2014, 89, 115403. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.10). National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. Available online: https://physics.nist.gov/asd (accessed on 15 November 2024).
- Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral helium lines. J. Quant. Spectrosc. Radiat. Transf. 1984, 31, 301–313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijević, M.S.; Christova, M.D.; Yubero, C.; Sahal-Bréchot, S. Data on Stark Broadening of Sn II Spectral Lines. Data 2025, 10, 14. https://doi.org/10.3390/data10020014
Dimitrijević MS, Christova MD, Yubero C, Sahal-Bréchot S. Data on Stark Broadening of Sn II Spectral Lines. Data. 2025; 10(2):14. https://doi.org/10.3390/data10020014
Chicago/Turabian StyleDimitrijević, Milan S., Magdalena D. Christova, Cristina Yubero, and Sylvie Sahal-Bréchot. 2025. "Data on Stark Broadening of Sn II Spectral Lines" Data 10, no. 2: 14. https://doi.org/10.3390/data10020014
APA StyleDimitrijević, M. S., Christova, M. D., Yubero, C., & Sahal-Bréchot, S. (2025). Data on Stark Broadening of Sn II Spectral Lines. Data, 10(2), 14. https://doi.org/10.3390/data10020014