Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = sound radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 769 KiB  
Article
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
by Rohan Kalahasty, Gayathri Yerrapragada, Jieun Lee, Keerthy Gopalakrishnan, Avneet Kaur, Pratyusha Muddaloor, Divyanshi Sood, Charmy Parikh, Jay Gohri, Gianeshwaree Alias Rachna Panjwani, Naghmeh Asadimanesh, Rabiah Aslam Ansari, Swetha Rapolu, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Vijaya M. Dasari, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
Sensors 2025, 25(15), 4735; https://doi.org/10.3390/s25154735 - 31 Jul 2025
Viewed by 283
Abstract
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low [...] Read more.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

24 pages, 13347 KiB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 220
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3444 KiB  
Article
Multiphysics-Coupled Simulation of Ultrasound-Assisted Tailing Slurry Sedimentation
by Liang Peng and Congcong Zhao
Materials 2025, 18(15), 3430; https://doi.org/10.3390/ma18153430 - 22 Jul 2025
Viewed by 185
Abstract
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound [...] Read more.
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound field. The simulation results show that under 28 kHz ultrasonic radiation, the amplitude of sound pressure in the sand silo (173 Pa) is much lower than that at 40 kHz (1220 Pa), which can avoid damaging the original settlement mode of the tail mortar. At the same time, the periodic fluctuation amplitude of its longitudinal sound pressure is significantly greater than 25 kHz, which can promote settlement by enhancing particle tensile and compressive stress, achieving the best comprehensive effect. The staggered placement scheme of the transducer eliminates upward disturbance in the flow field by changing the longitudinal opposing sound field to oblique propagation, reduces energy dissipation, and increases the highest sound pressure level in the compartment to 130 dB. The sound pressure distribution density is significantly improved, further enhancing the settling effect. This study clarifies the correlation mechanism between ultrasound parameters and tailings’ settling efficiency, providing a theoretical basis for parameter optimization of ultrasound-assisted tailing treatment technology. Its results have important application value in the optimization of tailings settling in metal mine tailing filling. Full article
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 427
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

16 pages, 2118 KiB  
Review
Recent Advances in Combination Therapy of YAP Inhibitors with Physical Anti-Cancer Strategies
by Junchi Zhou, Changyan Yu, Wanhong Yang, Nian Jiang, Sanhua Li, Yun Liu and Xinting Zhu
Biomolecules 2025, 15(7), 945; https://doi.org/10.3390/biom15070945 - 29 Jun 2025
Viewed by 758
Abstract
In recent years, physical anti-cancer strategies using radiation, light, sound, electricity, and magnetism have shown great potential in cancer treatment. Photodynamic therapy, radiation therapy, photothermal therapy, and other treatments have different advantages. As a critical transcriptional coactivator in the Hippo signaling pathway, Yes-Associated [...] Read more.
In recent years, physical anti-cancer strategies using radiation, light, sound, electricity, and magnetism have shown great potential in cancer treatment. Photodynamic therapy, radiation therapy, photothermal therapy, and other treatments have different advantages. As a critical transcriptional coactivator in the Hippo signaling pathway, Yes-Associated Protein (YAP) is closely related to tumor proliferation, radiation resistance, and immunosuppression. YAP has been a target in immunotherapy, and YAP inhibitors are used in clinical practice. Combining immunotherapy and physical anti-cancer strategies is an anti-cancer program with clinical potential to enhance the therapeutic effect. This review summarizes the role of photodynamic therapy, radiotherapy, and other physical anti-cancer strategies combined with YAP-targeted therapy in cancer treatment. YAP inhibitors and these physical anti-cancer strategies provide new directions and ideas for cancer treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

16 pages, 3812 KiB  
Article
A Maximum Likelihood Estimation Method for Underwater Radiated Noise Power
by Guoqing Jiang, Mingyang Li, Zhuoran Liu, Linchuan Sun and Qingcui Wang
Appl. Sci. 2025, 15(12), 6692; https://doi.org/10.3390/app15126692 - 14 Jun 2025
Viewed by 329
Abstract
Underwater radiated noise power estimation is crucial for the quantitative assessment of noise levels emitted by ships and underwater vehicles. This paper therefore proposes a maximum likelihood estimation method for determining the power of underwater radiated noise. The method establishes the probability density [...] Read more.
Underwater radiated noise power estimation is crucial for the quantitative assessment of noise levels emitted by ships and underwater vehicles. This paper therefore proposes a maximum likelihood estimation method for determining the power of underwater radiated noise. The method establishes the probability density function of the hydrophones array received data and derives the minimum variance unbiased estimation of the power through theoretical analysis under the maximum likelihood criterion. Numerical simulations and experimental data demonstrate that this method can significantly reduce the influence of ambient noise on estimation results and improve the estimation accuracy under low signal-to-noise ratio conditions, outperforming commonly used beamforming-based estimation methods. In addition, the estimation variance achieves the Cramér–Rao lower bound, which is consistent with theoretical derivation. When the source position is unknown, this method can simultaneously localize the sound source and estimate its power by searching for the maximum value within a specified region. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

16 pages, 281 KiB  
Article
Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids
by Swati Routh and Zdzislaw E. Musielak
Fluids 2025, 10(6), 156; https://doi.org/10.3390/fluids10060156 - 13 Jun 2025
Viewed by 388
Abstract
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects [...] Read more.
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects of one specific temperature gradient on the wave generation and propagation are studied. It is shown that the presence of the temperature gradient in the region of wave generation leads to monopole and dipole sources of acoustic emission and that the efficiency of these two sources may be higher than Lighthill’s quadrupoles. In addition, the wave propagation far from the source is different than in Lighthill’s original work because of the presence of the acoustic cutoff frequency resulting from the temperature gradient. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
18 pages, 13439 KiB  
Article
Experimental Investigation into the Active Narrowband Reshaping of a Ship Model’s Acoustic Signature
by Steffen Ungnad, Delf Sachau, Carsten Zerbs, Andreas Müller and Anton Homm
Acoustics 2025, 7(2), 34; https://doi.org/10.3390/acoustics7020034 - 7 Jun 2025
Viewed by 1154
Abstract
The use of inertial actuators to control the radiated sound pressure of a steel ship model at a lake measurement facility is examined. Therefore, methods of active vibration control as well as active control of target sound fields are applied using a fixed [...] Read more.
The use of inertial actuators to control the radiated sound pressure of a steel ship model at a lake measurement facility is examined. Therefore, methods of active vibration control as well as active control of target sound fields are applied using a fixed configuration of twelve accelerometers, eight control actuators, and five hydrophones. A narrowband feedforward active control system is used to manipulate the sound pressure at hydrophone positions, focusing not only on reducing but also on adding spectral lines in the radiated signature. The performance is assessed using measured data by additional accelerometers inside the ship model as well as by hydrophones surrounding the measurement facility. It is found that less control effort is necessary for the generation of additional tones compared to the control of a present disturbance at hydrophones. In the frequency range considered (below 500 Hz), the actively induced change in the mean structural velocity is not necessarily proportional to the change in the radiated sound pressure. In contrast to the vibration velocity, no unwanted amplification of the sound pressure is found for the frequencies observed. Full article
Show Figures

Figure 1

10 pages, 2895 KiB  
Communication
Implementation of a Parametric Ultrasonic Receiver Using Multilayer Lead Zirconate Titanate for a Feasibility Study of an Ultrasonic-Beam-Focused Hearing Aid
by Ki Woong Seong, Jin Ho Cho, Myoung Nam Kim, Dong Ho Shin and Jyung Hyun Lee
Appl. Sci. 2025, 15(10), 5679; https://doi.org/10.3390/app15105679 - 19 May 2025
Viewed by 455
Abstract
We demonstrated that focusing an ultrasonic beam on the eardrum can overcome the high-frequency sensitivity limitations and acoustic distortion of conventional hearing aid receivers. Multilayer PZT was used for an ultrasonic receiver that operates at low voltage and enters the external auditory canal, [...] Read more.
We demonstrated that focusing an ultrasonic beam on the eardrum can overcome the high-frequency sensitivity limitations and acoustic distortion of conventional hearing aid receivers. Multilayer PZT was used for an ultrasonic receiver that operates at low voltage and enters the external auditory canal, and a 3 mm radius radiator was designed to radiate the focused parametric acoustic signal to the center of the eardrum based on an acoustic analysis according to the frequency. To this end, an ultrasonic earphone consisting of a radiator attached to multilayer PZT and a 130 kHz parametric ultrasonic modulator was implemented; vibration and sound pressure were measured using a laser vibrometer and a tube-type microphone. The proposed parametric ultrasonic receiver generates an average sound pressure of 70 dB SPL at a frequency of 1~10 kHz with a 10 Vpeak applied voltage; this was implemented to provide a higher output in the range of 5 kHz and above, which is difficult to cover with existing receivers. Full article
(This article belongs to the Special Issue Monitoring of Human Physiological Signals)
Show Figures

Figure 1

17 pages, 2943 KiB  
Article
Experimental Study on Noise Reduction Performance of Vertical Sound Barrier in Elevated Rail Transit
by Lizhong Song, Yisheng Zhang, Quanmin Liu, Yunke Luo and Ran Bi
Buildings 2025, 15(10), 1621; https://doi.org/10.3390/buildings15101621 - 11 May 2025
Viewed by 481
Abstract
With the large-scale construction of rail transit in mainland China, the noise problem caused by passing trains has become increasingly prominent. The vertical sound barrier is currently the most effective noise control measure for rail transit. However, the noise reduction performance of the [...] Read more.
With the large-scale construction of rail transit in mainland China, the noise problem caused by passing trains has become increasingly prominent. The vertical sound barrier is currently the most effective noise control measure for rail transit. However, the noise reduction performance of the vertical sound barrier at different train speeds remains unclear. This study focuses on the box-girder cross-sections of an elevated urban rail transit line with and without vertical sound barriers, conducting field tests during train passages. Based on the test results, the influence of train speed on noise levels at both cross-sections was investigated, the sound source characteristics were analyzed, and the noise reduction performance of the vertical sound barriers at different speeds was explored. The findings indicate the following: Regardless of the presence of sound barriers, within the speed range of 20 to 80 km/h, the linear sound pressure levels at the track-side and beam-side measurement points exhibit a strong linear correlation with speed, while the correlation is weaker at the beam-bottom measurement points. As speed increases, the wheel–rail noise increases by approximately 1.5 dB compared to the structural noise at the same speed. Vertical sound barriers significantly reduce mid-to-high-frequency noise, but in the low frequency band between 20 and 63 Hz, the noise increases, likely due to secondary structural noise radiated by the self-vibration of the barriers when trains pass. At speeds of 20, 40, 60, and 80 km/h, the insertion loss at measurement points located 7.5 m from the track centerline ranges from 6.5 to 9.0, 8.5 to 10.5, 7.5 to 9.5, and 7.5 to 10.2 dB, respectively. At 25 m from the track centerline, the insertion loss ranges from 1.5 to 2.5, 6.0 to 6.5, 5.5 to 6.0, and 5.0 to 6.0 dB, respectively. The noise reduction capability of the vertical sound barrier initially increases and then decreases with higher speeds, and the rate of reduction slows as speed increases. This research will provide a reference and basis for determining speed limits in the rail transit sections equipped with sound barriers. Full article
(This article belongs to the Special Issue Vibration Prediction and Noise Assessment of Building Structures)
Show Figures

Figure 1

18 pages, 3381 KiB  
Article
Sea Breeze-Driven Variations in Planetary Boundary Layer Height over Barrow: Insights from Meteorological and Lidar Observations
by Hui Li, Wei Gong, Boming Liu, Yingying Ma, Shikuan Jin, Weiyan Wang, Ruonan Fan, Shuailong Jiang, Yujie Wang and Zhe Tong
Remote Sens. 2025, 17(9), 1633; https://doi.org/10.3390/rs17091633 - 5 May 2025
Viewed by 656
Abstract
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from [...] Read more.
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from 2014 to 2021 to investigate the annual and polar day PBLH evolution driven by sea breezes in the Barrow region of Alaska, as well as the specific mechanisms. The results show that sea breeze events significantly suppress PBLH, especially during the polar day, when prolonged solar radiation intensifies the thermal contrast between land and ocean. The cold, moist sea breeze stabilizes the atmospheric conditions, reducing net radiation and sensible heat flux. All these factors inhibit turbulent mixing and PBLH development. Lidar and sounding analyses further reveal that PBLH is lower during sea breeze events compared to non-sea-breeze conditions, with the peak of its probability density distribution occurring at a lower PBLH range. The variable importance in projection (VIP) analysis identifies relative humidity (VIP = 1.95) and temperature (VIP = 1.1) as the primary factors controlling PBLH, highlighting the influence of atmospheric stability in regulating PBLH. These findings emphasize the crucial role of sea breeze in modulating PBL dynamics in the Arctic, with significant implications for improving climate models and studies on pollutant dispersion in polar regions. Full article
Show Figures

Figure 1

27 pages, 16538 KiB  
Article
Attempts at Pseudo-Inverse Vibro-Acoustics by Means of SLDV-Based Full-Field Mobilities
by Alessandro Zanarini
Machines 2025, 13(4), 324; https://doi.org/10.3390/machines13040324 - 16 Apr 2025
Viewed by 425
Abstract
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper [...] Read more.
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper proposes—for the direct and inverse vibro-acoustic approaches—to characterise the broad frequency band structural dynamics of radiating surfaces by means of experiment-based full-field contactless techniques, with increased spatial resolution, but without the inertia-related distortions of traditional measurement transducers. The SLDV-based mobilities bring the real-life behaviour of the component into the vibro-acoustic simulations, with the actual realisation-related complete structural dynamics and broad frequency band excitation. The paper aims at assessing the procedure for the estimation, in the whole spectrum, of the airborne force, which can be transmitted by an airborne pressure field to known structural locations. The simulation tools revisit the simple Rayleigh integral approximation of sound radiation from a vibrating surface, a real thin flat plate, describable by SLDV-based complex-valued full-field mobilities. Airborne pressure fields and excitation forces concern the early attempts of direct and pseudo-inverse vibro-acoustics. Details, examples and considerations about the whole procedures are thoroughly provided: on the simulation of the vibro-acoustic transfer matrix and of the radiated sound pressures with given excitation forces; on the retrieval of the airborne forces in restraining locations, together with the assessment of the numerical precision of the retrieving procedure. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

21 pages, 28617 KiB  
Article
The Influence of Different Moisture Contents on the Acoustic Vibration Characteristics of Wood
by Hongru Qiu, Yunqi Cui, Liangping Zhang, Tao Ding and Nanfeng Zhu
Forests 2025, 16(4), 680; https://doi.org/10.3390/f16040680 - 14 Apr 2025
Viewed by 628
Abstract
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) [...] Read more.
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) × 25 mm (radial) × 10 mm (tangential) were tested under cantilever beam conditions using non-contact magnetic field excitation to generate sinusoidal and pulse signals. Vibration data were collected via acceleration sensors and FFT analyzers. The test method was based on ASTM D6874-12 standard. Results indicate that increasing moisture content reduces acoustic vibration characteristics, with hardwoods exhibiting higher declines than softwoods. From 2% to 12% moisture content, the first-order sound radiation quality factor of Sitka spruce and Indian rosewood decreased by 15.41% and 15.57%, respectively, while the sound conversion rate declined by 41.91% and 43.21%. Increased moisture content lowers first-order and second-order resonance frequencies, amplitude ratios, dynamic elastic modulus, vibration propagation velocity, acoustic radiation quality factor, and acoustic conversion efficiency, while increasing acoustic impedance and the loss factor. With excitation frequency increases from 100 Hz to 1500 Hz, vibration propagation velocity rises slightly, while the loss factor declines. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 5221 KiB  
Article
Prediction Model for the Environmental Noise Distribution of High-Speed Maglev Trains Using a Segmented Line Source Approach
by Shiquan Cheng, Jianmin Ge, Longhua Ju and Yuhao Chen
Appl. Sci. 2025, 15(8), 4184; https://doi.org/10.3390/app15084184 - 10 Apr 2025
Viewed by 523
Abstract
Based on the theory of uniform finite-length incoherent line source radiation and real vehicle online test data of Shanghai Maglev trains, a prediction model for environmental noise is established using an equivalent segmented line sound source approach. The noise produced by Shanghai high-speed [...] Read more.
Based on the theory of uniform finite-length incoherent line source radiation and real vehicle online test data of Shanghai Maglev trains, a prediction model for environmental noise is established using an equivalent segmented line sound source approach. The noise produced by Shanghai high-speed Maglev trains running at speeds of 235, 300, and 430 km/h is tested and analyzed using microphones. The test data are combined with computational fluid dynamics simulations to divide the train’s sound sources equally into five sections. Theoretical calculations are carried out on the noise test data collected as the train passes by, and the source strength of each individual sub-sound source during the train operation is determined using the least-squares method. As a result, a prediction model for the environmental noise of high-speed Maglev trains, represented as a combination of multiple sources, is developed. The predicted results are compared with the measured values to validate the accuracy of the model. The proposed model can be used for environmental assessments before new train lines are launched, allowing for appropriate mitigation measures to be taken in advance to reduce the impact of Maglev noise on the surrounding residential and ecological environments. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

18 pages, 3481 KiB  
Article
Assessment of Urethral Elasticity by Shear Wave Elastography: A Novel Parameter Bridging a Gap Between Hypermobility and ISD in Female Stress Urinary Incontinence
by Desirèe De Vicari, Marta Barba, Clarissa Costa, Alice Cola and Matteo Frigerio
Bioengineering 2025, 12(4), 373; https://doi.org/10.3390/bioengineering12040373 - 1 Apr 2025
Cited by 1 | Viewed by 735
Abstract
Stress urinary incontinence (SUI) results from complex anatomical and functional interactions, including urethral mobility, muscle activity, and pelvic floor support. Despite advancements in imaging and electrophysiology, a comprehensive model remains elusive. This study employed shear wave elastography (SWE), incorporating sound touch elastography (STE) [...] Read more.
Stress urinary incontinence (SUI) results from complex anatomical and functional interactions, including urethral mobility, muscle activity, and pelvic floor support. Despite advancements in imaging and electrophysiology, a comprehensive model remains elusive. This study employed shear wave elastography (SWE), incorporating sound touch elastography (STE) and sound touch quantification (STQ) with acoustic radiation force impulse (ARFI) technology, to assess urethral elasticity and bladder neck descent (BND) in women with SUI and continent controls. Between October 2024 and January 2025, 30 women (15 with SUI, 15 controls) underwent transperineal and intravaginal ultrasonography at IRCCS San Gerardo. Statistical analysis, conducted using JMP 17, revealed significantly greater BND in the SUI group (21.8 ± 7.8 mm vs. 10.5 ± 5 mm) and increased urethral stiffness (Young’s modulus: middle urethra, 57.8 ± 15.6 kPa vs. 30.7 ± 6.4 kPa; p < 0.0001). Mean urethral pressure was the strongest predictor of SUI (p < 0.0001). Findings emphasize the role of urethral support and connective tissue integrity in continence. By demonstrating SWE’s diagnostic utility, this study provides a foundation for personalized, evidence-based approaches to SUI assessment and management. Full article
(This article belongs to the Special Issue Medical Imaging Analysis: Current and Future Trends)
Show Figures

Figure 1

Back to TopTop