Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = southwest grassland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5601 KB  
Article
Spatiotemporal Variation in Land Use/Land Cover and Its Driving Causes in a Semiarid Watershed, Northeastern China
by Jian Li, Weizhi Li, Haoyue Gao, Hanxiao Liu and Tianling Qin
Hydrology 2026, 13(1), 42; https://doi.org/10.3390/hydrology13010042 - 22 Jan 2026
Abstract
The West Liaohe River Basin, a core arid region in Northeast China, faces a significant evaporation–precipitation imbalance and exhibits fragmented land systems, epitomized by the Horqin Sandy Land. Integrating three decades of land use/land cover (LULC) data with meteorological, ecological, and socioeconomic variables, [...] Read more.
The West Liaohe River Basin, a core arid region in Northeast China, faces a significant evaporation–precipitation imbalance and exhibits fragmented land systems, epitomized by the Horqin Sandy Land. Integrating three decades of land use/land cover (LULC) data with meteorological, ecological, and socioeconomic variables, we employed obstacle diagnosis and structural equation modeling (SEM) to elucidate the spatiotemporal dynamics and drivers of LULC transformations. The results demonstrate the following: (1) Land use exhibited a spatially heterogeneous pattern, with forests, shrubs, and grasslands predominantly concentrated in the northwest and southwest. (2) Vegetation coverage significantly increased from 53.15% in 1990 to 61.32% in 2020, whereas cropland and sandy land areas declined. While the overall basin landscape underwent a marked increase in fragmentation. (3) Human activities were the dominant contributor of LULC changes, particularly for cropland conversion, with key determinants such as population and GDP showing negative path coefficients of −0.59 and −0.77, respectively. Climate change was a secondary contributor, with precipitation exerting a strong positive path coefficient (0.63) that was particularly pronounced during the conversion of grassland to forest. These findings offer a scientific basis for land management, ecological restoration strategies, and water resource utilization in the basin. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

13 pages, 1156 KB  
Article
Land Use and Nature-Based Climate Adaptation in Coastal and Island Regions: A Case Study of Muan and Shinan, South Korea
by Jae-Eun Kim and Sun-Kee Hong
Sustainability 2026, 18(1), 380; https://doi.org/10.3390/su18010380 - 30 Dec 2025
Viewed by 322
Abstract
This study examines the relationships between land use, climate, and nature-based adaptation in coastal and island regions of South Korea, focusing on the counties of Muan and Shinan along the southwest coast. Using land use data (2014) and meteorological data (2001–2010), Spearman correlation [...] Read more.
This study examines the relationships between land use, climate, and nature-based adaptation in coastal and island regions of South Korea, focusing on the counties of Muan and Shinan along the southwest coast. Using land use data (2014) and meteorological data (2001–2010), Spearman correlation analysis was applied to assess the associations between six land-use categories and eight climatic indicators, including temperature extremes, tropical nights, and precipitation patterns. Results show that built-up and agricultural areas are closely linked to higher maximum temperatures and more frequent heatwaves, indicating greater climatic vulnerability. Conversely, wetlands, and bare lands demonstrate significant cooling effects, acting as natural buffers against rising temperatures. Wetlands play dual roles in supporting initial hydrological heat mitigation but enhancing nocturnal heat retention during prolonged heatwaves. Forests and grasslands emerged as important land-use types that can help reduce the number of tropical night days. These findings underscore the importance of nature-based land management—such as forest expansion, wetland conservation, and vegetation restoration—for mitigating heat stress and enhancing climate resilience. This study calls for extending national climate adaptation policies beyond urban areas to support aging, and therefore vulnerable, coastal and island populations facing the intensifying effects of climate change. Full article
(This article belongs to the Special Issue Impact and Adaptation of Climate Change on Natural Ecosystems)
Show Figures

Figure 1

29 pages, 6854 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Water–Energy–Food Synergistic Efficiency: A Case Study of Irrigation Districts in the Lower Yellow River
by Yuchen Zheng, Chang Liu, Lingqi Li, Enhui Jiang, Genxiang Feng, Bo Qu, Lingang Hao, Jiaqi Li and Jiahe Li
Sustainability 2025, 17(24), 11265; https://doi.org/10.3390/su172411265 - 16 Dec 2025
Viewed by 277
Abstract
As an integrated framework linking resource use and environmental sustainability, the WEF (Water–Energy–Food) system plays a vital role in achieving sustainable agricultural development. Focusing on the irrigation districts in the lower reaches of the Yellow River, this study constructed and applied a Super-Undesirable-SBM [...] Read more.
As an integrated framework linking resource use and environmental sustainability, the WEF (Water–Energy–Food) system plays a vital role in achieving sustainable agricultural development. Focusing on the irrigation districts in the lower reaches of the Yellow River, this study constructed and applied a Super-Undesirable-SBM (super-efficiency undesirable slacks-based measure) model and a GTWR (geographically and temporally weighted regression) model from a WEF perspective to systematically analyze the spatiotemporal evolution and driving mechanisms of WEFSE (Water–Energy–Food Synergistic Efficiency) from 2000 to 2020. The overall WEFSE exhibited a continuous upward trend, with the spatial pattern gradually shifting from the southwest to the northeast and regional disparities becoming more pronounced. The efficiency demonstrated a significant positive spatial autocorrelation, indicating a stable clustering pattern of “high–high” and “low–low” efficiency areas. In terms of driving mechanisms, WEFSE evolved from being dominated by socio-economic drivers to a composite system jointly influenced by ecological and structural factors. Among these, PD (population density) and WP (proportion of water area) had increasingly positive effects, whereas PRE (precipitation) and NDVI (normalized difference vegetation index) imposed notable constraints. Meanwhile, PCL (proportion of cultivated land), GP (proportion of grassland), and AT (average temperature) exhibited significant spatial differentiation. This study highlights that the assessment of WEFSE and identification of its driving mechanisms using the Super-Undesirable-SBM and GTWR models can help to uncover the spatiotemporal dynamics of agricultural resource utilization, providing methodological support and decision-making insights for optimizing resource allocation and promoting sustainable development in the Yellow River irrigation districts and other complex agricultural systems. Full article
Show Figures

Figure 1

24 pages, 9090 KB  
Article
The Dry Deposition Effect of PM2.5 in Urban Green Spaces of Beijing, China
by Hongjuan Lei, Shaoning Li, Yingrui Duan, Xiaotian Xu, Na Zhao, Shaowei Lu and Bin Li
Sustainability 2025, 17(21), 9608; https://doi.org/10.3390/su17219608 - 29 Oct 2025
Viewed by 996
Abstract
As an important part of the urban ecological environment, urban green space plays a crucial and irreplaceable role in improving air quality, promoting sustainable development, and enhancing residents’ quality of life. This study takes Beijing’s urban green space as the research object. Based [...] Read more.
As an important part of the urban ecological environment, urban green space plays a crucial and irreplaceable role in improving air quality, promoting sustainable development, and enhancing residents’ quality of life. This study takes Beijing’s urban green space as the research object. Based on Landsat series satellite remote sensing images, the land use distribution of Beijing is obtained through supervised classification. Combined with data such as PM2.5 concentration and wind speed, the dry deposition efficiency of PM2.5 is quantitatively analyzed. The results show that: (1) Beijing’s urban green space has significant advantages in PM2.5 dry deposition. In terms of dry deposition flux, the order of annual average deposition of different land types is: forest land > farm land > grassland > impervious surface > water body = unutilized land. Among them, forest land has the best dry deposition effect, with an annual average dry deposition of 1.13 g/m2, which is 188.41 times that of impervious surface; cultivated land and grassland are 0.22 g/m2 and 0.19 g/m2 respectively, which are 37.13 times and 32.34 times that of impervious surface. (2) From 2000 to 2020, the PM2.5 removal rate of green space continued to rise, but the reduction amount showed a trend of first increasing and then decreasing. There are significant seasonal differences. The reduction amount is the highest in autumn (reaching 449.90 tons in October), followed by summer, spring, and winter (the lowest in August, at 190.27 tons). (3) In terms of spatial distribution, the high-value areas of dry deposition are concentrated in the suburbs, showing a “southwest-northeast” axial distribution, while the low-value areas are mainly located in the outer suburbs, reflecting the imbalance of green space layout and the regional differences in PM2.5 reduction. Combined with the current situation of green space in Beijing, the study puts forward targeted optimization suggestions, providing theoretical support and scientific basis for the construction of Beijing as a “garden city”. Full article
(This article belongs to the Special Issue Air Quality Characterisation and Modelling—2nd Edition)
Show Figures

Figure 1

21 pages, 7619 KB  
Article
The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control
by Shui Li, Pingping Yang, Changxin Yang, Haoru Zhang and Xiong Gao
Land 2025, 14(9), 1903; https://doi.org/10.3390/land14091903 - 18 Sep 2025
Viewed by 870
Abstract
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific [...] Read more.
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific effects of ecological restoration measures. This study integrates multi-source remote sensing data and adjusts InVEST model parameters to systematically reveal the spatiotemporal evolution of carbon storage and its driving mechanisms in typical karst plateau regions of southwest China under ecological restoration measures. The results indicate: (1) From 2000 to 2020, the carbon stock in the study area increased by 6.09% overall. However, from 2020 to 2025, due to the rapid conversion of forest land into building land and grassland, the carbon stock decreased sharply by 7.69%. (2) Severe rock desertification constrains carbon stock, and afforestation provides significantly higher long-term carbon sink benefits. (3) The spatial heterogeneity of carbon storage is primarily influenced by the combined effects of natural factors (rock desertification, elevation, NDVI) and human factors (POP). Based on the research findings, it is recommended that measures to promote close forests be prioritized in karst regions to protect and restore forest ecosystems. At the same time, local habitat improvement and the establishment of ecological compensation mechanisms should be implemented, and the expansion of building land should be strictly controlled to enhance the stability of ecosystems and their carbon sink functions. These research findings provide a solid scientific basis for enhancing and precisely regulating the carbon sink capacity of fragile karst ecosystems, and are of great significance for formulating scientifically sound and reasonable ecological protection policies. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

19 pages, 10111 KB  
Article
Threshold Extraction and Early Warning of Key Ecological Factors for Grassland Degradation Risk
by Jingbo Li, Wei Liang, Min Xu, Haijing Tian, Xiaotong Gao, Yujie Yang, Ruichen Hu, Yu Zhang and Chunxiang Cao
Remote Sens. 2025, 17(17), 3098; https://doi.org/10.3390/rs17173098 - 5 Sep 2025
Cited by 1 | Viewed by 1478
Abstract
Grassland degradation poses a serious threat to ecosystem stability and the sustainable development of human societies. In this study, we propose a framework for grassland degradation risk assessments and early warning based on key ecological factors (KEFs) in Xilingol. The NDVI, NPP, and [...] Read more.
Grassland degradation poses a serious threat to ecosystem stability and the sustainable development of human societies. In this study, we propose a framework for grassland degradation risk assessments and early warning based on key ecological factors (KEFs) in Xilingol. The NDVI, NPP, and grass yield were selected as KEFs to represent vegetation coverage, ecosystem productivity, and actual biomass, respectively. By constructing a grassland degradation index (GDI) and integrating K-means clustering, the average curvature, and a gravity center shift analysis, we quantified the degradation risk levels and identified the threshold values for different grassland types. The results showed the following: (1) the grass yield was the most sensitive indicator of grassland degradation in Xilingol, with high-risk thresholds decreasing from 115.67 g·m−2 in the temperate meadow steppes (TMSs) to 73.27 g·m−2 in the temperate typical steppes (TTSs), and further to 32.30 g·m−2 in the temperate desert steppes (TDSs); (2) the TDSs exhibited the highest curvature value (2.81 × 10−4) in the initial stage, indicating a higher likelihood of rapid early-stage degradation, whereas the TMSs and TTSs reached peak curvature in the latest stages; and (3) the TTSs had the largest proportion of high-risk areas (33.02%), with a northeast–southwest distribution and a probable westward expansion trend. This study provides a practical framework for grassland degradation risk assessments and early warning, offering valuable guidance for ecosystem management and sustainable land use. Full article
(This article belongs to the Special Issue Remote Sensing in Applied Ecology (Second Edition))
Show Figures

Figure 1

17 pages, 1397 KB  
Article
Comparison of Soil Organic Carbon Measurement Methods
by Wing K. P. Ng, Pete J. Maxfield, Adrian P. Crew, Dayane L. Teixeira, Tim Bevan and Matt J. Bell
Agronomy 2025, 15(8), 1826; https://doi.org/10.3390/agronomy15081826 - 28 Jul 2025
Cited by 1 | Viewed by 3284
Abstract
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different [...] Read more.
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different agricultural land types. The measurement methods of loss-on-ignition (LOI), automated dry combustion (Dumas), and real-time near-infrared spectroscopy (NIRS) were compared. A total of 95 soil core samples, ranging in clay and calcareous content, were collected across a range of agricultural land types from forty-eight fields across five farms in the Southwest of England. There were similar and positive correlations between all three methods for measuring SOC (ranging from r = 0.549 to 0.579; all p < 0.001). On average, permanent grass fields had higher SOC content (6.6%) than arable and temporary ley fields (4.6% and 4.5%, respectively), with the difference of 2% indicating a higher carbon storage potential in permanent grassland fields. Newly predicted conversion equations of linear regression were developed among the three measurement methods according to all the fields and land types. The correlation of the conversation equations among the three methods in permanent grass fields was strong and significant compared to those in both arable and temporary ley fields. The analysed results could help understand soil carbon management and maximise sequestration. Moreover, the approach of using real-time NIRS analysis with a rechargeable portable NIRS soil device can offer a convenient and cost-saving alternative for monitoring preliminary SOC changes timely on or offsite without personnel risks from the high-temperature furnace and chemical reagent adopted in the LOI and Dumas processes, respectively, at the laboratory. Therefore, the study suggests that faster, lower-cost, and safer methods like NIRS for analysing initial SOC measurements are now available to provide similar SOC results as traditional soil analysis methods of the LOI and Dumas. Further studies on assessing SOC levels in different farm locations, land, and soil types across seasons using NIRS will improve benchmarked SOC data for farm stakeholders in making evidence-informed agricultural practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 3382 KB  
Article
Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
by Wangjun Li, Xiaolong Bai, Dongpeng Lv and Yurong Yang
J. Fungi 2025, 11(7), 525; https://doi.org/10.3390/jof11070525 - 16 Jul 2025
Viewed by 901
Abstract
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, [...] Read more.
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, remain unclear. Therefore, we conducted a field investigation combined with a greenhouse experiment to explore the importance of AMF compared to bacteria and fungi for plant biomass allocation. The results showed that plant biomass in degraded grasslands exhibited allometric biomass allocation, contrasting with isometric partitioning in non-degraded grasslands. AMF, not bacteria or fungi, were the primary microbial mediators of grassland degradation effects on plant biomass allocation based on structural equation modeling. The greenhouse experiment demonstrated that the selected AMF keystone species from the field study performed according to ecological network analysis, particularly multi-species combinations, enhanced the belowground biomass allocation of F. ovina under rocky desertification stress compared to single-species inoculations, through decreasing soil pH, enhancing alkaline phosphatase (ALP) activity, and increasing the expression level of AMF-inducible phosphate transporter (PT4). This study highlights the critical role of the AMF community, rather than individual species, in mediating plant survival strategies under rocky desertification stress. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

22 pages, 3260 KB  
Article
Evaluation of Habitat Quality in Karst Mountainous Areas of Guanling County Based on InVEST and MGWR Models
by Shuanglong Du, Zhongfa Zhou, Denghong Huang, Fei Dong, Xiandan Du, Yining Luo, Qingqing Dai and Yue Yang
Land 2025, 14(7), 1445; https://doi.org/10.3390/land14071445 - 10 Jul 2025
Viewed by 922
Abstract
As a core karst region in Southwest China, Guanling County plays a crucial role in regional ecological governance. This study integrates the InVEST model, landscape pattern index analysis, and the MGWR spatial model to systematically explore the dynamic mechanisms of habitat quality in [...] Read more.
As a core karst region in Southwest China, Guanling County plays a crucial role in regional ecological governance. This study integrates the InVEST model, landscape pattern index analysis, and the MGWR spatial model to systematically explore the dynamic mechanisms of habitat quality in Guanling’s karst mountains. Key findings include: (1) Landscape pattern alterations exhibit significant impacts on habitat quality, characterized by strong spatial heterogeneity; (2) Expansion of forest and grassland effectively buffers the negative effects of construction land expansion, forming an ecological compensation mechanism through enhanced landscape connectivity; (3) Between 2000 and 2020, the proportion of high-importance habitat quality zones increased from 54.79% to 56.16%, with moderate-importance zones stabilizing at approximately 7.80% and general-importance zones growing to 2.46%. The results provide a multi-scale analytical framework for habitat protection and land use optimization in fragile karst ecosystems. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

20 pages, 8902 KB  
Article
Spatiotemporal Variation Patterns of and Response Differences in Water Conservation in China’s Nine Major River Basins Under Climate Change
by Qian Zhang and Yuhai Bao
Atmosphere 2025, 16(7), 837; https://doi.org/10.3390/atmos16070837 - 10 Jul 2025
Viewed by 808
Abstract
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest [...] Read more.
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest Rivers, and Inland Rivers) through integrated application of the InVEST model and geographical detector model. We systematically examine the spatiotemporal heterogeneity of water conservation capacity and its driving mechanisms from 1990 to 2020. The results reveal a distinct northwest–southeast spatial gradient in water conservation across China, with lower values predominating in northwestern regions. Minimum conservation values were recorded in the Inland River Basin (15.88 mm), Haihe River Basin (42.07 mm), and Yellow River Basin (43.55 mm), while maximum capacities occurred in the Pearl River Basin (483.68 mm) and Southeast Rivers Basin (517.21 mm). Temporal analysis showed interannual fluctuations, peaking in 2020 at 130.98 mm and reaching its lowest point in 2015 at 113.04 mm. Precipitation emerged as the dominant factor governing spatial patterns, with higher rainfall correlating strongly with enhanced conservation capacity. Land cover analysis revealed superior water retention in vegetated areas (forests, grasslands, and cultivated land) compared to urbanized and bare land surfaces. Our findings demonstrate that water conservation dynamics result from synergistic interactions among multiple factors rather than single-variable influences. Accordingly, we propose that future water resource policies adopt an integrated management approach addressing climate patterns, land use optimization, and socioeconomic factors to develop targeted conservation strategies. Full article
Show Figures

Figure 1

20 pages, 11158 KB  
Article
Fine-Grained Land Use Remote Sensing Mapping in Karst Mountain Areas Using Deep Learning with Geographical Zoning and Stratified Object Extraction
by Bo Li, Zhongfa Zhou, Tianjun Wu and Jiancheng Luo
Remote Sens. 2025, 17(14), 2368; https://doi.org/10.3390/rs17142368 - 10 Jul 2025
Cited by 1 | Viewed by 1170
Abstract
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological [...] Read more.
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological restoration projects, the ecological degradation of karst mountain areas in Southwest China has been significantly curbed. However, the research on the fine-grained land use mapping and quantitative characterization of spatial heterogeneity in karst mountain areas is still insufficient. This knowledge gap impedes scientific decision-making and precise policy formulation for regional ecological environment management. Hence, this paper proposes a novel methodology for land use mapping in karst mountain areas using very high resolution (VHR) remote sensing (RS) images. The innovation of this method lies in the introduction of strategies of geographical zoning and stratified object extraction. The former divides the complex mountain areas into manageable subregions to provide computational units and introduces a priori data for providing constraint boundaries, while the latter implements a processing mechanism with a deep learning (DL) of hierarchical semantic boundary-guided network (HBGNet) for different geographic objects of building, water, cropland, orchard, forest-grassland, and other land use features. Guanling and Zhenfeng counties in the Huajiang section of the Beipanjiang River Basin, China, are selected to conduct the experimental validation. The proposed method achieved notable accuracy metrics with an overall accuracy (OA) of 0.815 and a mean intersection over union (mIoU) of 0.688. Comparative analysis demonstrated the superior performance of advanced DL networks when augmented with priori knowledge in geographical zoning and stratified object extraction. The approach provides a robust mapping framework for generating fine-grained land use data in karst landscapes, which is beneficial for supporting academic research, governmental analysis, and related applications. Full article
Show Figures

Figure 1

19 pages, 4115 KB  
Article
Status Identification and Restoration Zoning of Ecological Space in Maowusu Sandy Land Based on Temporal and Spatial Characteristics of Land Use
by Tiejun Zhang, Peng Xiao, Zhenqi Yang and Jianying Guo
Agronomy 2025, 15(6), 1445; https://doi.org/10.3390/agronomy15061445 - 13 Jun 2025
Cited by 1 | Viewed by 814
Abstract
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With [...] Read more.
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With Maowusu sandy land as the study object, the temporal and spatial characteristics of land use and the driving forces were explored via spatial analysis technology—the geographic information system. Then, a 2D relation judgment matrix was constructed by evaluating the importance of ecosystem service functions and ecological sensitivity. Next, restoration zoning of natural ecological space was performed, and relevant restoration suggestions were put forward accordingly. Results show that the land use in Maowusu sandy land has significantly changed in the past 30 years, with construction land and forest continuously expanding, cropland and grassland being squeezed, and some areas of unutilized land being transformed into other land use types. Ecosystem service functions tend to weaken from southwest to northeast, whereas the ecologically sensitive zones are mainly distributed in the middle of Maowusu sandy land. The high-importance and high-sensitivity zones of natural ecological space account for 3.60% of the total area of natural ecological space, mainly distributed near Ejin Horo Banner. A comprehensive restoration project of soil and water conservation should be conducted in this zone to alleviate soil erosion and maintain the management and restoration of ecological protection red lines. Moderately important sensitive zones account for the largest proportion (80.42%) of the total area of natural ecological space, being widely distributed. In such zones, water resources should be taken as constraints, with emphasis on ecological protection and improvement measures. Low-importance and low-sensitivity zones account for the smallest proportion, in which ecosystem protection, near-natural restoration, and moderate development and utilization should be carried out. This study aims to provide a scientific basis for reasonably protecting natural ecological resources and promoting the healthy and ordered development of natural ecosystems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 10937 KB  
Article
Adaptive Analysis of Ecosystem Stability in China to Soil Moisture Variations: A Perspective Based on Climate Zoning and Land Use Types
by Yuanbo Lu, Yang Yu, Xiaoyun Ding, Lingxiao Sun, Chunlan Li, Jing He, Zengkun Guo, Ireneusz Malik, Malgorzata Wistuba and Ruide Yu
Remote Sens. 2025, 17(12), 1971; https://doi.org/10.3390/rs17121971 - 6 Jun 2025
Cited by 1 | Viewed by 904
Abstract
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones [...] Read more.
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones and land cover types. Sen’s Slope Estimation and the Mann–Kendall trend test, combined with linear regression and correlation analyses, are employed to analyze the long-term trends of EVI and GPP in different climatic zones and land cover types and to assess the effects of soil moisture changes on ecosystem stability. The research reveals the following findings: (1) On a national scale, both EVI and GPP exhibit positive growth trends, with more significant increases in humid areas and relatively slower growth in arid areas. In addition, EVI and GPP of different land cover types exhibit positive inter-annual variation trends, reflecting a gradual enhancement in ecosystem productivity. (2) Cluster analysis shows that EVI has strong spatial correlation, with a distribution pattern of low–low (L-L) clusters in the north and high–high (H-H) clusters in the south. L-H clusters are concentrated in the Huaihai, Southwest Rivers, and Pearl River basins, while H-L clusters are scattered along the eastern coast. The spatial correlation of GPP is mainly concentrated in the south and the northeast, with a distribution pattern of L-L in the northeast, L-H in the Yangtze River basin, and H-H in the south. H-L clusters are dispersed in the downstream area of the Yangtze River. Both EVI and GPP show a tendency for high-value aggregation in space, with high-value areas of EVI located in the south and low-value areas in the central and western regions. High-value areas of GPP are in the south, while low-value areas are in the northeast, particularly in the Yangtze River Delta. (3) The correlation between EVI, GPP, and soil moisture varies significantly across different climatic regions. Arid and semi-humid regions show significant correlations between specific soil moisture depths and EVI and GPP, while such correlations are not significant in humid regions. The EVI and GPP values of croplands and grasslands are significantly and negatively correlated with soil moisture at depths of 150–200 cm (SM4). Conversely, wetland GPP values increase significantly with increasing soil moisture. Other vegetation types do not show significant correlations with soil moisture. The results of this study provide an important basis for understanding the impact of climate change on ecosystem stability and offer scientific guidance for ecological protection and water resource management. Full article
Show Figures

Figure 1

21 pages, 4302 KB  
Article
Construction and Optimization of the Ecological Security Pattern of Pinglu Canal Economic Zone Based on the InVEST-Circuit Theory Model
by Zhanhao Dang, Baoqing Hu, Chunlian Gao, Shaoqiang Wen, Jinrui Ren and Yunfei Liang
Land 2025, 14(5), 1103; https://doi.org/10.3390/land14051103 - 19 May 2025
Cited by 5 | Viewed by 1213
Abstract
The strategic delineation of ecological corridors and establishment of robust ecological security frameworks constitute fundamental prerequisites for advancing ecologically balanced growth and premium development within the Pinglu Canal Economic Belt. In this study, a comprehensive framework integrating ecological sources, resistance surfaces, and ecological [...] Read more.
The strategic delineation of ecological corridors and establishment of robust ecological security frameworks constitute fundamental prerequisites for advancing ecologically balanced growth and premium development within the Pinglu Canal Economic Belt. In this study, a comprehensive framework integrating ecological sources, resistance surfaces, and ecological corridors was developed using the InVEST model combined with circuit theory. The framework was then applied to assess the spatial and temporal dynamics of four major ecosystem services over the period from 2000 to 2020. The main findings are as follows: (1) From 2000 to 2020, the values of the four ecosystem services showed an overall declining trend. Spatially, areas with high ecosystem service importance were mainly concentrated in woodland and grassland areas in the southwest and northwest of the region. (2) The resistance values of the study area’s resistance surface ranged from 1 to 4.83. High-resistance areas were primarily located in the central region, corresponding to areas of intense human activity, while low-resistance areas were distributed around the periphery and largely overlapped with ecological source areas, presenting a spatial pattern of “high in the center, low at the edges”. (3) In total, 119 ecological barriers, 28 corridors, 8 critical pinch points, and 16 habitat source areas were identified. Building on these results, an enhanced ecological security layout—defined by the ‘three belts and three zones’ strategy—was formulated to guide restoration efforts and inform ecological management across the Pinglu Canal Economic Region. Full article
Show Figures

Figure 1

17 pages, 4988 KB  
Article
Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia
by Bingxuan Liu, Dacheng Wang, Guozhu Mao, Aixia Yang, Yue Jiao and Kaichen Zhang
Land 2025, 14(5), 1092; https://doi.org/10.3390/land14051092 - 17 May 2025
Cited by 1 | Viewed by 1494
Abstract
Inner Mongolia’s grasslands, covering 22% of China’s total grassland area, face critical challenges in balancing livestock production with carbon sequestration under climate change pressures. This study establishes an integrated assessment framework combining remote sensing monitoring, InVEST modeling, and life cycle assessment to analyze [...] Read more.
Inner Mongolia’s grasslands, covering 22% of China’s total grassland area, face critical challenges in balancing livestock production with carbon sequestration under climate change pressures. This study establishes an integrated assessment framework combining remote sensing monitoring, InVEST modeling, and life cycle assessment to analyze the spatial–temporal evolution of grassland ecological carrying capacity and livestock-related carbon emissions from 2000 to 2020. Key findings reveal a 78.8% increase in actual livestock carrying capacity (from 53.09 to 94.94 million sheep units), with Tongliao experiencing 185% growth, while Alxa League showed a 229,500 sheep unit decrease. The theoretical carrying capacity grew by 50.6%, yet severe ecological pressure emerged in western regions, as evidenced by Alxa League’s grass–livestock balance index exceeding 2100%. Carbon sequestration exhibited a northeast–southwest spatial pattern, decreasing by 7.4% during 2015–2020, while greenhouse gas emissions from intensive livestock systems reached 6.40 million tons CO2-eq in Tongliao by 2020. The results demonstrate that regions combining high-intensity husbandry with low carbon storage require urgent intervention. We propose three pathways: adaptive grazing management to reduce overloading in western pastoral zones, carbon monitoring systems to enhance sequestration in vulnerable ecosystems, and emission reduction technologies for intensive farming systems. These strategies provide actionable solutions for reconciling grassland sustainability with China’s dual carbon goals, offering insights for global pastoral ecosystem management. Full article
Show Figures

Figure 1

Back to TopTop