Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,584)

Search Parameters:
Keywords = space industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1494 KiB  
Article
Advanced and Robust Numerical Framework for Transient Electrohydrodynamic Discharges in Gas Insulation Systems
by Philipp Huber, Julian Hanusrichter, Paul Freden and Frank Jenau
Eng 2025, 6(8), 194; https://doi.org/10.3390/eng6080194 - 6 Aug 2025
Abstract
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable [...] Read more.
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable and consistent modeling of the space charge density under realistic conditions. The core component of the framework is a discontinuous Galerkin method that ensures the conservative properties of the underlying hyperbolic problem. The space charge density at the electrode surface is imposed as a dynamic boundary condition via Lagrange multipliers. To increase the numerical stability and convergence rate, a homotopy approach is also integrated. For the experimental validation, a measurement concept was realised that uses a subtraction method to specifically remove the displacement current component in the signal and thus enables an isolated recording of the transient ion current with superimposed voltage stresses. The experimental results on a small scale agree with the numerical predictions and prove the quality of the model. On this basis, the framework is transferred to hybrid HVDC overhead line systems with a bipolar design. In the event of a fault, significant transient space charge densities can be seen there, especially when superimposed with new types of voltage waveforms. The framework thus provides a reliable contribution to insulation coordination in complex HVDC systems and enables the realistic analysis of electrohydrodynamic coupling effects on an industrial scale. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis
by Fangyuan Zhao, Zhigang Feng and Shuonan Shan
Sensors 2025, 25(15), 4833; https://doi.org/10.3390/s25154833 - 6 Aug 2025
Abstract
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) [...] Read more.
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) is proposed, which addresses the major limitations of conventional spectrometers, including limited parallel detection capability, bulky structures, and insufficient spatial resolution. By integrating dispersion and focusing within a monolithic device, the system enables simultaneous acquisition across more than 2000 parallel channels within a 10 mm × 10 mm unit consisting of an f = 4 mm microlens and a 600 lines/mm blazed grating. Optimized microlens and aperture alignment allows for flexible control of the divergence angle of the incident light, and the system theoretically achieves nanometer-scale spectral resolution across a 380–780 nm wavelength range, with inter-channel measurement deviation below 1.25%. Experimental results demonstrate that this spectrometer system can theoretically support up to 2070 independently addressable subunits. At a wavelength of 638 nm, the coefficient of variation (CV) of spot spacing among array elements is as low as 1.11%, indicating high uniformity. The spectral repeatability precision is better than 1.0 nm, and after image enhancement, the standard deviation of the diffracted light shift is reduced to just 0.26 nm. The practical spectral resolution achieved is as fine as 3.0 nm. This platform supports wafer-level spectral screening of high-density Micro-LEDs, offering a practical hardware solution for high-precision industrial inline sorting, such as Micro-LED defect inspection. Full article
Show Figures

Figure 1

18 pages, 8252 KiB  
Article
Probing Augmented Intelligent Human–Robot Collaborative Assembly Methods Toward Industry 5.0
by Qingwei Nie, Yiping Shen, Ye Ma, Shuqi Zhang, Lujie Zong, Ze Zheng, Yunbo Zhangwa and Yu Chen
Electronics 2025, 14(15), 3125; https://doi.org/10.3390/electronics14153125 - 5 Aug 2025
Abstract
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge [...] Read more.
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge acquisition, and strong decision dependency in the assembly of complex aerospace products within confined spaces, an assembly task model and structured process information are constructed. Combined with a retrieval-augmented generation mechanism, the method realizes knowledge reasoning and optimization suggestion generation. An improved ORB-SLAM2 algorithm is applied to achieve virtual–real mapping and component tracking, further supporting the development of an enhanced visual interaction system. The proposed approach is validated through a typical aerospace electronic cabin assembly task, demonstrating significant improvements in assembly efficiency, quality, and human–robot interaction experience, thus providing effective support for intelligent HRC assembly. Full article
(This article belongs to the Special Issue Human–Robot Interaction and Communication Towards Industry 5.0)
Show Figures

Figure 1

23 pages, 23638 KiB  
Article
Enhanced YOLO and Scanning Portal System for Vehicle Component Detection
by Feng Ye, Mingzhe Yuan, Chen Luo, Shuo Li, Duotao Pan, Wenhong Wang, Feidao Cao and Diwen Chen
Sensors 2025, 25(15), 4809; https://doi.org/10.3390/s25154809 - 5 Aug 2025
Abstract
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of [...] Read more.
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of automotive parts passing through the scanning portal in real time. By integrating deep learning, the system enables real-time monitoring and identification, thereby preventing misdetections and missed detections of automotive parts, in this way promoting intelligent automotive part recognition and detection. Our system introduces the A2C2f-SA module, which achieves an efficient feature attention mechanism while maintaining a lightweight design. Additionally, Dynamic Space-to-Depth (Dynamic S2D) is employed to improve convolution and replace the stride convolution and pooling layers in the baseline network, helping to mitigate the loss of fine-grained information and enhancing the network’s feature extraction capability. To improve real-time performance, a GFL-MBConv lightweight detection head is proposed. Furthermore, adaptive frequency-aware feature fusion (Adpfreqfusion) is hybridized at the end of the neck network to effectively enhance high-frequency information lost during downsampling, thereby improving the model’s detection accuracy for target objects in complex backgrounds. On-site tests demonstrate that the system achieves a comprehensive accuracy of 97.3% and an average vehicle detection time of 7.59 s, exhibiting not only high precision but also high detection efficiency. These results can make the proposed system highly valuable for applications in the automotive industry. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Viewed by 188
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

20 pages, 2800 KiB  
Article
An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing
by Bihao Yang, Jie Chen, Xiongxin Xiao, Sidi Li and Teng Ren
Systems 2025, 13(8), 659; https://doi.org/10.3390/systems13080659 - 4 Aug 2025
Viewed by 154
Abstract
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach [...] Read more.
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach struggles to meet the processing constraints of workpieces with higher production difficulty, while the second approach requires the development of suitable scheduling schemes to balance mold changes and continuous processing. Therefore, under the second approach, developing an excellent scheduling scheme is a challenging problem. This study addresses the mixed-flow assembly shop scheduling problem, considering continuous processing and mold-changing constraints, by developing a multi-objective optimization model to minimize additional production time and customer waiting time. As this NP-hard problem poses significant challenges in solution space exploration, the conventional NSGA-II algorithm suffers from limited local search capability. To address this, we propose an enhanced NSGA-II algorithm (RLVNS-NSGA-II) integrating deep reinforcement learning. Our approach combines multiple neighborhood search operators with deep reinforcement learning, which dynamically utilizes population diversity and objective function data to guide and strengthen local search. Simulation experiments confirm that the proposed algorithm surpasses existing methods in local search performance. Compared to VNS-NSGA-II and SVNS-NSGA-II, the RLVNS-NSGA-II algorithm achieved hypervolume improvements ranging from 19.72% to 42.88% and 12.63% to 31.19%, respectively. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
The Spatiotemporal Evolution Characteristics of the Water Use Structure in Shandong Province, Northern China, Based on the Gini Coefficient
by Caihong Liu, Mingyuan Fan, Yongfeng Yang, Kairan Wang and Haijiao Liu
Water 2025, 17(15), 2315; https://doi.org/10.3390/w17152315 - 4 Aug 2025
Viewed by 164
Abstract
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is [...] Read more.
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is a major economic, agricultural, and populous province, as well as a region with one of the most prominent water supply–demand imbalances in the country. As a result, exploring how water use patterns change over time and space in this region has become crucial. Using analytical methods like the Lorenz curve, Gini coefficient, cluster analysis, and spatial statistics, we examine shifts in Shandong’s water use structure from 2001 to 2023. We find that while agriculture remained the largest water consumer over this period, industrial, household, and ecological water use steadily increased, signaling a move toward more balanced resource distribution. Across Shandong’s 16 regions (cities), the water use patterns varied considerably, particularly in terms of agriculture, industry, and ecological needs. Among these, agricultural, industrial, and domestic water use were distributed relatively evenly, whereas ecological water use showed greater regional disparities. These results may have the potential to guide policymakers in refining water allocation strategies, improving industrial planning, and boosting the water use efficiency in Shandong and the country ore broadly. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 - 3 Aug 2025
Viewed by 272
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 285
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

567 KiB  
Proceeding Paper
When Accounting for People Behavior Is Hard: Evaluation of Some Spatiotemporal Features for Electricity Load Demand Forecasting
by Guillaume Habault, Shinya Wada and Chihiro Ono
Eng. Proc. 2025, 101(1), 14; https://doi.org/10.3390/engproc2025101014 (registering DOI) - 1 Aug 2025
Abstract
Understanding human behavior is crucial for accurately predicting Electricity Load Demand (ELD), as daily habits and routines directly influence electricity consumption patterns across temporal and spatial domains. Two approaches for representing human mobility are explored: (i) incorporating location-based Human Dynamics (HD) data, and [...] Read more.
Understanding human behavior is crucial for accurately predicting Electricity Load Demand (ELD), as daily habits and routines directly influence electricity consumption patterns across temporal and spatial domains. Two approaches for representing human mobility are explored: (i) incorporating location-based Human Dynamics (HD) data, and (ii) leveraging electricity consumption data from different contract types—Low Voltage (LV) for residential areas and High Voltage (HV) for industrial and office spaces. This study investigates which of these representations allows deep learning models to better capture the influence of human mobility on LV consumption. Focusing on mesh-level predictions, our experiments demonstrate that combining LV and HV data can reduce the spatiotemporal prediction error (STPE) of LV consumption by an average of 13.37%. Similarly, integrating HD data with LV can achieve a 14.3% average reduction in STPE for sufficiently large areas. While combining all three—LV, HV, and HD—can improve consistency across different areas, it does not universally lower the overall prediction error. Importantly, these experiments suggest that HV data provides more reliable results across various configurations, particularly in urban regions with strong business activity. In contrast, HD data is more effective for widespread regions characterized by significant human movement or densely populated areas. This study highlights the complementary roles of HV and HD data in improving spatiotemporal LV consumption predictions and offers valuable insights into tailoring feature selection based on area characteristics and forecasting objectives. Full article
Show Figures

Figure 1

28 pages, 2448 KiB  
Article
ATENEA4SME: Industrial SME Self-Evaluation of Energy Efficiency
by Antonio Ferraro, Giacomo Bruni, Marcello Salvio, Milena Marroccoli, Antonio Telesca, Chiara Martini, Federico Alberto Tocchetti and Antonio D’Angola
Energies 2025, 18(15), 4094; https://doi.org/10.3390/en18154094 - 1 Aug 2025
Viewed by 136
Abstract
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, [...] Read more.
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, tertiary sector, transport). The Advanced Tool for ENErgy Audit for SMEs, ATENEA4SME, is intended to help SMEs promote energy-efficiency projects, supports energy audits and self-evaluation of energy consumption. The tool uses an original mathematical model that takes into account the results of questionnaires and a multi-criteria analysis to generate recommendations for energy efficiency investments. This article will give a thorough explanation of the tool, emphasizing and outlining the sections as well as the procedures to get the ultimate summary of the energy usage of the enterprises under investigation and the potential for energy saving. From a technological and financial perspective, the tool helps to remove obstacles to the development of energy-efficiency measures. In this article, the IT and methodological structure of the tool will therefore be extensively described, and its operation for the context of SMEs will be illustrated, with application cases. Ample space will be allocated to the dissemination campaign and the replicability of the tool for all economic sectors of the industrial and tertiary sectors. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

28 pages, 352 KiB  
Article
Algorithm Power and Legal Boundaries: Rights Conflicts and Governance Responses in the Era of Artificial Intelligence
by Jinghui He and Zhenyang Zhang
Laws 2025, 14(4), 54; https://doi.org/10.3390/laws14040054 - 31 Jul 2025
Viewed by 755
Abstract
This study explores the challenges and theoretical transformations that the widespread application of AI technology in social governance brings to the protection of citizens’ fundamental rights. By examining typical cases in judicial assistance, technology-enabled law enforcement, and welfare supervision, it explains how AI [...] Read more.
This study explores the challenges and theoretical transformations that the widespread application of AI technology in social governance brings to the protection of citizens’ fundamental rights. By examining typical cases in judicial assistance, technology-enabled law enforcement, and welfare supervision, it explains how AI characteristics such as algorithmic opacity, data bias, and automated decision-making affect fundamental rights including due process, equal protection, and privacy. The article traces the historical evolution of privacy theory from physical space protection to informational self-determination and further to modern data rights, pointing out the inadequacy of traditional rights-protection paradigms in addressing the characteristics of AI technology. Through analyzing AI-governance models in the European Union, the United States, Northeast Asia, and international organizations, it demonstrates diverse governance approaches ranging from systematic risk regulation to decentralized industry regulation. With a special focus on China, the article analyzes the special challenges faced in AI governance and proposes specific recommendations for improving AI-governance paths. The article argues that only within the track of the rule of law, through continuous theoretical innovation, institutional construction, and international cooperation, can AI technology development be ensured to serve human dignity, freedom, and fair justice. Full article
11 pages, 226 KiB  
Entry
Gender and Digital Technologies
by Eduarda Ferreira and Maria João Silva
Encyclopedia 2025, 5(3), 111; https://doi.org/10.3390/encyclopedia5030111 - 31 Jul 2025
Viewed by 322
Definition
This entry explores the multifaceted intersections of gender and digital technologies, offering a comprehensive analysis of how structural inequalities are reproduced, contested, and transformed in digital contexts. It is structured into six interrelated sections that collectively address key dimensions of gendered digital contexts. [...] Read more.
This entry explores the multifaceted intersections of gender and digital technologies, offering a comprehensive analysis of how structural inequalities are reproduced, contested, and transformed in digital contexts. It is structured into six interrelated sections that collectively address key dimensions of gendered digital contexts. It begins by addressing the gender digital divide, particularly in the Global South, emphasizing disparities in access, literacy, and sociocultural constraints. The second section examines gendered labor in the tech industry, highlighting persistent inequalities in Science, Technology, Engineering, and Mathematics (STEM) education, employment, and platform-based work. The third part focuses on gender representation in digital spaces, revealing how algorithmic and platform design perpetuate biases. The fourth section discusses gender bias in AI and disinformation, underscoring the systemic nature of digital inequalities. This is followed by an analysis of online gender-based violence, particularly its impact on marginalized communities and participation in digital life. The final section considers the potentials and limitations of digital activism in advancing gender justice. These sections collectively argue for an intersectional, inclusive, and justice-oriented approach to technology policy and design, calling for coordinated global efforts to create equitable digital futures. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
26 pages, 4899 KiB  
Article
Material Perception in Virtual Environments: Impacts on Thermal Perception, Emotions, and Functionality in Industrial Renovation
by Long He, Minjia Wu, Yue Ma, Di Cui, Yongjiang Wu and Yang Wei
Buildings 2025, 15(15), 2698; https://doi.org/10.3390/buildings15152698 - 31 Jul 2025
Viewed by 236
Abstract
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four [...] Read more.
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four common material scenes—wood, concrete, red brick, and white-painted surfaces—within industrial renovation settings. A total of 159 participants experienced four Lumion-rendered VR environments and rated them on thermal perception (visual warmth, thermal sensation, comfort), emotional response (arousal, pleasure, restoration), and functional preference. Data were analyzed using repeated measures ANOVA and Pearson correlation. Wood and red brick scenes were associated with warm visuals; wood scenes received the highest ratings for thermal comfort and pleasure, white-painted scenes for restoration and arousal, and concrete scenes, the lowest scores overall. Functional preferences varied by space: white-painted and concrete scenes were most preferred in study/work settings, wood in social spaces, wood and red brick in rest areas, and concrete in exhibition spaces. By isolating material variables in VR, this study offers a novel empirical approach and practical guidance for material selection in adaptive reuse to enhance user comfort, emotional well-being, and spatial functionality in industrial heritage renovations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop