Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (767)

Search Parameters:
Keywords = species richness index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 76128 KB  
Article
Hidden Diversity in the Iberá Wetlands: Fern and Lycophyte Richness and Biogeographic Boundaries
by Esteban Ismael Meza-Torres, Federico Carlos Arias, Patricia Estefania Meza-Torres, Saúl Páez, Hector Alejandro Keller and Michael Kessler
Plants 2026, 15(3), 378; https://doi.org/10.3390/plants15030378 (registering DOI) - 26 Jan 2026
Abstract
The Iberá Wetlands in northeastern Argentina constitute the second largest wetland system in South America, yet the fern and lycophyte flora of this region remains poorly documented. The aims of this work were to update the species richness of these plant groups, evaluate [...] Read more.
The Iberá Wetlands in northeastern Argentina constitute the second largest wetland system in South America, yet the fern and lycophyte flora of this region remains poorly documented. The aims of this work were to update the species richness of these plant groups, evaluate the intensity of collecting efforts, identify conservation priorities, estimate the potential true species richness, and make biogeographical inferences. We compiled a database of species from multiple sources, and the study area (21,853 km2) was divided into 19 grid cells for analysis. Sampling effort and species richness were quantified, and non-parametric estimators (Chao2, ICE, Jack2) were used to evaluate inventory completeness. Several similarity analyses were performed using the Jaccard index, incorporating reference areas from the Chaco and Paranaense phytogeographic provinces. The Ituzaingó–La Paz geological fracture and the geological formations present in the area were also considered. We recorded 76 taxa, whereas estimators suggested a potential richness of 130–140 species. The center of the Iberá Wetlands showed the lowest sampling effort, while the eastern sector exhibited the highest species richness. The distribution of species appears to be correlated with geological formations. These findings emphasize the importance of continuing sampling in the area. Full article
(This article belongs to the Special Issue New Perspectives on Plant Biogeography, Systematics, and Taxonomy)
Show Figures

Figure 1

18 pages, 2758 KB  
Article
Synergistic Effects of Coal Gasification Slag-Based Soil Conditioner and Vermicompost on Soil–Microbe–Plant Systems Under Saline–Alkali Stress
by Hang Yang, Longfei Kang, Qing Liu, Qiang Li, Feng Ai, Kaiyu Zhang, Xinzhao Zhao and Kailang Ding
Sustainability 2026, 18(3), 1180; https://doi.org/10.3390/su18031180 - 23 Jan 2026
Viewed by 105
Abstract
Soil salinization remains a critical constraint on global land sustainability, severely limiting agricultural output and ecosystem resilience. To address this issue, a field trial was implemented to investigate the interactive benefits of vermicompost (VC) and a novel soil conditioner derived from coal gasification [...] Read more.
Soil salinization remains a critical constraint on global land sustainability, severely limiting agricultural output and ecosystem resilience. To address this issue, a field trial was implemented to investigate the interactive benefits of vermicompost (VC) and a novel soil conditioner derived from coal gasification slag-based soil conditioner (CGSS) in mitigating saline–alkali stress. The perennial forage grass Leymus chinensis, valued for its ecological robustness and economic potential under adverse soil conditions, served as the test species. Five treatments were established: CK (unamended), T1 (CGSS alone), T2 (VC alone), T3 (CGSS:VC = 1:1), T4 (CGSS:VC = 1:2), and T5 (CGSS:VC = 2:1). Study results indicate that the combined application of CGSS and VC outperformed individual amendments, with the T4 treatment demonstrating the most effective results. Compared to CK, T4 reduced soil electrical conductivity (EC) by 12.00% and pH by 5.17% (p < 0.05), while markedly enhancing key fertility indicators—including soil organic matter and the availability of nitrogen, phosphorus, and potassium. Thus, these improvements translated into superior growth of L. chinensis, reflected in significantly greater dry biomass, expanded leaf area, and increased plant height. Additionally, the T4 treatment increased soil microbial richness (Chao1 index) by 21.5% and elevated the relative abundance of the Acidobacteria functional group by 16.9% (p < 0.05). Hence, T4 treatment (CGSS: 15,000 kg·ha−1; VC: 30,000 kg·ha−1) was identified as the optimal remediation strategy through a fuzzy comprehensive evaluation that integrated multiple soil and plant indicators. From an economic perspective, the T4 treatment (corresponding to a VC-CGSS application ratio of 2: 1) exhibits a lower cost compared to other similar soil conditioners and organic fertilizer combinations for saline–alkali soil remediation. This study not only offers a practical and economically viable approach for reclaiming degraded saline–alkali soils but also advances the circular utilization of coal-based solid waste. Furthermore, it deepens our understanding of how integrated soil amendments modulate the soil–microbe–plant nexus under abiotic stress. Full article
Show Figures

Figure 1

22 pages, 1972 KB  
Article
Vegetation Restoration in Karst Southwest China: Effects of Plant Community Diversity and Soil Physicochemical Properties on Soil Cadmium
by Yun Xing, Lin Zhang, Zhuoyi Mei, Xiuwen Wang, Chao Li, Zuran Li and Yuan Li
Toxics 2026, 14(1), 102; https://doi.org/10.3390/toxics14010102 - 21 Jan 2026
Viewed by 98
Abstract
In southwest China, vegetation restoration is widely used in karst rocky desertification control projects. However, mechanistic evidence explaining how plant community composition and species diversity regulate cadmium (Cd) bioavailability remains limited. Here, the plant community’s species diversity, soil properties, Cd, and available Cd [...] Read more.
In southwest China, vegetation restoration is widely used in karst rocky desertification control projects. However, mechanistic evidence explaining how plant community composition and species diversity regulate cadmium (Cd) bioavailability remains limited. Here, the plant community’s species diversity, soil properties, Cd, and available Cd contents were evaluated. Four plant community types, NR (natural recovery), PMC (Pistacia weinmannifolia + Medicago sativa + Chrysopogon zizanioides), and PME (Pistacia weinmannifolia + Medicago sativa + Eragrostis curvula), were selected as the research objects. The species composition was recorded, and dominant plant species and soil samples were collected to analyze Cd accumulation characteristics. Relative to NR, composite restorations increased plant diversity and soil nutrient availability and reduced soil compaction, with PMC showing the strongest remediation, decreasing total Cd by 49.4% and available Cd by 59.5%. Model-averaged regression and hierarchical partitioning analyses further identified nitrogen availability and community structure as the dominant drivers. Specifically, available nitrogen (AN), vegetation coverage, Margalef species richness (DMG), ammonium nitrogen (NH4+–N), and total N (TN) were the main factors of soil total Cd, and BD, TN, nitrate nitrogen (NO3–N), mean crown diameter (MCD), and Shannon–Wiener index (H′) were the main factors of soil available Cd. The results indicate that PMC provides a plant community structure configuration decisions of a scalable, site-adaptable strategy for durable Cd stabilization and soil conservation in thin, carbonate-rich karst soils. Full article
(This article belongs to the Special Issue Plant Responses to Heavy Metal)
Show Figures

Graphical abstract

19 pages, 2477 KB  
Article
Effect of Hantavirus Infection on the Rodent Lung Microbiome: Specific Regulatory Roles of Host Species and Virus Types
by Yaru Xiong, Zhihui Dai, Fangling He, Rongjiao Liu, Juan Wang, Zhifei Zhan, Huayun Jia, Shengbao Chen and Liang Cai
Microorganisms 2026, 14(1), 244; https://doi.org/10.3390/microorganisms14010244 - 21 Jan 2026
Viewed by 66
Abstract
The lung-targeting characteristic of Hantavirus infection and the unclear mechanism underlying its interaction with the lung microbiome hampers the development of effective prevention and control strategies. In this study, lung tissues from Apodemus agrarius and Rattus norvegicus were collected at Hantavirus surveillance sites [...] Read more.
The lung-targeting characteristic of Hantavirus infection and the unclear mechanism underlying its interaction with the lung microbiome hampers the development of effective prevention and control strategies. In this study, lung tissues from Apodemus agrarius and Rattus norvegicus were collected at Hantavirus surveillance sites in Hunan Province. Metagenomic sequencing was subsequently applied to compare microbiome diversity, community structure, and function between infected and uninfected groups. Then the linear discriminant analysis effect size (LEfSe) was employed to identify key biomarkers. The results indicated that after infection with Hantaan virus (HTNV), Apodemus agrarius exhibited significantly increased evenness but markedly decreased richness of lung microbial communities, as reflected by consistent reductions in the number of observed species, Abundance-based Coverage Estimator (ACE) index, and Chao1 index. In contrast, Rattus norvegicus infected with Seoul virus (SEOV) showed no significant difference in microbial richness compared with uninfected controls, and even a slight increase was observed. These findings suggest that host species and virus type may play an important role in shaping microbial community responses. Furthermore, β-diversity analysis showed that the community structure was clearly separated by the host rodent species, as well as by their virus infection status. LEfSe analysis identified taxa with discriminatory power associated with infection status. Streptococcus agalactiae and Streptococcus were associated with SEOV-infected Rattus norvegicus, while Chlamydia and Chlamydia abortus were relatively enriched in uninfected Apodemus agrarius. This exploratory study reveals preliminary association between specific host—Hantavirus pairings (HTNV—Apodemus agrarius and SEOV—Rattus norvegicus) and the rodent lung microbiome, offering potential insights for future research into viral pathogenesis. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

41 pages, 6730 KB  
Article
Ethnobotany of Local Vegetables and Spices in Sakon Nakhon Province, Thailand
by Piyaporn Saensouk, Surapon Saensouk, Phiphat Sonthongphithak, Auemporn Junsongduang, Kamonwan Koompoot, Bin Huang, Wei Shen and Tammanoon Jitpromma
Diversity 2026, 18(1), 49; https://doi.org/10.3390/d18010049 - 17 Jan 2026
Viewed by 218
Abstract
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, [...] Read more.
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, Sakon Nakhon Province. Ethnobotanical data were collected in 2025 through field surveys, voucher-based plant identification, semi-structured interviews, and participant observation involving 92 informants across 23 villages. Cultural significance and medicinal knowledge were evaluated using the Cultural Importance Index (CI), Informant Consensus Factor (FIC), and Fidelity Level (FL). A total of 113 taxa belonging to 94 genera and 49 plant families were recorded. Poaceae and Zingiberaceae were the most species-rich families. Native species slightly predominated (51.33%), and herbaceous taxa were most common. Leaves were the most frequently used plant part. Most taxa were used as vegetables (92 species), followed by traditional medicines (20 species), spices or seasonings (18 species), and food ingredients or culinary additives (18 species). The highest CI values were recorded for Allium ascalonicum L. (1.152), Capsicum annuum L. (1.098), and Coriandrum sativum L. (1.043). FIC values ranged from 0.60 to 1.00, with complete consensus for circulatory and neurological disorders. Cymbopogon citratus showed the highest FL (75%) for gastrointestinal uses. These findings demonstrate the close integration of food and medicine in local plant-use systems and provide baseline data for food system resilience and cultural knowledge conservation. Full article
(This article belongs to the Special Issue Ethnobotany and Plant Diversity: Conservation and Sustainable Use)
Show Figures

Figure 1

24 pages, 3070 KB  
Article
Early Vegetation Responses to Alien Plant Clearing in Communal Rangelands: A Case from Manzini, Eswatini
by Sihle Edmund Mthethwa and Sellina Ennie Nkosi
Ecologies 2026, 7(1), 10; https://doi.org/10.3390/ecologies7010010 - 17 Jan 2026
Viewed by 204
Abstract
Invasive alien plant species pose significant threats to biodiversity and the ecological functioning of ecosystems, necessitating targeted clearing strategies. This study investigated the short-term recovery of native vegetation following the control of Lantana camara and Chromolaena odorata in communal lands of Manzini, Eswatini. [...] Read more.
Invasive alien plant species pose significant threats to biodiversity and the ecological functioning of ecosystems, necessitating targeted clearing strategies. This study investigated the short-term recovery of native vegetation following the control of Lantana camara and Chromolaena odorata in communal lands of Manzini, Eswatini. Nineteen sites were sampled across cleared and uncleared areas to assess changes in species diversity and veld condition. Cleared sites showed slightly reduced heterogeneity (D′ = 0.722) and higher diversity (H′ = 2.081) compared to uncleared sites (D′ = 0.732) and diversity (H′ = 2.032). Sites free from invasive alien plants had higher species richness (EXP (H′) = 35.693) than invaded sites (EXP (H′) = 28.237). Although statistical analyses showed no significant differences in stem counts between cleared and uncleared sites, effect sizes indicated potential practical significance for C. odorata. The Veld Condition Index (VCI) revealed high spatial variability with no consistent trend associated with clearing. Findings emphasise the complexity of early post-clearing dynamics and the importance of site-specific follow-up and monitoring. Full article
Show Figures

Figure 1

17 pages, 2347 KB  
Article
Effect of Night-Time Warming on the Diversity of Rhizosphere and Bulk Soil Microbial Communities in Scutellaria baicalensis
by Xorgan Uranghai, Fei Gao, Yang Chen, Jie Bing and Almaz Borjigidai
Agriculture 2026, 16(2), 232; https://doi.org/10.3390/agriculture16020232 - 16 Jan 2026
Viewed by 253
Abstract
Scutellaria baicalensis is an important medicinal plant, and the diversity of its rhizosphere microbiota may influence its growth, development, and yield. Numerous studies have reported that warming associated with global climate change significantly altered plant-associated soil microbial diversity. To reveal the effects of [...] Read more.
Scutellaria baicalensis is an important medicinal plant, and the diversity of its rhizosphere microbiota may influence its growth, development, and yield. Numerous studies have reported that warming associated with global climate change significantly altered plant-associated soil microbial diversity. To reveal the effects of night-time warming on the rhizosphere microbial community of S. baicalensis, soil microbial diversity in the rhizosphere (RS) and bulk soil (BS) of S. baicalensis were analyzed by employing bacterial 16S rRNA and fungal ITS sequencing technology. Warming significantly altered both bacterial and fungal communities in the rhizosphere and bulk soils of S. baicalensis, with pronounced changes in OTU composition, relative abundances at both phylum and species levels. The analysis of alpha and beta diversity showed that warming significantly altered the fungal community structure in the rhizosphere soil (R2 = 0.423, p < 0.05) and significantly reduced the species richness in the bulk soil of S. baicalensis (Shannon and Simpson index, p < 0.05). LEfSe and functional prediction analyses revealed that warming altered the taxonomic composition of both bacterial (35 taxa, LDA > 3) and fungal (24 taxa, LDA > 4) communities in rhizosphere and bulk soils of S. baicalensis, with multiple bacterial and fungal taxa serving as treatment-specific biomarkers. Functional predictions indicated that fungal functional groups, including saprotrophic and mycorrhizal guilds, were more strongly affected by warming than bacteria. Overall, warming has a significantly stronger impact on fungal communities in the rhizosphere and bulk soils of S. baicalensis than on bacteria, and has a significantly greater effect on the diversity of microbial communities in bulk soils than that in rhizosphere soils. This study provides important data for understanding the impact of global climate change on the rhizosphere microbial communities of cultivated plants. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 1854 KB  
Article
Patterns and Drivers of Mountain Meadow Communities Along an Altitudinal Gradient on the Southern Slope of Wutai Mountain, Northern China
by Xiaolong Zhang, Xianmeng Liu, Dingrou Yao, Yongji Wang, Junjie Niu and Yinbo Zhang
Ecologies 2026, 7(1), 9; https://doi.org/10.3390/ecologies7010009 - 15 Jan 2026
Viewed by 212
Abstract
Understanding how plant community characteristics and soil properties vary along altitudinal gradients is essential for ecosystem conservation, restoration, and for predicting ecosystem responses to global environmental change. This study investigated altitudinal patterns and their potential drivers in mountain meadow communities on the southern [...] Read more.
Understanding how plant community characteristics and soil properties vary along altitudinal gradients is essential for ecosystem conservation, restoration, and for predicting ecosystem responses to global environmental change. This study investigated altitudinal patterns and their potential drivers in mountain meadow communities on the southern slope of Wutai Mountain, Northern China. Community characteristics and soil physicochemical properties were measured along an altitudinal gradient ranging from 1800 to 3000 m a.s.l. Most community characteristics exhibited clear altitudinal trends. Species richness, Shannon–Wiener index, Simpson index, aboveground biomass and average plant height all declined significantly with increasing altitude. In contrast, vegetation cover showed a unimodal pattern, initially decreasing and then increasing at higher elevations. Soil physicochemical properties also varied significantly along the altitudinal gradient and were closely associated with changes in community characteristics. Variation partitioning analysis revealed that environmental factors, including altitude and soil properties, explained 71.9% of the total variation in mountain meadow communities. Altitude alone contributed more to community variation than soil factors, indicating its dominant role in shaping community structure. Nevertheless, specific soil properties, particularly soil depth, soil bulk density and soil pH, also exerted significant influences on community characteristics. Overall, our results demonstrate that altitude is a key driver of both vegetation and soil variation in mountain meadows on the southern slope of Wutai Mountain. In addition to altitudinal effects, soil physicochemical properties should be considered when developing conservation and management strategies for mountain meadow ecosystems. Full article
Show Figures

Graphical abstract

17 pages, 8320 KB  
Article
Effects of Slope and Strip-Cutting Width on Bamboo Shoot Emergence, Culm Formation, and Understory Vegetation Diversity in Moso Bamboo Forests in China
by Dawei Fu, Fengying Guan, Zhen Li, Minkai Li, Yifan Lu, Xiao Zhou and Xuan Zhang
Plants 2026, 15(2), 258; https://doi.org/10.3390/plants15020258 - 14 Jan 2026
Viewed by 231
Abstract
Moso bamboo (Phyllostachys edulis) harvesting is labor-intensive and inefficient, while strip-cutting enables mechanized, cost-effective management and supports long-term production. Intensive strip-cutting disturbs bamboo ecosystems, altering soil, litter and understory vegetation. This may reduce long-term productivity despite moso bamboo’s rapid growth, especially [...] Read more.
Moso bamboo (Phyllostachys edulis) harvesting is labor-intensive and inefficient, while strip-cutting enables mechanized, cost-effective management and supports long-term production. Intensive strip-cutting disturbs bamboo ecosystems, altering soil, litter and understory vegetation. This may reduce long-term productivity despite moso bamboo’s rapid growth, especially in the mountainous areas like Anji, Zhejiang. To balance ecological and production goals, we evaluated strip-cutting widths of 3, 5, and 8 m under three slope classes, 5–14° (gentle, SL1), 15–24° (moderate, SL2), and 25–34° (steep, SL3), focusing on bamboo growth recovery and understory vegetation diversity. Compared with uncut control plots, the number of herbaceous and shrub species increased in all treatment plots. In 5 m moderate slope plots, shoot and culm numbers were 27% and 13% higher than those in the 3 m and 8 m plots, and 37% higher than uncut control plots. Herb species diversity, as reflected by the Shannon–Wiener (H′), Simpson (D), and Margalef richness (R) indices, was high in the narrowest clearcut strips under SL1 and SL3. Pielou’s evenness index (J) was high in the 3 and 5 m plots under SL2 and SL3. Shrub species diversity, as indicated by D and R, was high in 5 and 8 m plots under SL2 and SL3. Principal component analysis (PCA) indicated that under SL2, 5 m strip-cutting width with a score of 0.649 outperformed others. These results suggest that 5 m strip-cutting width under SL2 slope optimizes understory vegetation diversity and supports a synergistic outcome of “high shoot emergence–high culm formation” thereby achieving both ecological and production benefits. Full article
Show Figures

Figure 1

54 pages, 4447 KB  
Article
Structure–Diversity Relationships in Parasitoids of a Central European Temperate Forest
by Claudia Corina Jordan-Fragstein, Roman Linke and Michael Gunther Müller
Forests 2026, 17(1), 106; https://doi.org/10.3390/f17010106 - 13 Jan 2026
Viewed by 252
Abstract
Parasitoids are key natural antagonists of forest insect pests and are gaining importance in integrated forest protection under increasing climate-related disturbances. This study aimed to quantify the influence of vegetation diversity and canopy structure on the abundance and diversity of the overall insect [...] Read more.
Parasitoids are key natural antagonists of forest insect pests and are gaining importance in integrated forest protection under increasing climate-related disturbances. This study aimed to quantify the influence of vegetation diversity and canopy structure on the abundance and diversity of the overall insect community responses to vegetation structure and to provide an ecological context. Second, detailed analyses focused on three focal parasitoid families (Braconidae, Ichneumonidae, Tachinidae), which are of particular relevance for integrated forest protection due to their central role in integrated forest protection and in pesticide-free regulation approaches for risk mitigation in forest ecosystems. Malaise traps were deployed at eight randomly selected broadleaf and coniferous sites, and insect samples from six sampling dates in summer 2024 were analyzed. The sampling period coincided with the full development of woody and vascular plants, representing the phase of highest expected activity of phytophagous insects and associated parasitoids. Vegetation surveys (Braun–Blanquet), canopy closure, and canopy cover were recorded for each site. Across all samples, five arthropod classes, 13 insect orders, and 31 hymenopteran families were identified, with pronounced site-specific differences in community composition and abundance. Our results suggest that broadleaf-dominated sites, characterized by higher plant species richness and greater structural heterogeneity, support a more diverse assemblage of phytophagous insects, thereby increasing host availability and niche diversity for parasitoids. Parasitoid communities generally showed higher diversity at broadleaf sites. Spearman correlations and multiple linear regressions revealed a strong negative relationship between canopy cover and total insect abundance ρ (Spearman’s rank correlation coefficient (Spearman ρ = −0.72, p = 0.042; p = 0.012, R2 = 0.70), R2 (coefficient of determination), whereas parasitoid diversity (Shannon index) and the relative proportion of Ichneumonidae were positively associated with canopy cover (ρ = 0.85, p = 0.008). In addition, canopy cover had a significant positive effect on overall insect diversity (Shannon index; p = 0.015, R2 = 0.63). Time-series analyses revealed a significant seasonal decline in parasitoid abundance (p < 0.001) and parasitoid diversity (p = 0.018). Time-series analyses revealed seasonal dynamics characterized by fluctuations in parasitoid abundance and diversity and a general decrease over the course of the sampling period. The findings demonstrate that structurally diverse mixed forests, particularly those with a high proportion of broadleaf trees mixed forests with heterogeneous canopy layers can enhance the diversity of specialized natural enemies, while dense canopy cover reduces overall insect abundance. These insights provide an ecological basis for silvicultural strategies that strengthen natural regulation processes within integrated forest protection. Full article
Show Figures

Figure 1

17 pages, 15010 KB  
Article
Plant Diversity and Seasonal Variation Drive Animal Diversity and Community Structure in Eastern China
by Xiangxiang Chen, Runhan Jiang, Yunhan Chen, Rui Yang, Yan He, Shuai Zou, Jianping Ying, Lixiao Yi, Yuxin Ye, Sili Peng and Zhiwei Ge
Animals 2026, 16(2), 215; https://doi.org/10.3390/ani16020215 - 11 Jan 2026
Viewed by 177
Abstract
Montane forests, characterized by complex terrain and diverse climates, serve as critical global biodiversity hotspots, particularly for birds and mammals. However, the patterns and underlying processes of bird and mammal diversity remain insufficiently studied in the montane forests of eastern China. This study [...] Read more.
Montane forests, characterized by complex terrain and diverse climates, serve as critical global biodiversity hotspots, particularly for birds and mammals. However, the patterns and underlying processes of bird and mammal diversity remain insufficiently studied in the montane forests of eastern China. This study employed infrared-triggered camera trapping to conduct a four-year field monitoring of birds and mammals, analyzing the effects of plant diversity and seasonal variations on the diversity of habitat-associated animals. Our results revealed that species-level habitat visit frequency in ground-dwelling birds exhibited a significant phylogenetic signal, particularly in spring and summer. Plant diversity metrics demonstrated significant positive correlations with corresponding bird metrics of species richness (SR), phylogenetic diversity (PD), and the standardized effect size of PD (Phylo SES PD). In contrast, for mammals, plant diversity metrics were significantly positively correlated with corresponding SR, mean pairwise phylogenetic distance (Phylo MPD), and mean nearest phylogenetic taxon distance (Phylo MNTD), as well as community structure metrics, including the net relatedness index (Phylo NRI) and nearest taxon index (Phylo NTI). Furthermore, the plant Shannon–Wiener index showed significant positive correlations with both bird and mammal metrics of SR, PD, and Phylo SES PD but significant negative correlations with Phylo MNTD. Seasonal variations triggered the mean altitudinal migration in ground-dwelling birds and mammals. There were significant differences in the diversity and community structure metrics of birds (Shannon–Wiener, Funct FNND, and PD) and mammals (Shannon–Wiener, Funct MPD, Funct FNND, PD, Phylo MPD, Phylo MNTD, and Phylo SES PD), which varied across different seasons. These findings emphasize that plant diversity and seasonal changes are closely related to the diversity and community structure of birds and mammals. They provide theoretical support for the role of habitat vegetation and seasonal dynamics in maintaining the stability and functioning of montane animal ecosystems, offering important insights for addressing habitat fragmentation and species migratory behavior. Full article
Show Figures

Figure 1

19 pages, 6293 KB  
Article
Biogeography of Cryoconite Bacterial Communities Across Continents
by Qianqian Ge, Zhiyuan Chen, Yeteng Xu, Wei Zhang, Guangxiu Liu, Tuo Chen and Binglin Zhang
Microorganisms 2026, 14(1), 162; https://doi.org/10.3390/microorganisms14010162 - 11 Jan 2026
Viewed by 202
Abstract
The geographic distribution patterns of microorganisms and their underlying mechanisms are central topics in microbiology, crucial for understanding ecosystem functioning and predicting responses to global change. Cryoconite absorbs solar radiation to form cryoconite holes, and because it lies within these relatively deep holes, [...] Read more.
The geographic distribution patterns of microorganisms and their underlying mechanisms are central topics in microbiology, crucial for understanding ecosystem functioning and predicting responses to global change. Cryoconite absorbs solar radiation to form cryoconite holes, and because it lies within these relatively deep holes, it faces limited interference from surrounding ecosystems, often being seen as a fairly enclosed environment. Moreover, it plays a dominant role in the biogeochemical cycling of key elements such as carbon and nitrogen, making it an ideal model for studying large-scale microbial biogeography. In this study, we analyzed bacterial communities in cryoconite across a transcontinental scale of glaciers to elucidate their biogeographical distribution and community assembly processes. The cryoconite bacterial communities were predominantly composed of Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota, with significant differences in species composition across geographical locations. Bacterial diversity was jointly driven by geographical and anthropogenic factors: species richness exhibited a hump-shaped relationship with latitude and was significantly positively correlated with the Human Development Index (HDI). The significant positive correlation may stem from nutrient input and microbial dispersal driven by high-HDI regions’ industrial, agricultural, and human activities. Beta diversity demonstrated a distance-decay pattern along spatial gradients such as latitude and geographical distance. Analysis of community assembly mechanisms revealed that stochastic processes predominated across continents, with a notable scale dependence: as the spatial scale increased, the role of deterministic processes (heterogeneous selection) decreased, while stochastic processes (dispersal limitation) strengthened and became the dominant force. By integrating geographical, climatic, and anthropogenic factors into a unified framework, this study enhances the understanding of the spatial-scale-driven mechanisms shaping cryoconite bacterial biogeography and emphasizes the need to prioritize anthropogenic influences to predict the trajectory of cryosphere ecosystem evolution under global change. Full article
(This article belongs to the Special Issue Polar Microbiome Facing Climate Change)
Show Figures

Figure 1

26 pages, 1891 KB  
Article
Effect of Climatic Aridity on Above-Ground Biomass, Modulated by Forest Fragmentation and Biodiversity in Ghana
by Elisha Njomaba, Ben Emunah Aikins and Peter Surový
Earth 2026, 7(1), 7; https://doi.org/10.3390/earth7010007 - 7 Jan 2026
Viewed by 234
Abstract
Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its [...] Read more.
Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its significance for forest biomass dynamics and carbon storage processes. This study examined how spatial variation in climatic aridity (Aridity Index, AI) affects above-ground biomass (AGB) in Ghana’s ecological zones, both directly and indirectly through forest fragmentation and biodiversity, using structural equation modeling (SEM) and generalized additive models (GAMs). Results from this study show that AGB declines along the aridity gradient, with humid zones supporting the highest biomass and semi-arid zones the lowest. The SEM analysis revealed that areas with a lower aridity index (drier conditions) had significantly lower AGB, indicating that arid conditions are associated with lower forest biomass. Fragmentation patterns align with this relationship, while biodiversity (as measured by species richness) showed weak associations, likely reflecting both ecological and data limitations. GAMs highlighted nonlinear fragmentation effects: mean patch area (AREA_MN) was the strongest predictor, showing a unimodal relationship with biomass, whereas number of patches (NP), edge density (ED), and landscape shape index (LSI) reduced AGB. Overall, these findings demonstrate that aridity and spatial configuration jointly control biomass, with fragmentation acting as a key mediator of this relationship. Dry and transitional forests emerge as particularly vulnerable, emphasizing the need for management strategies that maintain large, connected forest patches and integrate restoration into climate adaptation policies. Full article
Show Figures

Figure 1

17 pages, 2986 KB  
Article
A Lipidomic Analysis Reveals Dynamic Changes of Polar Lipids for Oil Biosynthesis During Cotyledon Development in Perilla frutescens
by Xiaoxiao Liu, Jiudong Zhang, Weijun Xu, Xichun Du, Deng Yang, Lingling Xu, Shuangyu Zhang and Tianpeng Gao
Plants 2026, 15(1), 119; https://doi.org/10.3390/plants15010119 - 1 Jan 2026
Viewed by 273
Abstract
Perilla (Perilla frutescens) is an important oilseed crop valued for its rich content of nutraceutical compounds and polyunsaturated fatty acids. While triacylglycerol biosynthesis has been studied, the role of polar lipids during seed development remains poorly characterized. Here, we performed a [...] Read more.
Perilla (Perilla frutescens) is an important oilseed crop valued for its rich content of nutraceutical compounds and polyunsaturated fatty acids. While triacylglycerol biosynthesis has been studied, the role of polar lipids during seed development remains poorly characterized. Here, we performed a comprehensive lipidomic analysis of polar lipids in developing perilla seeds across three key stages. A total of 147 molecular species from 10 polar lipid classes were identified. Phosphatidylcholine and phosphatidylethanolamine were the predominant phospholipids, and both decreased markedly during development, with phosphatidylcholine showing the most significant reduction. In contrast, lysophosphatidic acid increased substantially by 62.4%. Conversely, the galactolipids monolactodiacylglycerol and digalactosyldiacylglycerol showed a decline in perilla during cotyledon development. Additionally, the unsaturation index of most polar lipids decreased during development. These variation characteristics of polar lipids during growth and development may suggest an adaptive strategy for oil accumulation in perilla. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

21 pages, 6996 KB  
Article
Spatial and Landscape Fragmentation Pattern of Endemic Symplocos Tree Communities Under Climate Change Scenarios in China
by Mohammed A. Dakhil, Lin Zhang, Marwa Waseem A. Halmy, Reham F. El-Barougy, Bikram Pandey, Zhanqing Hao, Zuoqiang Yuan, Lin Liang and Heba Bedair
Forests 2026, 17(1), 58; https://doi.org/10.3390/f17010058 - 31 Dec 2025
Viewed by 283
Abstract
Symplocos is an ecologically important genus that plays vital roles in subtropical evergreen broad-leaved mountain forests, including contributing to nutrient cycling, providing shelter and habitats for various organisms, and supporting overall plant diversity across East and Southeast Asia. Many species exhibit high levels [...] Read more.
Symplocos is an ecologically important genus that plays vital roles in subtropical evergreen broad-leaved mountain forests, including contributing to nutrient cycling, providing shelter and habitats for various organisms, and supporting overall plant diversity across East and Southeast Asia. Many species exhibit high levels of endemism and sensitivity to environmental change. China, with its wide range of ecosystems and climatic zones, is home to 18 endemic Symplocos species. Studies revealed that global warming is driving shifts in species diversity, particularly in mountains. Our study explores the current and projected richness patterns of endemic Symplocos species in China under climate change scenarios, emphasizing the implications for conservation planning. We applied stacked species distribution models (SSDMs), using key bioclimatic and environmental variables to predict current and future habitat suitability for endemic Symplocos species, evaluated model performance through multiple accuracy metrics, and generated ensemble projections to assess richness patterns under climate change scenarios. To assess the spatial configuration and fragmentation patterns of the endemic species richness under current and future climate scenarios, landscape metrics were calculated based on classified richness maps. The produced models demonstrated high accuracy with AUC > 0.9 and TSS > 0.75, highlighting the critical role of bioclimatic variables, particularly precipitation and temperature, in shaping endemic Symplocos distribution. Our analysis identifies the current hotspots of Symplocos endemism along southeastern China, particularly in Zhejiang, Fujian, Jiangxi, Hunan, southern Anhui, and northern Guangdong and Guangxi. These areas are at high risk, with up to 35% of endemic Symplocos species richness predicted to be lost over the next 60 years due to climate change. The study predicts a high decrease in endemic Symplocos species richness, especially in South China (e.g., Fujian, Guangdong, Guizhou, Yunnan, southern Shaanxi), and mid-level decreases in East China (e.g., Heilongjiang, Jilin, eastern Inner Mongolia, Liaoning). Conversely, potential increases in endemic Symplocos species richness are projected in northern and western Xinjiang, western Tibet, and parts of eastern Sichuan, Guangxi, Hunan, Hebei, and Anhui, suggesting these regions may serve as future refugia for endemic Symplocos species. The analysis of the landscape structure and configuration revealed relatively minor but notable variations in the spatial structure of endemic Symplocos richness patterns under current and future climate scenarios. However, under the SSP585 scenario by 2080, the medium richness class showed a more pronounced decrease in aggregation index and increase in number of patches relative to other richness classes, suggesting that higher emissions may drive fragmentation of moderately rich areas, potentially isolating populations of Symplocos. These structural changes suggest a potential reduction in habitat quality and connectivity, posing significant risks to the persistence of endemic Symplocos populations, which underscores the urgent need for targeted smart-climate conservation strategies that prioritize both current hotspots and potential future refugia to enhance the resilience of endemic Symplocos forests and their ecosystems in the face of climate change. Full article
(This article belongs to the Special Issue Forest Dynamics Under Climate and Land Use Change)
Show Figures

Figure 1

Back to TopTop