Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Soil and Climate
2.2. Organization of the Experiment
2.3. Biological Material
2.4. Weed Infestation
2.5. Statistical Processing of Experimental Data
3. Results and Discussion
3.1. Analysis of Weed, Grouped by Dominant Classes
Winter Wheat Weed Community Composition
3.2. Influence of Experimental Factors in the Evolution of Weeding of Winter Wheat Crop
3.2.1. Influence of Soil Tillage System in the Evolution of Weeding of Winter Wheat Crop
3.2.2. Influence of the Mineral Fertilization Level in the Evolution of Weeding of Winter Wheat Crop
3.2.3. Influence of the Agricultural Years in the Evolution of Weeding of Winter Wheat Crop
3.2.4. Factor Interaction Influence on Weed Infestation
3.2.5. Determination of Weeds by the Quantitative Gravimetric Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhattacharjee, S.; Panja, A.; Panda, M.; Dutta, S.; Dutta, S.; Kumar, R.; Kumar, D.; Yadav, M.R.; Minkina, T.; Kalinitchenko, V.P.; et al. How Did Research on Conservation Agriculture Evolve over the Years? A Bibliometric Analysis. Sustainability 2023, 15, 2040. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing Soil Properties and Nutrient Availability under Conservation Agriculture Practices in a Reclaimed Sodic Soil in Cereal-Based Systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–545. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 543–555. [Google Scholar] [CrossRef]
- Jug, D.; Jug, I.; Brozović, B.; Šeremešić, S.; Dolijanović, Ž.; Zsembeli, J.; Ujj, A.; Marjanovic, J.; Smutny, V.; Dušková, S.; et al. Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe. Agriculture 2025, 15, 260. [Google Scholar] [CrossRef]
- Khanal, U.; Stott, K.J.; Armstrong, R.; Nuttall, J.G.; Henry, F.; Christy, B.P.; Mitchell, M.; Riffkin, P.A.; Wallace, A.J.; McCaskill, M.; et al. Intercropping—Evaluating the Advantages to Broadacre Systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the Plow over 10,000 Years and the Rationale for No-till Farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, S.; Liu, C.; Gao, W.; Liang, X.-Z. A Bibliometric Analysis of Research for Climate Impact on Agriculture. Front. Sustain. Food Syst. 2023, 7, 1191305. [Google Scholar] [CrossRef]
- Chețan, F.; Hirișcău, D.; Rusu, T.; Bărdaș, M.; Chețan, C.; Șimon, A.; Moraru, P.I. Yield, Protein Content and Water-Related Physiologies of Spring Wheat Affected by Fertilizer System and Weather Conditions. Agronomy 2024, 14, 921. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Yakupoğlu, T.; Dindaroğlu, T.; Terol, E.; Mora-Navarro, G.; Arabameri, A.; Radziemska, M.; Novara, A.; Kavian, A.; et al. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 2020, 12, 1539. [Google Scholar] [CrossRef]
- Mihu, G.-D.; Aostăcioaei, T.G.; Ghelbere, C.; Calistru, A.-E.; Țopa, D.C.; Jităreanu, G. Exploring Soil Hydro-Physical Improvements Under No-Tillage: A Sustainable Approach for Soil Health. Agriculture 2025, 15, 981. [Google Scholar] [CrossRef]
- Negrete-Rodríguez, M.d.l.L.X.; Conde-Barajas, E.; Silva-Martínez, G.A.; Acosta-García, G.; Ramírez-Medina, H.; Tristán-Flores, F.E.; Bedolla-Rivera, H.I. Tillage and Its Effect on Agricultural Soils: A Quality Index Approach. Agronomy 2024, 14, 2793. [Google Scholar] [CrossRef]
- De Sousa, T.; Ribeiro, M.; Sabença, C.; Igrejas, G. The 10,000-Year Success Story of Wheat! Foods 2021, 10, 2124. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Brandão, M.; Holka, M.; Choryński, A. A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems. Resources 2024, 13, 93. [Google Scholar] [CrossRef]
- Calvo-Carrillo, M.d.l.C.; López-Méndez, O.X.; Carranco-Jáuregui, M.E.; Marines, J.; Calvo-Carrillo, M.d.l.C.; López-Méndez, O.X.; Carranco-Jáuregui, M.E.; Marines, J. Evaluación fisicoquímica y sensorial de un pan tipo baguette utilizando harinas de trigo (Triticum spp.) y chícharo (Pisum sativum L.). Biotecnia 2020, 22, 116–124. [Google Scholar] [CrossRef]
- Rai, S.; Kaur, A.; Singh, B.; Minhas, K.S. Quality Characteristics of Bread Produced from Wheat, Rice and Maize Flours. J. Food Sci. Technol. 2012, 49, 786–789. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. The Productivity of Crop Rotation Depending on the Included Plants and Soil Tillage. Agriculture 2023, 13, 1751. [Google Scholar] [CrossRef]
- Guo, X.W.; Fernando, W.G.D.; Entz, M. Effects of Crop Rotation and Tillage on Blackleg Disease of Canola. Can. J. Plant Pathol. 2005, 27, 53–57. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Herz, P.; Böck, A.; Wagentristl, H.; Moitzi, G.; Klimek-Kopyra, A.; Bernas, J.; Lošák, T.; Ghorbani, M.; Amirahmadi, E.; et al. Crop Growth Analysis of Autumn- and Spring-Sown Wheat–Pea Intercrops. Agronomy 2025, 15, 477. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.; Xu, Y.; Li, C.; Ding, H.; Li, C.; Tang, Q.; Liu, M.; Hou, J. The Development of No-Tillage Seeding Technology for Conservation Tillage—A Review. Sustainability 2025, 17, 1808. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage System. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2022, 12, 121. [Google Scholar] [CrossRef]
- Andruszczak, S. The Influence of Tillage and Chemical Plant Protection on Weed Infestation of Winter Spelt Wheat Cultivars (Triticum aestivum ssp. Spelta) Growing in Continuous Crop. Ann. UMCS Sec. E Agric. 2018, 72, 77–86. [Google Scholar] [CrossRef]
- Parylak, D.; Pytlarz, E. Weed Infestation of Winter Wheat Continuous Cropping after Implementation of Catch Crop and Biostimulant Nano-GroZachwaszczenie Monokultury Pszenicy Ozimej Po Zastosowaniu Międzyplonu Ścierniskowego i Biostymulatora Nano-Gro. Prog. Plant Prot. 2016, 56, 343–347. [Google Scholar] [CrossRef][Green Version]
- Van Elsen, T.; Hotze, C.; Meyer, S.; Gottwald, F.; Wehke, S. Empfehlungen für die Bewirtschaftung von Schutzäckern. Germany, 2009. Available online: http://www.schutzaecker.de (accessed on 3 June 2025).
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed Flora Composition of Different Barley-based Cropping Systems under Conventional and Conservation Tillage Practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Larney, F.O.; Lindwall, C.W.; Kozub, G.C. Crop Rotation and Tillage Effects on Weed Populations on the Semi-Arid Canadian Prairies. Weed Technol. 1994, 8, 231–237. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Jabran, K.; Hussain, M. Impact of Different Crop Rotations and Tillage Systems on Weed Infestation and Productivity of Bread Wheat. Crop Prot. 2016, 89, 161–169. [Google Scholar] [CrossRef]
- Ionescu, N. Research on Reducing the Winter Wheat Crop Weed Encroachment. Analele Institutului Național Cercet. Dezvoltare Agric. Fundulea 2011, 79, 89–99. [Google Scholar]
- Radosevich, S.; Holt, J.; Ghersa, C. Weed Ecology: Implications for Management; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Anwar, M.P.; Islam, A.K.M.M.; Yeasmin, S.; Rashid, M.H.; Juraimi, A.S.; Ahmed, S.; Shrestha, A. Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy 2021, 11, 1921. [Google Scholar] [CrossRef]
- Chicouene, D. Mechanical Destruction of Weeds. A Review. Agron. Sustain. Dev. 2007, 27, 19–27. [Google Scholar] [CrossRef]
- Berca, M. Chapter 2. Biology of Weeds. In Integrated Weed Management; Ceres: Bucharest, Romania, 2004; pp. 46–52. ISBN 973-40-0652-5. [Google Scholar]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy 2020, 10, 1900. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Vykydalová, L.; Martínez Barroso, P.; Děkanovský, I.; Hrudová, E.; Lumbantobing, Y.R.; Michutová, M.; Winkler, J. The Response of Insects and Weeds within the Crop to Variation in Sowing Density of Canola. Land 2024, 13, 1509. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Soil Contamination, Risk Assessment and Remediation. In Environmental Risk Assessment of Soil Contamination; InTech: Houston, TX, USA, 2014; ISBN 978-953-51-1235-8.
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Kennedy, I.R.; Kookana, R.S.; Van Zwieten, L. Impact of Herbicides on Soil Biology and Function. In Advances in Agronomy; Sparks, D.L., Ed.; Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2016; Volume 136, pp. 133–220. [Google Scholar]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of Functional Diversity under Land Use Intensification across Multiple Taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Koch, M.A.; Meyer, N.; Engelhardt, M.; Thiv, M.; Bernhardt, K.-G.; Michling, F. Morphological and Genetic Variation of Highly Endangered Bromus Species and the Status of These Neolithic Weeds in Central Europe. Plant Syst. Evol. 2016, 302, 515–525. [Google Scholar] [CrossRef]
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable Weed Decline in Northern France: Crop Edges as Refugia for Weed Conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Schumacher, M.; Ohnmacht, S.; Rosenstein, R.; Gerhards, R. How Management Factors Influence Weed Communities of Cereals, Their Diversity and Endangered Weed Species in Central Europe. Agriculture 2018, 8, 172. [Google Scholar] [CrossRef]
- Popescu, V. Ferma Magazine. 10 Reasons to Check your Level of Weeding. Available online: https://revista-ferma.ro/10-motive-pentru-controlul-gradului-de-imburuienare/ (accessed on 11 June 2025).
- Ona, A.D.; Muntean, L.; Haș, V.V.; Varga, A. Combining Ability for Yield of Single-Cross Hybrids Derived from Maize Composites (Zea mays L.). Not. Bot. Horti. Agrobot. 2019, 47, 465–469. [Google Scholar] [CrossRef]
- Florea, N.; Munteanu, I. The Romanian System of Soil Taxonomy (SRTS); Ed Estfalia: Bucharest, Romania, 2012. [Google Scholar]
- MESP (1987) Pedologic Studies Elaboration Metodology. Pedologic and Agrochemical Ins. Bucharest, 1-3.—References—Scientific Research Publishing. Available online: https://www.scirp.org/reference/referencespapers?referenceid=873854 (accessed on 8 July 2025).
- Chețan, F.; Chețan, C.; Russu, F.; Mureșanu, F. The Influence of Tillage System on the Weed and the Maize Yields, in Different Pedoclimatic Condition of Transylvanian Plain, during 2007–2018. Rom. Agric. Res. 2020, 37, 131–139. [Google Scholar] [CrossRef]
- Turda Weather Station. Northern Transylvania Regional Meteorological Center Cluj. Available online: https://www.meteoromania.ro/ (accessed on 29 June 2025).
- AMEROPA Group Represented by AZOMURES Factory. Str. Gheorghe Doja Nr. 300, Târgu Mureș 540237, Mureș, România. Available online: https://www.Azomures.com (accessed on 11 June 2025).
- Maschio Gaspardo Campodarsego. Via Marcello, 73, 35011 Campodarsego PD, Italia. Available online: https://www.maschiogaspardo.com/it/web/Italia/Le-Nostre-Sedi (accessed on 11 June 2025).
- Bayer Crop Science SRL. Șos. București—Ploiești Nr. 1A, Clădirea B, Etajul 1, Sector 1, 013681 București, Romania. Available online: https://www.cropscience.bayer.ro/contact (accessed on 11 June 2025).
- Innvigo Better Chemistry. Str. Madach Imre Nr.64, 400464 Cluj-Napoca, Romania. Available online: https://ro.innvigo.com/p/Apis-200-Se (accessed on 11 June 2025).
- SC Adama Agricultural Solutions SRL. Piata Presei Libere 3-5, Cladirea City Gate, Turnul de Nord, Sector 1, 013702, Bucuresti. Available online: https://www.adama.com/romania/ro/produse-pentru-protectia-plantelor/insecticide/Mavrik2f (accessed on 11 June 2025).
- WINTERSTEIGER Seedmech GmbH Wintersteigerstrasse 14910 Ried Im Innkreis, Austria. Available online: https://www.wintersteiger.com/seedmech/en/products/harvesters/plot-combines (accessed on 11 June 2025).
- SR EN ISO 712-1:2024; Cereals and Cereal Products. Humidity Determination. Part 1: Reference Method. Available online: https://magazin.asro.ro/ro/standard/284269 (accessed on 10 June 2025).
- State Institute for Variety Testing and Registration (ISTIS) Bucharest. Available online: https://istis.ro/catalog-oficial (accessed on 4 June 2025).
- Andrada Wheat Variety. Available online: https://scdaturda.ro/Andrada (accessed on 11 June 2025).
- Multilab, Drying Stove Binder, Baia de Arama Nr.1, Sector 2—Bucuresti. Available online: https://www.multilab.ro/etuve/etuve_termice.html (accessed on 11 June 2025).
- Ionescu, N.; Trașcă, F.; Mincă, G.; Trașcă, G.; Voica, M.; Ciodaru, I. Penescu Aurelian Weeds Mapping from Wheat and Maize Crops. An. I.N.C.D.A. Fundulea 2016, 84, 190–197. [Google Scholar]
- Poly Fact. ANOVA and Duncan’s Test PC Program for Variant Analyses Made for Completely Randomized Polyfactorial Experiences; USAMV: Cluj, Napoca, 2015. [Google Scholar]
- Tóth, E.; Dorner, Z.; Nagy, J.G.; Zalai, M. How Weed Flora Evolves in Cereal Fields in Relation to the Agricultural Environment and Farming Practices in Different Sub-Regions of Eastern Hungary. Agronomy 2025, 15, 1033. [Google Scholar] [CrossRef]
- Salehi, B.; Shivaprasad Shetty, M.; Anil Kumar, N.V.; Živković, J.; Calina, D.; Oana Docea, A.; Emamzadeh-Yazdi, S.; Sibel Kılıç, C.; Goloshvili, T.; Nicola, S.; et al. Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules 2019, 24, 2454. [Google Scholar] [CrossRef] [PubMed]
- Brust, J.; Weber, J.; Gerhards, R. Do cover crop mixtures have the same ability to suppress weeds as competitive monoculture cover crops? JKA 2014, 443, 422. [Google Scholar] [CrossRef]
- Casagrande, M.; Peigné, J.; Payet, V.; Mäder, P.; Sans, F.X.; Blanco-Moreno, J.M.; Antichi, D.; Bàrberi, P.; Beeckman, A.; Bigongiali, F.; et al. Organic Farmers’ Motivations and Challenges for Adopting Conservation Agriculture in Europe. Org. Agr. 2016, 6, 281–295. [Google Scholar] [CrossRef]
- Gandía, M.L.; Del Monte, J.P.; Tenorio, J.L.; Santín-Montanyá, M.I. The Influence of Rainfall and Tillage on Wheat Yield Parameters and Weed Population in Monoculture versus Rotation Systems. Sci. Rep. 2021, 11, 22138. [Google Scholar] [CrossRef]
- Walters, S.A.; Kindhart, J.D. Reduced Tillage Practices for Summer Squash Production in Southern Illinois. HortTechnology 2002, 12, 114–117. [Google Scholar] [CrossRef]
- Young, F.L.; Jr, A.G.O.; Alldredge, J.R. Postharvest Tillage Reduces Downy Brome (Bromus tectorum L.) Infestations in Winter Wheat. Weed Technol. 2014, 28, 418–425. [Google Scholar] [CrossRef]
- Bradley, B.A. Regional Analysis of the Impacts of Climate Change on Cheatgrass Invasion Shows Potential Risk and Opportunity. Glob. Change Biol. 2009, 15, 196–208. [Google Scholar] [CrossRef]
- Măturaru, G.; Șerban, M.; Partal, E. Selectivity and Efficiency of Herbicides Applied in Autumn to Control Annual Weeds in Winter Wheat. An. I.N.C.D.A. Fundulea 2019, 87, 175–181. [Google Scholar]
- Woźniak, A. Effect of Tillage System on the Structure of Weed Infestation of Winter Wheat. Span. J. Agric. Res. 2019, 16, e1009. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed Dynamics and Conservation Agriculture Principles: A Review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Chhokar, R.S.; Malik, R.K.; Brainard, D.C.; Ladha, J.K. Weed Management Strategies to Reduce Herbicide Use in Zero-till Rice-Wheat Cropping Systems of the Indo-Gangetic Plains. Weed Technol. 2013, 27, 241–254. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Gerhards, R. Weed Suppression Ability and Yield Impact of Living Mulch in Cereal Crops. Agriculture 2018, 8, 39. [Google Scholar] [CrossRef]
- Brandsæter, L.O.; Goul Thomsen, M.; Wærnhus, K.; Fykse, H. Effects of Repeated Clover Undersowing in Spring Cereals and Stubble Treatments in Autumn on Elymus repens, Sonchus arvensis and Cirsium arvense. Crop Prot. 2012, 32, 104–110. [Google Scholar] [CrossRef]
- Oppong, J.N.; Akumu, C.E.; Dennis, S. Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data. Agronomy 2024, 14, 2706. [Google Scholar] [CrossRef]
- Tørresen, K.S.; Skuterud, R.; Tandsæther, H.J.; Bredesen Hagemo, M. Long-Term Experiments with Reduced Tillage in Spring Cereals. I. Effects on Weed Flora, Weed Seedbank and Grain Yield. Crop Prot. 2003, 22, 185–200. [Google Scholar] [CrossRef]
- Costea, M.; Weaver, S.E.; Tardif, F.J. The Biology of Canadian Weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 2004, 84, 631–668. [Google Scholar] [CrossRef]
- Bana, R.S.; Kumar, V.; Sangwan, S.; Singh, T.; Kumari, A.; Dhanda, S.; Dawar, R.; Godara, S.; Singh, V. Seed Germination Ecology of Chenopodium Album and Chenopodium Murale. Biology 2022, 11, 1599. [Google Scholar] [CrossRef] [PubMed]
- Biberdžić, M.; Jelić, M.; Deletić, N.; Barać, S.; Stojković, S.; Stanković, S.; Stamenković, S. The Effect of Fertilization System on Weed Infestation and Grain Yield of Small Grains on Acid Soils. Res. J. Agric. Sci. 2011, 43, 92. [Google Scholar]
- Knežević, M.; Stipešević, B.; Knežević, I.; Lončarić, Z. Weed populations of winter wheat as affected by tillage and nitrogen. Ekologia 2007, 26, 190–200. [Google Scholar]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-Species Abundance and Diversity Indices in Relation to Tillage Systems and Fertilization. Front. Environ. Sci. 2018, 6, 347868. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, R.; Chauhan, B.S. Understanding Crop-Weed-Fertilizer-Water Interactions and Their Implications for Weed Management in Agricultural Systems. Crop Prot. 2018, 103, 65–72. [Google Scholar] [CrossRef]
- Lee, J.-S. Combined Effect of Elevated CO2 and Temperature on the Growth and Phenology of Two Annual C3 and C4 Weedy Species. Agric. Ecosyst. Environ. 2011, 140, 484–491. [Google Scholar] [CrossRef]
- Seipel, T.; Ishaq, S.L.; Larson, C.; Menalled, F.D. Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions. Sustainability 2022, 14, 6880. [Google Scholar] [CrossRef]
- DuPre, M.E.; Seipel, T.; Bourgault, M.; Boss, D.L.; Menalled, F.D. Predicted Climate Conditions and Cover Crop Composition Modify Weed Communities in Semiarid Agroecosystems. Weed Res. 2022, 62, 38–48. [Google Scholar] [CrossRef]
- Mohammed, S.; Steinbrecher, T.; Leubner-Metzger, G.; Mummenhoff, K. Differential Primary Seed and Fruit Dispersal Mechanisms and Dispersal Biomechanics in Invasive Dehiscent and Indehiscent-Fruited Lepidium Species. Plants 2025, 14, 446. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, S.; Daniłkiewicz, D.; Gawęda, D.; Haliniarz, M.; Rusecki, H.; Łukasz, J. The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. Spelta L.). Agriculture 2022, 12, 1390. [Google Scholar] [CrossRef]
- Thomas, A.G.; Derksen, D.A.; Blackshaw, R.E.; Acker, R.C.V.; Légère, A.; Watson, P.R.; Turnbull, G.C. A Multistudy Approach to Understanding Weed Population Shifts in Medium- to Long-Term Tillage Systems. Weed Sci. 2004, 52, 874–880. [Google Scholar] [CrossRef]
- Vencill, W.K.; Banks, P.A. Effects of Tillage Systems and Weed Management on Weed Populations in Grain Sorghum (Sorghum bicolor). Weed Sci. 1994, 42, 541–547. [Google Scholar] [CrossRef]
- Seipel, T.; Ishaq, S.L.; Menalled, F.D. Agroecosystem Resilience Is Modified by Management System via Plant–Soil Feedbacks. Basic Appl. Ecol. 2019, 39, 1–9. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.-F.; Howden, S.M. Crop and Pasture Response to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of Climate Change on Weeds in Agriculture: A Review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef]
- Canon, S. Weeds Developing Resistance to Widely Used Herbicide, Some Say. Available online: https://www.iatp.org/news/weeds-developing-resistance-to-widely-used-herbicide-some-say (accessed on 15 July 2025).
- Plett, D.C.; Ranathunge, K.; Melino, V.J.; Kuya, N.; Uga, Y.; Kronzucker, H.J. The Intersection of Nitrogen Nutrition and Water Use in Plants: New Paths toward Improved Crop Productivity. J. Exp. Bot. 2020, 71, 4452–4468. [Google Scholar] [CrossRef]
- Angidi, S.; Madankar, K.; Tehseen, M.M.; Bhatla, A. Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review. Crops 2025, 5, 8. [Google Scholar] [CrossRef]
- Korba, J.; Šařec, P.; Novák, V.; Brož, P.; Dolan, A.; Dědina, M. Digestate Application Methods and Rates with Regard to Greenhouse Gas Emissions and Crop Conditions. Agronomy 2024, 14, 336. [Google Scholar] [CrossRef]
No. | No. of Species/EPPO Code/Botanical Group | Tillage System/No. of Weeds m−2 | |||
---|---|---|---|---|---|
CS | NT | ||||
1. | Xanthium strumarium | XANST | AD | 3 | 5 |
2. | Amaranthus retroflexus | AMARE | 1 | 2 | |
3. | Chenopodium album | CHEAR | 1 | 1 | |
4. | Galinsoga parviflora | GASPA | 1 | 1 | |
5. | Fallopia convolvulus | POLCO | 1 | 1 | |
6. | Polygonum arenastrum | POLAR | 1 | 1 | |
7. | Capsella rubella | CAPRU | 1 | 1 | |
8. | Geranium dissectum | GERDI | 1 | 1 | |
9. | Veronica persica | VERPE | 1 | 0 | |
10. | Sonchus oleraceus | SONOL | 1 | 2 | |
11. | Papaver dubium | PAPDU | 1 | 1 | |
12. | Galeopsis bifida | GAEBI | 1 | 1 | |
13. | Galium spurium | GALSP | 1 | 1 | |
14. | Consolida regalis | CNSRE | 1 | 1 | |
15. | Myosotis arvensis | MYOAR | 1 | 1 | |
16. | Stellaria media | STEME | 1 | 0 | |
17. | Viola arvensis | VIOAR | 1 | 2 | |
18. | Hibiscus trionum | HIBTR | 2 | 1 | |
19. | Fumaria officinalis | FUMOF | 1 | 0 | |
20. | Anagallis arvensis | ANGAR | 1 | 0 | |
1. | Convolvulus arvensis | CONAR | PD | 1 | 2 |
2. | Taraxacum officinale | TAROF | 0 | 1 | |
3. | Lepidium draba | CADDR | 0 | 1 | |
4. | Cirsium arvense | CIRAR | 2 | 3 | |
5. | Rubus caesius | RUBCA | 1 | 2 | |
6. | Rorippa armoracioides | RORAR | 1 | 1 | |
7. | Lathyrus tuberosus | LTHTU | 1 | 2 | |
8. | Achillea millefolium | ACHMI | 0 | 1 | |
1. | Echinochloa hispidula | ECHCI | AM | 1 | 1 |
2. | Bromus tectorum | BROTE | 2 | 5 | |
3. | Avena fatua | AVEFA | 1 | 1 | |
4. | Setaria helvola | SETIT | 2 | 1 | |
1. | Elymus repens | AGRRE | PM | 1 | 3 |
TOTAL | 33 species | 36 | 47 |
Factor | Weed Species | No. of Weeds m−2 | % | Differences | |
---|---|---|---|---|---|
Soil tillage system (A) | a1 CS | AD | 20.3 | 100.0 | 0.00 Ct. |
a2 NT | 20.8 | 102.4 | 0.5 ns | ||
LSD (p 5%) = 2.8; LSD (p 1%) = 6.6; LSD (p 0.1%) = 21 | |||||
a1 CS | PD | 7.4 | 100.0 | 0.00 Ct. | |
a2 NT | 8.8 | 118.9 | 1.4 * | ||
LSD (p 5%) = 2.9; LSD (p 1%) = 6.8; LSD (p 0.1%) = 21.6 | |||||
a1 CS | AM | 5.2 | 100.0 | 0.00 Ct. | |
a2 NT | 4.1 | 78.8 | −1.1 o | ||
LSD (p 5%) = 1.9; LSD (p 1%) = 4.4; LSD (p 0.1%) = 13.9 | |||||
a1 CS | PM | 1.2 | 100.0 | 0.00 Ct. | |
a2 NT | 1.9 | 158.4 | 0.7 * | ||
LSD (p 5%) = 1.9; LSD (p 1%) = 4.4; LSD (p 0.1%) = 13.9 |
Factor | Weed Species | No. of Weeds m−2 | % | Differences | |
---|---|---|---|---|---|
Mineral fertilization (B) | b1 200 kg ha−1 NPK (20-20-0) | AD | 18.8 | 100.0 | 0.00 Ct. |
b2 200 kg ha−1 NPK (20-20-0) + 119 kg ha−1 Ammonium nitrate | 22.2 | 118.1 | 3.3 ** | ||
LSD (p 5%) = 1.9; LSD (p 1%) = 2.8; LSD (p 0.1%) = 4.2 | |||||
b1 200 kg ha−1 NPK (20-20-0) | PD | 8.4 | 100.0 | 0.00 Ct. | |
b2 200 kg ha−1 NPK (20-20-0) + 119 kg ha−1 Ammonium nitrate | 7.8 | 92.8 | −0.6 ns | ||
LSD (p 5%) =1.1; LSD (p 1%) = 1.5; LSD (p 0.1%) = 2.3 | |||||
b1 200 kg ha−1 NPK (20-20-0) | AM | 5 | 100.0 | 0.00 Ct. | |
b2 200 kg ha−1 NPK (20-20-0) + 119 kg ha−1 Ammonium nitrate | 4.2 | 84.0 | −0.8 o | ||
LSD (p 5%) = 0.8; LSD (p 1%) = 1.1; LSD (p 0.1%) = 1.6 | |||||
b1 200 kg ha−1 NPK (20-20-0) | PM | 1.5 | 100.0 | 0.00 Ct. | |
b2 200 kg ha−1 NPK (20-20-0) + 119 kg ha−1 Ammonium nitrate | 1.6 | 106.6 | 0.1 ns | ||
LSD (p 5%) = 0.6; LSD (p 1%) = 0.8; LSD (p 0.1%) = 1.3 |
Factor | Weed Species | No. of Weeds m−2 | % | Differences | |
---|---|---|---|---|---|
Agricultural year (C) | c1 2013/2014 | AD | 20.3 | 100.0 | 0.00 Ct. |
c2 2023/2024 | 20.8 | 102.5 | 0.5 ns | ||
LSD (p 5%) = 1.4; LSD (p 1%) = 2.3; LSD (p %) = 4.2 | |||||
c1 2013/2014 | PD | 6.4 | 100.0 | 0.00 Ct. | |
c2 2023/2024 | 9.8 | 153.1 | 3.4 ** | ||
LSD (p 5%) = 2; LSD (p 1%) = 3.3; LSD (p 0.1%) = 6.1 | |||||
c1 2013/2014 | AM | 4.1 | 100.0 | 0.00 Ct. | |
c2 2023/2024 | 5.2 | 126.8 | 1.1 * | ||
LSD (p 5%) = 1; LSD (p 1%) = 1.5; LSD (p 0.1%) = 2.9 | |||||
c1 2013/2014 | PM | 1.3 | 100.0 | 0.00 Ct. | |
c2 2023/2024 | 1.8 | 138.5 | 0.5 ns | ||
LSD (p 5%) = 0.8; LSD (p 1%) = 1.4; LSD (p 0.1%) = 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chețan, F.; Pop, A.I.; Chețan, C.; Gaga, I.; Șimon, A.; Urdă, C.; Popa, A.; Călugăr, R.E.; Rusu, T.; Moraru, P.I. Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat. Agronomy 2025, 15, 1904. https://doi.org/10.3390/agronomy15081904
Chețan F, Pop AI, Chețan C, Gaga I, Șimon A, Urdă C, Popa A, Călugăr RE, Rusu T, Moraru PI. Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat. Agronomy. 2025; 15(8):1904. https://doi.org/10.3390/agronomy15081904
Chicago/Turabian StyleChețan, Felicia, Adrian Ioan Pop, Cornel Chețan, Ioan Gaga, Alina Șimon, Camelia Urdă, Alin Popa, Roxana Elena Călugăr, Teodor Rusu, and Paula Ioana Moraru. 2025. "Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat" Agronomy 15, no. 8: 1904. https://doi.org/10.3390/agronomy15081904
APA StyleChețan, F., Pop, A. I., Chețan, C., Gaga, I., Șimon, A., Urdă, C., Popa, A., Călugăr, R. E., Rusu, T., & Moraru, P. I. (2025). Impact of Tillage System and Mineral Fertilization on Weed Suppression and Yield of Winter Wheat. Agronomy, 15(8), 1904. https://doi.org/10.3390/agronomy15081904