Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = soybean-maize-maize-maize

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11081 KB  
Article
Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China
by Yiming Zhang, Buchun Liu, Rui Han, Huiqing Bai, Enke Liu, Di Chen, Oumeng Qiao, Honglei Che, Xinglin Liu, Long Chen and Ningya Wu
Agronomy 2025, 15(9), 2148; https://doi.org/10.3390/agronomy15092148 - 8 Sep 2025
Abstract
Given the increasing crop yield losses, water scarcity, and fertilizer application in Northeast China, a systematic assessment is increasingly necessary to investigate the potential of crop redistribution to enhance grain production while alleviating environmental pressures. Here we quantify the potential of crop redistribution [...] Read more.
Given the increasing crop yield losses, water scarcity, and fertilizer application in Northeast China, a systematic assessment is increasingly necessary to investigate the potential of crop redistribution to enhance grain production while alleviating environmental pressures. Here we quantify the potential of crop redistribution in Northeast China through a multi-objective optimization approach. First, we construct a dataset that contains four objectives including crop yield, yield losses, water deficit, and nitrogen fertilizer application based on their annual data in 273 counties over two decades (2001–2020). Second, we optimize the county-level distribution of rice, maize and soybean using the developed dataset and evaluate the benefits on each objective. Finally, we design a crop redistribution scheme and analyze its impact on the cropping structure in Northeast China based on the optimal solution. Results show significant potential of crop redistribution, with crop production increases by 1.70% (2.41 × 106 tons), production losses decrease by 2.69% (1.84 × 105 tons), water deficit decreases by 6.78% (3.88 × 108 m3) and N fertilizer application decreases by 10.87% (5.41 × 107 kg) when all the objectives are optimized simultaneously. The crop redistribution scheme is summarized as follows: compared with the baseline crop structure, rice area increases by 69.58%, maize reduces by 12.8%, and soybean reduces by 54.79% in Northeast China. Specifically, rice area increases in northwestern Heilongjiang, eastern Jilin, most counties in Liaoning, and reduces elsewhere. Maize area reduces in most of the counties, except for several counties in southwestern Heilongjiang, northern Jilin, and northern parts of the Four Eastern Leagues. Soybean area reduces in northern part of Heilongjiang and Four Eastern Leagues and increases in western Jilin and most counties in Liaoning. Although crop redistribution scheme was generated, the model remains limited in terms of crop types, spatial resolution, and the range of factors influencing crop distribution. Future work will address these limitations to enhance the reliability and applicability of the crop redistribution model. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 2483 KB  
Article
The Effects of Different Crop Rotations on the Quality of Saline Soils in the Yinbei Plain
by Jinmin Wu, Bangyan Zhang, Meiling Lin, Rui Bu, Xiaolong Bai, Xiaoli Zhang, Panting Liu and Bin Wang
Agronomy 2025, 15(9), 2131; https://doi.org/10.3390/agronomy15092131 - 5 Sep 2025
Viewed by 194
Abstract
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and [...] Read more.
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and concluded that the optimal rice planting period is 5 years. However, we do not know which crop rotation is most effective in improving this negative soil feedback and enhancing soil quality. In this study, we carried out an experiment on saline land planted with rice over 5 years and set up four different rotations, including rice–Hunan Jizi, rice–maize, rice–sweet sorghum, and rice–soybean, with perennial rice planting as CK, to analyze soil texture under different treatments. Physicochemical properties and enzyme activities were also analyzed under different treatments, and the soil quality index (SQI) was constructed using principal component analysis and correlation analysis for comprehensive evaluation of each treatment. The results showed that (1) the saline-alkali soil texture of perennial rice planting in the Yinbei Plain was silty soil, and different rice drought rotation methods changed the soil texture from silty to silty loam, which improved the fractal dimension of the soil. The fractal dimension of saline-alkali soil was significantly positively correlated with the clay volume content, negatively correlated with silt volume content, and negatively correlated with sand volume content. (2) There was no risk of structural degradation (SI > 9%) in saline-alkali soil planted in perennial rice, and it appeared that RS (rice–soybean) could improve the stability coefficient of soil structure in the 0~40 cm soil layer. (3) Different rice and drought rotation methods could significantly affect the physical and chemical properties and enzyme activities of soil, and the quality of soil in the 0~40 cm soil layer was evaluated; RS (rice–soybean) and RC (rice–maize) were suitable for rice drought rotation in the Yinbei area. The structural equation model showed that salinity and soil nutrients were the key factors restricting the improvement of saline-alkali soil quality in Yinbei. These results will deepen the current understanding of bio-modified saline soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

25 pages, 687 KB  
Article
Chemical Profile and Mycotoxin Analyses of Corn (Argentina, Brazil, and Ukraine), Soybean Meal (USA and Argentina), and Sunflower Meal (Ukraine) Used in Poultry Feed in Morocco
by Najlae El Bouanani, Bouchaib Bencharki and Hafsa Houmairi
Analytica 2025, 6(3), 30; https://doi.org/10.3390/analytica6030030 - 30 Aug 2025
Viewed by 427
Abstract
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under [...] Read more.
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under standardized laboratory conditions. Chemical composition was evaluated using classical and NIR-based methods, while mycotoxin levels were assessed through ELISA and confirmed by HPLC. Corn samples from Argentina, Brazil, and Ukraine were assessed for their proximate composition and mycotoxin burden. While most nutritional parameters showed no significant differences between origins (p > 0.05), water activity (Aw) and digestible threonine content were significantly affected by origin (p < 0.01). Brazilian corn had the highest Aw (0.716), followed by Argentina (0.680), and Ukraine (0.662), a factor linked to its higher susceptibility to mold and mycotoxin development. Soybean meal from the U.S. and Argentina showed a general positive trend in favor of U.S. imports, with higher average crude protein (the CP content of American soybean meal was 46.912%, compared to 46.610% in Argentine soybean meal), fat, digestible lysine, and metabolizable energy. However, statistical differences were limited to water activity and moisture content (p < 0.05). American soybean meals are generally recognized for their consistent processing quality and superior amino acid digestibility. Sunflower meal, sourced exclusively from Ukraine, showed a steady improvement in crude protein (from 35.97% in 2019 to 36.99% in 2021) and metabolizable energy, alongside reduced crude fiber content, enhancing its nutritional value in poultry diets. The consistent use of Ukrainian SFM in Morocco reflects both supply stability and quality. Regarding mycotoxins, origin had a significant effect on several compounds. Argentine and Brazilian corn showed higher mean levels of fumonisins (1165.26 and 1019.52 ppb), ochratoxin A (2.26 and 3.02 ppb), and zearalenone (36.99 and 21.92 ppb) compared to Ukrainian corn, which consistently had the lowest levels across all major mycotoxins (e.g., fumonisins = 200 ppb; zearalenone = 4.90 ppb). Aflatoxin B1 levels remained constant at 0.2 ppb across all origins. These findings confirm the influence of geographic origin—particularly water activity—on mycotoxin risk in imported maize. Full article
Show Figures

Figure 1

17 pages, 2930 KB  
Article
Legacy Effects of Different Preceding Crops on Grain Yield, Protein Fractions and Soil Nutrients in Subsequent Winter Wheat
by Rui Wang, Jiayun Wu, Yang Wang, Zhimei Sun, Wenqi Ma, Cheng Xue and Huasen Xu
Plants 2025, 14(16), 2598; https://doi.org/10.3390/plants14162598 - 21 Aug 2025
Viewed by 474
Abstract
Given the pressing global food security crisis and climate change-induced constraints on agricultural productivity, crop rotation proves critical for boosting yield and grain quality of winter wheat (Triticum aestivum) alongside ameliorating soil quality. However, the legacy effect of different preceding crops [...] Read more.
Given the pressing global food security crisis and climate change-induced constraints on agricultural productivity, crop rotation proves critical for boosting yield and grain quality of winter wheat (Triticum aestivum) alongside ameliorating soil quality. However, the legacy effect of different preceding crops on synergistic increments of wheat productivity and soil fertility remains to be fully clarified. Five different preceding crop–winter wheat rotations were conducted in a field experiment established in Huanghua, China. Maize (Zea mays), sorghum (Sorghum bicolor), and millet (Setaria italica) were designated as preceding gramineous crops, and soybean (Glycine max) and mung bean (Vigna radiata) were assigned as preceding legume crops. Grain yield, protein fraction, and soil nutrients were measured to elucidate the legacy effect of the preceding crops on the subsequent winter wheat. Leguminous predecessors significantly evaluated the grain yield of winter wheat compared to gramineous predecessors, particularly that the mung–winter wheat rotation (Mun-W) was 11.56% higher than that of the maize–winter wheat rotation (Mai-W). This rising yield was attributed to the increase of 4.05% in spike number per hectare and 14.31% in kernel number per spike. The Mun-W facilitated the highest gluten protein content (8.22%) in winter wheat among five treatments, which was 6.06% higher than that in the sorghum–winter wheat system. Soil organic matter (SOM) showed an advantage in legume–winter wheat rotations (Leg-Ws) compared to gramineous crop–winter wheat systems (Gra-Ws). Notably among these, the Mun-W significantly enhanced SOM content by 0.99% relative to the Mai-W. The soybean–winter wheat system decreased soil pH by 0.36 compared to the Mai-W system. Coupling coordination degree (CCD) and co-benefit index (CBI) in the Leg-Ws exhibited significant superiority of 62.41% and 42.22% over the Gra-Ws, respectively, and the Mun-W attained maximum CCD by 0.84 and CBI by 0.77. From a multi-objective assessment perspective of the legacy effect of the preceding crops, legume-based rotations facilitate synergistic improvements of yield, protein quality, and soil nutrients in winter wheat. Full article
Show Figures

Figure 1

15 pages, 2026 KB  
Article
Planting Diversification Enhances Phosphorus Availability and Reshapes Fungal Community Structure in the Maize Rhizosphere
by Yannan Li, Yuming Zhang, Xiaoxin Li, Hongjun Li, Wenxu Dong, Shuping Qin, Xiuping Liu, Lijuan Zhang, Chunsheng Hu, Hongbo He, Pushan Zheng and Jingyun Zhao
Agronomy 2025, 15(8), 1993; https://doi.org/10.3390/agronomy15081993 - 19 Aug 2025
Viewed by 382
Abstract
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three [...] Read more.
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three green manure–maize intercropping patterns on maize yield, rhizosphere nutrient availability, and soil fungal community were evaluated. Four treatments (three replicate plots for each) were involved, including a monoculture treatment (MC) as a control and three intercropping patterns as follows: maize–ryegrass (Lolium perenne L.) (IntL), maize–forage soybean (Fen Dou mulv 2, a hybrid soybean cultivar) (IntF), and maize–ryegrass–forage soybean (IntLF) intercropping. The results showed that all three intercropping patterns significantly increased maize yield and rhizosphere available phosphorus (AP) compared with MC. Intercropping shifted the dominant assembly process of the maize rhizosphere fungal community from stochastic to deterministic processes, shaping a community rich in arbuscular mycorrhizal fungi (AMF) and limited in plant pathogens, primarily Exserohilum turcicum. AP showed significant correlations with fungal community and AMF, while maize yield was negatively correlated with plant pathogens. In addition, the dual-species green manure intercropping pattern (IntLF) had the strongest positive effects on maize yield, AP content, and fungal community compared with single-species patterns (IntL and IntF). These results illustrate the advantages of planting diversification in boosting crop production by improving nutrient availability and soil health in the rhizosphere and suggest that the maize–ryegrass–forage soybean intercropping system is a potential strategy for improving soil fertility and health. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

24 pages, 7566 KB  
Article
Deconstruction of the Crop Rotation Pattern for Saline-Alkaline Land Based on Geo-Information Tupu and Assessment of Its Regulatory Effects on Soil Fertility
by Hui Zhang, Wenhui Cheng and Guoming Du
Sustainability 2025, 17(16), 7430; https://doi.org/10.3390/su17167430 - 17 Aug 2025
Viewed by 579
Abstract
As an important reserve resource for cultivated land, the improvement and fertility enhancement of saline-alkali land are key to alleviating the pressure on cultivated land and ensuring the sustainable utilization of land resources. Studying the regulatory effect of rotation patterns on the soil [...] Read more.
As an important reserve resource for cultivated land, the improvement and fertility enhancement of saline-alkali land are key to alleviating the pressure on cultivated land and ensuring the sustainable utilization of land resources. Studying the regulatory effect of rotation patterns on the soil fertility of saline-alkali land is one of the core research contents in exploring low-cost and environmentally friendly comprehensive management strategies for saline-alkali land. This study focuses on Zhaoyuan County, a representative saline and alkaline area within the Songnen Plain. Utilizing remote sensing technology, crop information was systematically collected across 13 time periods spanning from 2008 to 2020. These data were employed to construct a comprehensive crop information change atlas. This atlas categorized crop rotation patterns based on crop combinations, rotation frequencies, and the number of consecutive years of planting. Using soil sampling data from 2008 and 2020, a soil fertility evaluation was conducted, and the changes in soil chemical properties and fertility under various crop rotation patterns were analyzed. The results of the study show that, during the study period, crop rotation patterns in Zhaoyuan County were dominated by paddy-upland rotations and upland crop rotations. Crop rotation patterns, categorized by crop combination, were dominated by soybean–maize–other crops rotation (S-M-O) and rice–soybean–maize–other crops rotation (R-S-M-O). The frequency of crop rotation is dominated by low- and medium-frequency crop rotation. Crop rotation significantly increased soil organic matter, total nitrogen content, and overall soil fertility in the study area, while simultaneously lowering soil pH levels. Crop rotation patterns with different crop combinations had significant effects on soil chemical properties, with smaller differences in the effects of different rotation frequencies and years of continuous cropping. Crop rotation patterns incorporating soybean demonstrate a significant positive regulatory impact on the soil fertility of saline-alkali land. Low-frequency crop rotation (with ≤5 crop changes) has a relatively better effect on improving soil fertility. This research provides important empirical support and decision-making references for establishing sustainable farming systems in ecologically fragile saline-alkali areas, ensuring regional food security, and promoting the long-term sustainable utilization of land resources. Full article
Show Figures

Figure 1

26 pages, 2445 KB  
Article
The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations
by Zhimeng Zhao, Lili Xu, Haoyan Ma, Xuesong Zhang and Liping Tang
Agriculture 2025, 15(16), 1761; https://doi.org/10.3390/agriculture15161761 - 16 Aug 2025
Viewed by 467
Abstract
A resilient food trade system is crucial for global food security. The spatiotemporal changes in the trade of four main cereals (soybean, wheat, rice, and maize) and their responses to COVID-19 may serve as an efficient indicator of system resilience but remain underexplored. [...] Read more.
A resilient food trade system is crucial for global food security. The spatiotemporal changes in the trade of four main cereals (soybean, wheat, rice, and maize) and their responses to COVID-19 may serve as an efficient indicator of system resilience but remain underexplored. Using the United Nations Comtrade dataset and the COVID-19 dataset, this paper analyzed the evolution of the Global Trade Network for Four Cereals (GTN4) over 21 years and assessed their trade responses to COVID-19. The findings are as follows: (1) The GTN4 underwent a significant shift after 2019. Between 2000 and 2019, the network steadily expanded in size and became more interconnected, both overall and within groups of developing and developed countries. However, following 2019, its overall accessibility declined, with the extent of deterioration varying between these two groups. (2) COVID-19 influenced the cereal trade in 44–69% of countries, with developed nations exhibiting greater resilience. (3) Wheat exports from Germany, rice from Italy, and maize from the United States demonstrated the highest resilience, while Spain’s soybean trade played a key role in global imports. This research provides new insights into global food security and pandemic resilience, informing sustainable development at the national, group, and global levels. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

11 pages, 2555 KB  
Article
Differential Gene Expression in Fusarium Head Blight Pathogens Facilitates Root Infection of Wheat, Maize, and Soybean
by Rukun Li, Huahao Sun, Huilin He, Xinyao Cheng, Mei Deng, Qiantao Jiang, Qiang Xu, Yuming Wei and Yazhou Zhang
Plants 2025, 14(16), 2458; https://doi.org/10.3390/plants14162458 - 8 Aug 2025
Viewed by 389
Abstract
Global food security relies on wheat, maize, and soybean, yet their cultivation faces escalating threats from Fusarium head blight (FHB) pathogens. We demonstrate that agricultural intensification enables cross-kingdom root infections by Fusarium graminearum and F. asiaticum across these crops. Screening of 180 Fusarium [...] Read more.
Global food security relies on wheat, maize, and soybean, yet their cultivation faces escalating threats from Fusarium head blight (FHB) pathogens. We demonstrate that agricultural intensification enables cross-kingdom root infections by Fusarium graminearum and F. asiaticum across these crops. Screening of 180 Fusarium strains revealed tripartite host infectivity, with transcriptomics uncovering host-adapted virulence strategies. Transcriptome analysis identified distinct gene expression patterns during the infection of each crop, with F. graminearum employing host-specific genes, such as FgPPDT1 (a pyridoxal phosphate-dependent transferase), for maize root infection. The FgPPDT1 knockout mutant (Δfgppdt1) exhibited severely impaired root colonization. Our findings establish differential gene expression as a regulatory axis for cross-host adaptation, directly linking FHB transmission risks to wheat–maize intercropping and wheat-soybean rotations. Full article
(This article belongs to the Special Issue Wheat Breeding for Disease Resistance)
Show Figures

Figure 1

20 pages, 2425 KB  
Article
Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat
by Felicia Chețan, Adrian Ioan Pop, Cornel Chețan, Ioan Gaga, Alina Șimon, Camelia Urdă, Alin Popa, Roxana Elena Călugăr, Teodor Rusu and Paula Ioana Moraru
Agronomy 2025, 15(8), 1904; https://doi.org/10.3390/agronomy15081904 - 7 Aug 2025
Viewed by 378
Abstract
This study, which began in the 2013/2014 agricultural year, aimed to assess the suitability of two soil tillage systems for wheat cultivation: conventional soil tillage (CS), which involved moldboard plowing to a depth of 28 cm followed by a single pass with a [...] Read more.
This study, which began in the 2013/2014 agricultural year, aimed to assess the suitability of two soil tillage systems for wheat cultivation: conventional soil tillage (CS), which involved moldboard plowing to a depth of 28 cm followed by a single pass with a rotary harrow to prepare the seedbed, and no-tillage (NT). It also sought to analyze the impacts of these systems on weed infestation levels and, consequently, on yield. A moderate level of fertilization was applied. The experimental field was established with a three-year crop rotation system: soybean–winter wheat–maize. The total number of weed species was 30 in CS, the representative species being Xanthium strumarium, and in NT there were 29 species, with Xanthium strumarium, Cirsium arvense, Bromus tectorum, and Agropyron repens predominating. There was an increase in the number of perennials (dicots and monocots). The total dry matter of weeds was 35.4 t ha−1 in CS and 38.8 t ha−1 in NT. After 11 agricultural years, it was found that there were no significant differences between the two soil tillage systems in terms of wheat yield (6.55 t ha−1 in CS and 6.46 t ha−1 in NT). The uneven rainfall negatively affected wheat growth and favored the spread of weeds, especially dicotyledonous ones. Full article
Show Figures

Figure 1

16 pages, 1541 KB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Viewed by 389
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

17 pages, 1416 KB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Viewed by 476
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

13 pages, 1189 KB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 427
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 3308 KB  
Article
Exogenous Melatonin Application Improves Shade Tolerance and Growth Performance of Soybean Under Maize–Soybean Intercropping Systems
by Dan Jia, Ziqing Meng, Shiqiang Hu, Jamal Nasar, Zeqiang Shao, Xiuzhi Zhang, Bakht Amin, Muhammad Arif and Harun Gitari
Plants 2025, 14(15), 2359; https://doi.org/10.3390/plants14152359 - 1 Aug 2025
Viewed by 435
Abstract
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study [...] Read more.
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping. Four melatonin concentrations (0, 50, 100, and 150 µM) were applied to soybean grown under mono- and intercropping systems. The results showed that intercropping significantly reduced growth, photosynthetic activity, and yield-related traits. However, the MT application, particularly at 100 µM (MT100), effectively mitigated these declines. MT100 improved plant height (by up to 32%), leaf area (8%), internode length (up to 41%), grain yield (32%), and biomass dry matter (30%) compared to untreated intercropped plants. It also enhanced SPAD chlorophyll values, photosynthetic rate, stomatal conductance, chlorophyll fluorescence parameters such as Photosystem II efficiency (ɸPSII), maximum PSII quantum yield (Fv/Fm), photochemical quenching (qp), electron transport rate (ETR), Rubisco activity, and soluble protein content. These findings suggest that foliar application of melatonin, especially at 100 µM, can improve shade resilience in soybean by enhancing physiological and biochemical performance, offering a practical strategy for optimizing productivity in intercropping systems. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

18 pages, 2510 KB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 408
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

18 pages, 4915 KB  
Article
The Quality of Seedbed and Seeding Under Four Tillage Modes
by Lijun Wang, Yunpeng Gao, Zhao Ma and Bo Wang
Agriculture 2025, 15(15), 1626; https://doi.org/10.3390/agriculture15151626 - 26 Jul 2025
Viewed by 404
Abstract
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize [...] Read more.
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize (Zea mays L.)–soybean (Glycine max (L.) Merr) rotation under ridge-tillage in the semi-arid regions of Northeast China was chosen as the study conditions. Four modes were investigated: deep tillage and seeding (DT and S), stubble field and no-tillage seeding (SF and NTS), three-axis rotary tillage and seeding (TART and S), and shallow rotary tillage and seeding (SRT and S). Results show that the DT and S mode produced the best quality of seedbed and seeding. Among the conservation tillage modes, the SRT and S mode produced the shortest average length of roots and straw, the best uniformity of their distribution in the seedbed, and the highest soybean yield. Both the SRT and S and SF and NTS modes yielded a higher net profit as their cost-effectiveness. When considering only the quality of seedbed and seeding under conservation tillage as a prerequisite, it can be concluded that the SRT and S mode is both advantageous and sustainable. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Graphical abstract

Back to TopTop