Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = space recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Viewed by 109
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

31 pages, 15881 KiB  
Article
Fused Space in Architecture via Multi-Material 3D Printing Using Recycled Plastic: Design, Fabrication, and Application
by Jiangjing Mao, Lawrence Hsu and Mai Altheeb
Buildings 2025, 15(15), 2588; https://doi.org/10.3390/buildings15152588 - 22 Jul 2025
Viewed by 382
Abstract
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor [...] Read more.
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor to ecological imbalance, this research on fused space aims to recycle plastic and use it as a multi-material for building applications, due to its capacity for being 3D printed and fused with other materials. Furthermore, to generate diverse properties for the fused space, several nature-inspired forming algorithms are employed, including Swarm Behavior, Voronoi, Game of Life, and Shortest Path, to shape the building enclosure. Subsequently, digital analyses, such as daylight analysis, structural analysis, porosity analysis, and openness analysis, are conducted on the enclosure, forming the color mapping digital diagram, which determines the distribution of varying thickness, density, transparency, and flexibility gradation parameters, resulting in spatial diversity. During the fabrication process, Dual Force V1 and Dual Force V2 were developed to successfully print multi-material gradations with fused plastic following an upgrade to the cooling system. Finally, three test sites in London were chosen to implement the fused space concept using multi-material. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5549 KiB  
Article
Axial Compression of BFRP Spiral Strip–PVC Tube Confined Fiber-Recycled Concrete: Experiment and FEM Analysis
by Jiaxing Tian, Huaxin Liu, Genjin Liu, Wenyu Wang and Jiuwen Bao
Materials 2025, 18(15), 3431; https://doi.org/10.3390/ma18153431 - 22 Jul 2025
Viewed by 289
Abstract
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the [...] Read more.
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the integrity of the BFRP strips. Therefore, this study investigates axial compression experiments on RAC short cylinders reinforced with BFRP spiral strips and PVC tubes. A combination of experimental studies, finite element simulations, and theoretical analyses revealed that the winding angle and spacing of BFRP strips significantly affect the load-bearing capacity and ductility of the restrained specimens. Additionally, an improved strength model was developed based on an existing model. When evaluated using both computational and experimental results, the equations generated in this study showed an average error of less than 10%. The findings indicate that the composite structure provides effective reinforcement and offers valuable reference information for practical applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

13 pages, 2975 KiB  
Article
Calculation of Aging Coefficient for Establishing Aging Condition Index of Thermoplastic Insulated Power Cables
by Seung-Won Lee, Ik-Su Kwon, Byung-Bae Park, Sung-ho Yoon, Dong-Eun Kim, Jin-Seok Lim and Hae-Jong Kim
Appl. Sci. 2025, 15(14), 8106; https://doi.org/10.3390/app15148106 - 21 Jul 2025
Viewed by 259
Abstract
The growing demand for direct current transmission emphasizes the need for advanced insulation suitable for high-capacity, long-distance applications. Thermoplastics, especially polypropylene, offer several advantages over conventional materials like XLPE (cross-linked polyethylene) and EPR (ethylene propylene rubber), including higher thermal stability, recyclability, and reduced [...] Read more.
The growing demand for direct current transmission emphasizes the need for advanced insulation suitable for high-capacity, long-distance applications. Thermoplastics, especially polypropylene, offer several advantages over conventional materials like XLPE (cross-linked polyethylene) and EPR (ethylene propylene rubber), including higher thermal stability, recyclability, and reduced space charge accumulation. However, due to the inherent rigidity and limited flexibility of PP, its mechanical aging becomes a critical factor in assessing its long-term reliability as a cable insulation. In this study, mechanical aging characteristics, specifically declines in tensile strength and elongation, were selected as key indicators of insulation aging. Accelerated aging tests were conducted at 90 °C, 110 °C, and 130 °C for up to 5000 h. The experimental data were fitted to exponential models to derive aging coefficients, which formed the basis for the proposed aging model and the ACI (aging condition index). The ACI enables quantitative assessment of the current insulation condition and estimation of the remaining lifetime until a predefined threshold (e.g., ACI = 0.5) is reached. These findings contribute to the development of condition-based maintenance strategies and long-term asset management for power cables, offering practical insights for improving the reliability of future power grid systems. Full article
(This article belongs to the Special Issue Insulation Monitoring and Diagnosis of Electrical Equipment)
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 596
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

26 pages, 2217 KiB  
Review
A Scientific Review of Recycling Practices and Challenges for Autoclaved Aerated Concrete in Sustainable Construction
by Shuxi (Hiro) Wang, Guomin Zhang, Chamila Gunasekara, David Law, Yongtao Tan and Weihan Sun
Buildings 2025, 15(14), 2453; https://doi.org/10.3390/buildings15142453 - 12 Jul 2025
Viewed by 542
Abstract
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling [...] Read more.
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling and reuse of AAC waste present both challenges and opportunities within the context of sustainable building practices and circular economy frameworks. This study presents a scientometric review of AAC recycling research published between 2014 and 2024, using the Web of Science database and bibliometric tools such as CiteSpace. Key trends, techniques, and knowledge gaps in AAC recycling are identified, highlighting issues such as high energy consumption, limited practical implementation, and the absence of standardized recovery protocols. The study also outlines emerging research pathways, including detailed material characterization, development of recycling standards, innovative reuse techniques, hybrid material systems, and the integration of recycled AAC in new construction. These insights provide a foundation for advancing sustainable building material strategies and inform policy and practice in construction waste management. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Research on Decision of Echelon Utilization of Retired Power Batteries Under Government Regulation
by Xudong Deng, Xiaoyu Zhang, Yong Wang and Lihui Wang
World Electr. Veh. J. 2025, 16(7), 390; https://doi.org/10.3390/wevj16070390 - 10 Jul 2025
Viewed by 329
Abstract
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple [...] Read more.
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple stakeholders, this paper constructs a tripartite evolutionary game model involving the government, battery recycling enterprises, and consumers. By incorporating consumers’ battery usage levels into the strategy space, the model captures the behavioral evolution of all these parties under bounded rationality. Numerical simulations are conducted to analyze the impact of government incentives and penalties, consumer usage behaviors, and enterprise recycling modes on system stability. The results show that a “low-subsidy, high-penalty” mechanism can more effectively guide enterprises to prioritize echelon utilization and that moderate consumer usage significantly improves battery reuse efficiency. This study enriches the application of the evolutionary game theory in the field of battery recycling and provides quantitative evidence and practical insights for policy formulation. Full article
Show Figures

Figure 1

51 pages, 8938 KiB  
Review
Sustainability of Recycling Waste Ceramic Tiles in the Green Concrete Industry: A Comprehensive Review
by Ghasan Fahim Huseien, Zahraa Hussein Joudah, Mohammad Hajmohammadian Baghban, Nur Hafizah A. Khalid, Iman Faridmehr, Kaijun Dong, Yuping Li and Xiaobin Gu
Buildings 2025, 15(14), 2406; https://doi.org/10.3390/buildings15142406 - 9 Jul 2025
Viewed by 687
Abstract
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition [...] Read more.
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition debris. WCTs do not decompose easily, leading to long-term accumulation in landfills and occupying a significant amount of landfill space, which has substantial environmental impacts. Recycling WCTs offers several critical ecological benefits, including reducing landfill waste and pollution, conserving natural resources, lowering energy consumption, and supporting the circular economy, which in turn contributes to sustainable construction and waste management practices. In green concrete manufacturing, WCTs are widely utilized as replacements for cement, fine, and coarse aggregates, and the recycling level in the concrete industry is an increasingly explored practice aimed at promoting sustainability and reducing construction waste. From this view, this paper reports the innovative technologies, advancements in green concrete performance, and development trends in the reuse of WCTs in the production of systems. The effects of WCTs on fresh, engineering, microstructural, and durable properties, as well as their environmental performance, are reviewed. In conclusion, the use of technologies for recycling WCTs has demonstrated potential in promoting sustainability and supporting the transition toward a more environmentally friendly construction industry. This approach offers a practical contribution to sustainable development and represents significant progress in closing the recycling loop within the construction sector. Full article
Show Figures

Figure 1

12 pages, 1407 KiB  
Article
Glucosinolate and Sugar Profiles in Space-Grown Radish
by Karl H. Hasenstein, Syed G. A. Moinuddin, Anna Berim, Laurence B. Davin and Norman G. Lewis
Plants 2025, 14(13), 2063; https://doi.org/10.3390/plants14132063 - 6 Jul 2025
Viewed by 433
Abstract
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, [...] Read more.
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, and sustainability of plant material grown in space should be comparable to Earth-grown crops. In this study, radish plants were grown at 2500 ppm CO2 in two successive grow-outs on the International Space Station and at similar CO2 partial pressure at the Kennedy Space Center. An additional control experiment was performed at the University of Louisiana Lafayette laboratory, at ambient CO2. Subsequent analyses of glucosinolate and sugar species and content showed that regardless of growth condition, glucoraphasatin, glucoraphenin, glucoerucin, glucobrassicin, 4-hydroxyglucobrassicin, 4-methoxyglucobrassicin, and three aliphatic GSLs tentatively assigned to 3-methylpentyl GSL, 4-methylpentyl GSL, and n-hexyl GSL were present in all examined plants. The most common sugars were fructose, glucose, and sucrose, but some plants also contained galactose, maltose, rhamnose, and trehalose. The variability of individual secondary metabolite abundances was not related to gravity conditions but appeared more sensitive to CO2 concentration. No indication was found that radish cultivation in space resulted in stress(es) that increased glucosinolate secondary metabolism. Flavor and nutrient components in space-grown plants were comparable to cultivation on Earth. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

28 pages, 4519 KiB  
Article
HBIM-Based Multicriteria Method for Assessing Internal Insulation in Heritage Buildings
by Angelo Massafra, Luca Mattioli, Iuliia Kozlova, Cecilia Mazzoli, Giorgia Predari and Riccardo Gulli
Heritage 2025, 8(7), 259; https://doi.org/10.3390/heritage8070259 - 1 Jul 2025
Viewed by 397
Abstract
Energy retrofitting of historic buildings presents complex challenges, particularly when using internal insulation strategies. While such interventions can enhance thermal comfort and reduce energy demand, they can also pose risks of condensation and mold formation, thereby reducing usable space. This paper proposes an [...] Read more.
Energy retrofitting of historic buildings presents complex challenges, particularly when using internal insulation strategies. While such interventions can enhance thermal comfort and reduce energy demand, they can also pose risks of condensation and mold formation, thereby reducing usable space. This paper proposes an evaluation methodology for assessing the performance of internal insulating panels within a multicriteria framework to support decision-making during the design phase. The approach, scalable to various contexts, is grounded in a digital workflow that integrates heritage building information modeling (HBIM), visual programming (VP), and building energy modeling (BEM) to create a decision-support tool for renovation designers. The methodology, tested on a building located in Bologna (Italy), allows for assessing internal insulation systems with varying thermophysical properties and performance characteristics, and evaluating how they affect space- and wall-level key performance indicators, including condensation risk, energy efficiency improvement, and usable space reduction. The research was conducted under the Horizon Europe HERIT4AGES project, which aims to develop reversible, innovative insulation panels fabricated from local and recycled materials for historic building retrofitting. Full article
Show Figures

Figure 1

36 pages, 4108 KiB  
Article
Innovative AIoT Solutions for PET Waste Collection in the Circular Economy Towards a Sustainable Future
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(13), 7353; https://doi.org/10.3390/app15137353 - 30 Jun 2025
Viewed by 438
Abstract
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes [...] Read more.
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes of waste and takes up substantial space. Therefore, this paper seeks to address this issue and introduces a novel AIoT-based infrastructure that integrates the PET Bottle Identification Algorithm (PBIA), which can accurately recognize bottles regardless of color or condition and distinguish them from other waste. A detailed study of Azure Custom Vision services for PET bottle identification is conducted, evaluating its object recognition capabilities and overall performance within an intelligent waste management framework. A key contribution of this work is the development of the Algorithm for Citizens’ Trust Level by Recycling (ACTLR), which assigns trust levels to individuals based on their recycling behavior. This paper also details the development of a cost-effective prototype of the AIoT system, demonstrating its low-cost feasibility for real-world implementation, using the Asus Tinker Board as the primary hardware. The software application is designed to monitor the collection process across multiple recycling points, offering Microsoft Azure cloud-hosted data and insights. The experimental results demonstrate the feasibility of integrating this prototype on a large scale at minimal cost. Moreover, the algorithm integrates the allocation points for proper recycling and penalizes fraudulent activities. This innovation has the potential to streamline the recycling process, reduce logistical burdens, and significantly improve public participation by making it more convenient to store and return used plastic bottles. Full article
Show Figures

Figure 1

19 pages, 8107 KiB  
Article
Investigating the Integration of Biomimicry and Eco-Materials in Sustainable Interior Design Education
by Iman Ibrahim and Rania Nasreldin
Architecture 2025, 5(2), 39; https://doi.org/10.3390/architecture5020039 - 19 Jun 2025
Viewed by 526
Abstract
This paper discusses the adoption of biomimicry and eco-friendly materials as overarching concepts in interior design education. It aims to investigate how biomimicry and eco-friendly materials can be integrated into the existing and established interior design program curriculum. Changes in green and sustainable [...] Read more.
This paper discusses the adoption of biomimicry and eco-friendly materials as overarching concepts in interior design education. It aims to investigate how biomimicry and eco-friendly materials can be integrated into the existing and established interior design program curriculum. Changes in green and sustainable design concepts used in student capstone projects, which incorporated the reiteration of learning objectives aimed at enhancing student learning outcomes, were identified. This investigation addressed a gap in knowledge by analyzing the influence of nature-inspired designs on students’ problem-solving abilities and creativity. It employed a qualitative case study approach to analyze selected designs that employed biomimicry concepts in functional interior spaces, followed by a visualization stage, in which 3D-printed models were created from recycled and eco-friendly materials, closing the loop on sustainability applications. The study revealed that biomimicry and eco-friendly materials are valuable components of various design curricula, particularly in the fields of environmental studies, architecture, and interior design. This research underscores the urgent need to comprehensively integrate biomimicry and eco-friendly materials into design curricula, fostering a new generation of sustainability-conscious designers equipped to lead transformative change in the future of interior design and beyond. Full article
Show Figures

Figure 1

22 pages, 7385 KiB  
Article
Axial Performances of CFRP-PVC Confined RAC Columns: Experimental and Numerical Study
by Zidong Hu, Ruoyu Cao, Qiaoyun Wu, Cheng Zhao, Jie Li and Xuyong Chen
Buildings 2025, 15(12), 2089; https://doi.org/10.3390/buildings15122089 - 17 Jun 2025
Viewed by 306
Abstract
The use of recycled aggregate concrete (RAC) in construction mitigates environmental pollution by repurposing demolition waste, but its lower compressive strength compared to natural aggregate concrete (NAC) limits broader application. Although carbon fiber reinforced polymer (CFRP) composites and polyvinyl chloride (PVC) tubes have [...] Read more.
The use of recycled aggregate concrete (RAC) in construction mitigates environmental pollution by repurposing demolition waste, but its lower compressive strength compared to natural aggregate concrete (NAC) limits broader application. Although carbon fiber reinforced polymer (CFRP) composites and polyvinyl chloride (PVC) tubes have individually been shown to improve concrete strength and ductility, existing studies focus on fully wrapped CFRP jackets on NAC columns and do not systematically explore CFRP–PVC hybrid confinement using strips on RAC. To address this research gap, this study investigates the axial compressive behavior of CFRP–PVC–RAC columns by varying CFRP strip width (from 25 to 75 mm), strip spacing (from 31 to 77.5 mm), and the number of CFRP layers (one to nine) over a central PVC tube. Axial compression tests reveal that specimens with a central CFRP strip width equal to or greater than 75 mm achieve peak loads up to 1331 kN and that, after rupture of the central strip, the remaining strips continue to carry load, producing a more gradual stress–strain decline and enhanced ductility compared to fully wrapped controls (peak load 1219 kN). These results show that CFRP–PVC composites enhance the axial compressive strength and ductility of RAC columns. The confinement mechanism increases the ultimate axial strain and redistributes transverse stresses, delaying brittle failure and improving deformation capacity. When two or more CFRP layers are applied, strip width and spacing affect axial stress by no more than three percent. Increasing layers from one to four raises axial strength by approximately 23 percent, whereas adding layers beyond four yields diminishing returns, with less than a six percent increase. Finally, a multilayer lateral confined pressure formula is derived and validated against thirty-two specimens, exhibiting errors no greater than three percent and accurately predicting effective confinement. These findings offer practical guidance for optimizing strip dimensions and layering in CFRP–PVC reinforcement of RAC columns, achieving material savings without compromising performance. Full article
Show Figures

Figure 1

20 pages, 3536 KiB  
Article
Printability Optimization of LDPE-Based Composites for Tool Production in Crewed Space Missions: From Numerical Simulation to Additive Manufacturing
by Federica De Rosa and Susanna Laurenzi
Aerospace 2025, 12(6), 530; https://doi.org/10.3390/aerospace12060530 - 11 Jun 2025
Viewed by 401
Abstract
Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, [...] Read more.
Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDPE and a PET-Aluminum-LDPE (PAL) trilaminate. To minimize material waste and optimize the experimental process, we first conducted numerical simulations of additive manufacturing. Using Digimat-AM 2021.1 software, we analyzed residual stresses and warpage in an LDPE/PAL composite with a 10 wt% filler content, processed through the FFF technique. Three key printing parameters, including printing speed and infill pattern, were varied across different levels to assess their impact. Once the optimal combination of parameters for minimizing residual stresses and warpage was identified, we proceeded with the experimental phase, printing objects of increasing complexity to validate the correlation between numerical predictions and the 3D-printed models. The successful fabrication of all geometries under optimized conditions confirmed the numerical predictions, particularly the reduction in warpage and residual stress, validating the material’s viability for additive manufacturing. These findings support the potential application of the LDPE/PAL composite for in situ resource utilization strategies in long-term space missions. Full article
Show Figures

Figure 1

12 pages, 5625 KiB  
Proceeding Paper
Molding Characteristics and Impact Strength of Polypropylene with Different Numbers of Recycling Cycles
by Hui-Mei Zheng, Jui-Chan Li, Yen-Kai Wang, Kai-Fu Liew and Hsin-Shu Peng
Eng. Proc. 2025, 92(1), 88; https://doi.org/10.3390/engproc2025092088 - 29 May 2025
Viewed by 340
Abstract
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the [...] Read more.
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the number of recycling cycles. After the material is injected and crushed, it is recycled to produce the material required for re-injection, and a pressure sensor is installed at the nozzle position to observe the effects of material properties and impact characteristics in recycling. Injecting and pulverizing PP several times results in looser molecular spacing, increasing the fluidity of the material. After several recycling cycles, the fluidity of the material gradually decreased. Its crystallinity fluctuated depending on the crystallinity and crystallization rates. Recycled PP materials in various molding processes were influenced by melt temperature, screw speed, back pressure, and injection speed, which also affected nozzle pressure and strength. As the melt temperature increased, the effect on the nozzle pressure and impact strength became more evident. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

Back to TopTop