Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. Phenology Data and Crop Coefficients
2.2.3. County-Level Yield and Planting Area
2.2.4. Nitrogen Fertilizer Data
2.3. Calculation of Average Yield Loss Rate
2.4. Estimation of Crop Water Requirement and Water Deficit
2.5. Crop Redistribution Model
2.5.1. Model Framework
- Maximize total crop production;
- Minimize total production losses;
- Minimize total water deficit;
- Minimize total nitrogen fertilizer application.
2.5.2. Selection of the Optimal Solution from Pareto Front
2.6. Calculation of Geographical Centroid
3. Results
3.1. Temporal Trends in Yield, Yield Loss Rate, Water Deficit, and Nitrogen Fertilizer Application Rate for Rice, Maize, and Soybean Across Counties in Northeast China
3.2. Spatial Distribution Patterns of Yield, Yield Loss Rate, Water Deficit, and Nitrogen Fertilizer Application Rate in Northeast China
3.3. Selection of Optimal Solution and Evaluation of Optimization Benefits
3.4. Changes in Cropping Structure at Different Spatial Scales in Northeast China After Crop Redistribution
3.5. Shifts in the Planting Area Centroids of Rice, Maize and Soybean After Crop Redistribution
4. Discussion
4.1. Potential of Crop Redistribution in Northeast China
4.2. Rationality of the Recommended Strategy for Crop Redistribution in Northeast China
4.3. Uncertainty and Future Development of the Crop Redistribution Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D.B.; Martre, P.; Ruane, A.C.; Wallach, D.; Jones, J.W.; et al. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods. Nat. Clim. Change 2016, 6, 1130–1136. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Brás, T.A.; Seixas, J.; Carvalhais, N.; Jägermeyr, J. Severity of Drought and Heatwave Crop Losses Tripled over the Last Five Decades in Europe. Environ. Res. Lett. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The Impact of Climate Change on Insect Pest Biology and Ecology: Implications for Pest Management Strategies, Crop Production, and Food Security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, Q.; Deng, H.; Yan, Y. Opportunities and Challenges of Sustainable Agricultural Development in China. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 893–904. [Google Scholar] [CrossRef]
- Bacheva, V.; Madison, I.; Baldwin, M.; Baker, J.; Beilstein, M.; Call, D.F.; Deaver, J.A.; Efimenko, K.; Genzer, J.; Grieger, K.; et al. Transdisciplinary Collaborations for Advancing Sustainable and Resilient Agricultural Systems. Glob. Change Biol. 2025, 31, e70142. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.Z.; Liu, B.; Liu, Y.; Han, R.; Zhu, Y.; Qiao, O.; Che, H.; Zhang, Y.; Mei, X. Understanding Climate Variability and Its Impact on Drought Occurrences in Maize Producing Regions: Evidence from North of China. Agric. Water Manag. 2024, 306, 109150. [Google Scholar] [CrossRef]
- Wen, M.; Chen, L. Global Food Crop Redistribution Reduces Water Footprint without Compromising Species Diversity. J. Clean. Prod. 2023, 383, 135437. [Google Scholar] [CrossRef]
- Davis, K.F.; Seveso, A.; Rulli, M.C.; D’Odorico, P. Water Savings of Crop Redistribution in the United States. Water 2017, 9, 83. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased Food Production and Reduced Water Use through Optimized Crop Distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Wang, Y.; Ciais, P.; Smith, P. Novel Cropping-System Strategies in China Can Increase Plant Protein with Higher Economic Value but Lower Greenhouse Gas Emissions and Water Use. One Earth 2023, 6, 560–572. [Google Scholar] [CrossRef]
- Rising, J.; Devineni, N. Crop Switching Reduces Agricultural Losses from Climate Change in the United States by Half under RCP 8.5. Nat. Commun. 2020, 11, 4991. [Google Scholar] [CrossRef] [PubMed]
- Groot, J.C.J.; Yang, X. Trade-offs in the Design of Sustainable Cropping Systems at a Regional Level: A Case Study on the North China Plain. Front. Agric. Sci. Eng. 2022, 9, 295–308. [Google Scholar] [CrossRef]
- Breure, T.S.; Estrada-Carmona, N.; Petsakos, A.; Gotor, E.; Jansen, B.; Groot, J.C.J. A Systematic Review of the Methodology of Trade-off Analysis in Agriculture. Nat. Food 2024, 5, 211–220. [Google Scholar] [CrossRef]
- Klapwijk, C.; van Wijk, M.; Rosenstock, T.; van Asten, P.; Thornton, P.; Giller, K. Analysis of Trade-Offs in Agricultural Systems: Current Status and Way Forward. Curr. Opin. Environ. Sustain. 2014, 6, 110–115. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.; Qi, P.; Zhang, G.; Wu, Y. Development and Application of a New Water-Carbon-Economy Coupling Model (WCECM) for Optimal Allocation of Agricultural Water and Land Resources. Agric. Water Manag. 2024, 291, 108608. [Google Scholar] [CrossRef]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop Switching Can Enhance Environmental Sustainability and Farmer Incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef]
- Hu, M.; Tang, H.; Yu, Q.; Wu, W. A New Approach for Spatial Optimization of Crop Planting Structure to Balance Economic and Environmental Benefits. Sustain. Prod. Consum. 2025, 53, 109–124. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, C.; Zhang, Y.; Cao, Y.; Li, Z. Constrained Multi-Objective Optimization Problems: Methodologies, Algorithms and Applications. Knowl.-Based Syst. 2024, 299, 111998. [Google Scholar] [CrossRef]
- Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Review: Multi-Objective Optimization Methods and Application in Energy Saving. Energy 2017, 125, 681–704. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Pan, J.; Zhang, Y.; Liu, H. A Multi-Criteria Evolutionary-Based Algorithm as a Regional Scale Decision Support System to Optimize Nitrogen Consumption Rate; A Case Study in North China Plain. J. Clean. Prod. 2020, 256, 120213. [Google Scholar] [CrossRef]
- Huang, H.; Xie, P.; Duan, Y.; Wu, P.; Zhuo, L. Cropping Pattern Optimization Considering Water Shadow Price and Virtual Water Flows: A Case Study of Yellow River Basin in China. Agric. Water Manag. 2023, 284, 108339. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuo, L.; Yang, X.; Ji, X.; Yue, Z.; Zhao, D.; Wu, P. Crop Production Allocations for Saving Water and Improving Calorie Supply in China. Front. Sustain. Food Syst. 2021, 5, 632199. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. White Paper on Black Land in Northeast China 2021; Chinese Academy of Sciences: Beijing, China, 2022. [Google Scholar]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote Sensing Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy 2023, 13, 1851. [Google Scholar] [CrossRef]
- Wang, X.; Cai, D.; Grant, C.; Hoogmoed, W.B.; Oenema, O. Factors Controlling Regional Grain Yield in China over the Last 20 Years. Agron. Sustain. Dev. 2015, 35, 1127–1138. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, J.; Kattel, G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Meng, H.; Qian, L. Performances of Different Yield-Detrending Methods in Assessing the Impacts of Agricultural Drought and Flooding: A Case Study in the Middle-and-Lower Reach of the Yangtze River, China. Agric. Water Manag. 2024, 296, 108812. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fan, L.; Chen, S.; Liang, S.; Sun, X.; Chen, H.; You, L.; Wu, W.; Sun, J.; Yang, P. Assessing Long-Term Spatial Movement of Wheat Area across China. Agric. Syst. 2020, 185, 102933. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; Wang, Y.; Tian, X.; Ying, H.; Zhang, Q.; Xue, Y.; Oenema, O.; Li, S.; Zhou, F.; et al. Integrating Crop Redistribution and Improved Management towards Meeting China’s Food Demand with Lower Environmental Costs. Nat. Food 2022, 3, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Qin, S.; Li, H.; Li, Z.; Tong, T. Policy-Driven Food Security: Investigating the Impact of China’s Maize Subsidy Policy Reform on Farmer’ Productivity. Front. Sustain. Food Syst. 2024, 8, 1349765. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Deng, X.; Zhao, Z. Enhancing Agricultural Sustainability: Optimizing Crop Planting Structures and Spatial Layouts within the Water-Land-Energy-Economy-Environment-Food Nexus. Geogr. Sustain. 2025, 6, 100258. [Google Scholar] [CrossRef]
- Qi, P.; Sun, J.; Zhang, G.; Jiang, M.; Dai, C. Allocation of Water and Land Resources and Ecological Security in the Black Soil Area of Northeast China. Chin. Sci. Bull. 2024, 69, 4063–4078. (In Chinese) [Google Scholar] [CrossRef]
- Di, Y.; You, N.; Dong, J.; Liao, X.; Song, K.; Fu, P. Recent Soybean Subsidy Policy Did Not Revitalize but Stabilize the Soybean Planting Areas in Northeast China. Eur. J. Agron. 2023, 147, 126841. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Zhou, Z.; Chen, Y.; Wang, Y.; Li, T.; Fu, Q. Spatial Simulation and Optimization of Cropping Structure Under Climate and Land Use Change Conditions Considering Synergistic Economic Benefits and Carbon Reduction in Crop Growth Processes. Earth’s Future 2024, 12, e2024EF004684. [Google Scholar] [CrossRef]
- Du, G.; Han, L.; Yao, L.; Faye, B. Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis. Agriculture 2024, 14, 1443. [Google Scholar] [CrossRef]
Crop | Kcini | Kcmid | Kcend |
---|---|---|---|
rice | 1.05 | 1.20 | 1.00 |
maize | 0.30 | 1.20 | 0.60 |
soybean | 0.40 | 1.15 | 0.50 |
Solutions | Crop Production (106 t) | Production Losses (105 t) | Water Deficit (107 m3) | N Fertilizer (106 kg) |
---|---|---|---|---|
optimal solution | 2.41 | −1.84 | −38.75 | −54.09 |
max production | 4.20 | −0.10 | −0.42 | −50.15 |
min losses | 0.16 | −4.17 | −30.98 | −74.05 |
min water deficit | 0.009 | −2.65 | −96.91 | −67.58 |
min fertilizer use | 0.008 | −2.65 | −7.62 | −93.54 |
Crop | Crop Production | Production Losses | Water Deficit | N Fertilizer | ||||
---|---|---|---|---|---|---|---|---|
Percentage (%) | Absolute (106 t) | Percentage (%) | Absolute (105 t) | Percentage (%) | Absolute (107 m3) | Percentage (%) | Absolute (106 kg) | |
rice | 63.29 | 17.49 | 77.17 | 7.26 | 3.73 | 9.65 | 45.72 | 15.77 |
maize | −11.3 | −12.31 | −13.33 | −7.40 | −18.84 | −56.91 | −13.69 | −61.84 |
soybean | −51.08 | −2.78 | −50.46 | −1.69 | −85.08 | 8.51 | −69.4 | −8.03 |
total | 1.7 | 2.41 | −2.69 | −1.84 | −6.78 | −38.75 | −10.87 | −54.09 |
Crops | Northeast China | Heilongjiang | Jilin | Liaoning | Four Eastern Leagues |
---|---|---|---|---|---|
rice | 69.58% | 46.45% | 62.74% | 83.46% | 611.45% |
maize | −12.8% | 2.0% | −19.36% | −33.69% | −18.78% |
soybean | −54.79% | −71.28% | 47.69% | 323.22% | −82.73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, B.; Han, R.; Bai, H.; Liu, E.; Chen, D.; Qiao, O.; Che, H.; Liu, X.; Chen, L.; et al. Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China. Agronomy 2025, 15, 2148. https://doi.org/10.3390/agronomy15092148
Zhang Y, Liu B, Han R, Bai H, Liu E, Chen D, Qiao O, Che H, Liu X, Chen L, et al. Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China. Agronomy. 2025; 15(9):2148. https://doi.org/10.3390/agronomy15092148
Chicago/Turabian StyleZhang, Yiming, Buchun Liu, Rui Han, Huiqing Bai, Enke Liu, Di Chen, Oumeng Qiao, Honglei Che, Xinglin Liu, Long Chen, and et al. 2025. "Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China" Agronomy 15, no. 9: 2148. https://doi.org/10.3390/agronomy15092148
APA StyleZhang, Y., Liu, B., Han, R., Bai, H., Liu, E., Chen, D., Qiao, O., Che, H., Liu, X., Chen, L., & Wu, N. (2025). Crop Redistribution Increases Regional Production While Reducing Water Deficit, Fertilizer Use, and Production Losses: Evidence from a Multi-Objective Optimization at the County Level in Northeast China. Agronomy, 15(9), 2148. https://doi.org/10.3390/agronomy15092148