Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = soluble protein hydrolysate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 560 KB  
Article
Protein Hydrolysates Modulate Quality Traits of Tomato Fruit Under Salt Stress by Regulating the Expression Patterns of Genes Related to Sugar Metabolism
by Antonio El Chami, Angela Valentina Ceccarelli, Sonia Monterisi, Giuseppe Colla, Christophe El-Nakhel, Youssef Rouphael, Youry Pii and Mariateresa Cardarelli
Horticulturae 2025, 11(9), 1108; https://doi.org/10.3390/horticulturae11091108 - 13 Sep 2025
Viewed by 398
Abstract
Salinity is a major stress factor that limits tomato yield and fruit quality. The aim of this study was to evaluate whether vegetal-derived protein hydrolysates (PHs) can alleviate salt stress in tomato plants and how they affect sugar metabolism at the molecular level. [...] Read more.
Salinity is a major stress factor that limits tomato yield and fruit quality. The aim of this study was to evaluate whether vegetal-derived protein hydrolysates (PHs) can alleviate salt stress in tomato plants and how they affect sugar metabolism at the molecular level. A greenhouse experiment was carried out to test three PHs, containing mainly peptides and aminoacids and derived from the enzymatic hydrolysis of protein sources belonging to Leguminosae (PH1), Malvaceae (PH2), and Solanaceae (PH3) plants under non-saline (1 mM NaCl) and saline (50 mM NaCl) conditions. PH1 and PH3 increased marketable yield under non-saline conditions, while no yield improvement was observed under salinity. Nevertheless, all PHs reduced leaf Cl accumulation and improved fruit nutritional quality by increasing antioxidant activity and total phenol content. Under salt stress, PH1 and PH2 raised the content of total soluble solids, whereas PH3 enhanced titratable acidity. Gene expression analysis revealed that PHs modulated sugar metabolism, shifting it towards starch synthesis and accumulation in fruits, consistent with the observed increase in soluble solids. These results demonstrate that PHs exert family-specific effects on tomato fruit quality and provide molecular evidence of their role in metabolic adjustment under salinity. Practically, vegetal-derived PHs can represent a sustainable agronomic strategy to enhance fruit quality traits and improve tomato marketability in salt-affected cultivation systems. Full article
Show Figures

Figure 1

16 pages, 2473 KB  
Article
Effects of Lactic Acid Bacteria-Directed Screening on Flavor and Functional Properties of Fermented Corn Protein Hydrolysate
by Shanzi Cong, Meng Sun, Yujia Cao, Hongji Zhao, Jingyi Sun, Guanlong Li, Xiaolan Liu and Nan Hu
Foods 2025, 14(17), 3074; https://doi.org/10.3390/foods14173074 - 31 Aug 2025
Viewed by 673
Abstract
This study aims to screen out high-yield protease lactic acid bacteria (LAB) from cheese and analyze the flavor and functional characteristics of their fermentation of corn protein hydrolysate (CPH). Lacticaseibacillus rhamnosus ZYN-71 and Limosilactobacillus fermentum ZYN-76 were isolated and screened by traditional biological [...] Read more.
This study aims to screen out high-yield protease lactic acid bacteria (LAB) from cheese and analyze the flavor and functional characteristics of their fermentation of corn protein hydrolysate (CPH). Lacticaseibacillus rhamnosus ZYN-71 and Limosilactobacillus fermentum ZYN-76 were isolated and screened by traditional biological methods. Then, the two strains synergistically fermented CPH, and it was found that the scavenging rate of DPPH, ·OH, and O2−· and the chelating ability of Fe2+ of the fermented CPH increased by 22.85%, 3.82%, 63.37%, and 43.27%, respectively. Meanwhile, the solubility, water-holding capacity, oil-holding capacity, foaming property, foam stability, emulsification property, and emulsification stability had also been improved to varying degrees. The aroma of the CPH after fermentation mainly consisted of aldehydes (20.2%) and nitrogen heterocyclic compounds (19.4%), and the content of off-flavor components was reduced. LAB fermentation effectively improves the practical problems existing in the current application of corn proteolytic products. This research can provide a research basis for corn protein-related products. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Figure 1

16 pages, 2172 KB  
Article
Systematic Purification of Peptides with In Vitro Antioxidant, Antihyperglycemic, Anti-Obesity, and Antidiabetic Potential Released from Sesame Byproduct Proteins
by Ulises Alan Mendoza-Barajas, Martha Elena Vázquez-Ontiveros, Jennifer Vianey Félix-Medina, Rosalio Velarde-Barraza, Jesús Christian Grimaldi-Olivas, Cesar Noe Badilla-Medina, Jesús Mateo Amillano-Cisneros and María Fernanda Quintero-Soto
Nutraceuticals 2025, 5(3), 23; https://doi.org/10.3390/nutraceuticals5030023 - 22 Aug 2025
Viewed by 1119
Abstract
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These [...] Read more.
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These fractions were then enzymatically hydrolyzed with alcalase, yielding high soluble protein content (>90%) and hydrolysis degrees ranging from 34.66 to 45.10%. The hydrolysates were fractionated by molecular weight (<5 kDa, 3–5 kDa, 1–3 kDa, and <1 kDa). These fractions demonstrated potential for inhibiting the DPPH radical (25.19–95.79%) and the α-glucosidase enzyme (40.14–55.63%), particularly the fractions with molecular weight <1 kDa. We identified 28 peptides, with molecular weights between 332.20 and 1096.63 Da, which showed potent antioxidant activities (IC50 = 90.18 µg/mL), as well as inhibitory effects on key enzymes such as α-glucosidase (IC50 = 61.48 µg/mL), dipeptidyl peptidase IV (IC50 = 12.12 µg/mL), and pancreatic lipase (IC50 = 6.14 mg/mL). These results demonstrate the antioxidant, antihyperglycemic, antidiabetic, and anti-obesity potential of SOEB peptides, highlighting their use in the formulation of new functional foods or nutraceuticals. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

13 pages, 2095 KB  
Article
Combination Strategy of Bioenzymes and Sophorolipid Pretreatments Enhance Volatile Fatty Acid Production Based on Co-Fermentation of Waste Activated Sludge and Rubberwood Hydrolysates
by Fen Yin, Wenxuan Bie, Xiaojun Ma, Jianing Li, Yingying Zheng and Dongna Li
Fermentation 2025, 11(8), 486; https://doi.org/10.3390/fermentation11080486 - 21 Aug 2025
Viewed by 564
Abstract
In this study, we developed a combination strategy of bioenzymes and sophorolipid (SL) co-pretreatment to enhance volatile fatty acids (VFAs) in co-fermentation of waste activated sludge (WAS) and rubberwood hydrolysates (RWHs). Among all the pretreatments, SL and laccase co-pretreatment markedly increased soluble bioavailable [...] Read more.
In this study, we developed a combination strategy of bioenzymes and sophorolipid (SL) co-pretreatment to enhance volatile fatty acids (VFAs) in co-fermentation of waste activated sludge (WAS) and rubberwood hydrolysates (RWHs). Among all the pretreatments, SL and laccase co-pretreatment markedly increased soluble bioavailable substrates (carbohydrates and proteins) by inducing EPS catabolism and WAS disintegration, and obtained the highest VFAs yield of 7049.43 mg/L. The proportion of VFA composition can be controlled by modifying the types and amounts of added bioenzymes. Under SL and laccase co-pretreatment conditions, RWHs were more efficiently converted into VFAs due to the higher activity of WAS, resulting in lower cellulose (3.41%) and lignin (0.66%) content in the fermentation broth. Compared with other pretreatments, SL and laccase co-pretreatment enhanced the enrichment of the functional microorganisms, including anaerobic fermentation bacteria (Firmicutes, Bacteroidota, and Proteobacteria) and reducing bacteria (Acinerobacter and Ahniella). Therefore, the combination pretreatments might be a promising solution for strengthening VFA accumulation in the WAS and RWH co-fermentation. Full article
Show Figures

Graphical abstract

19 pages, 1100 KB  
Article
Adding Value to Brewery Industry By-Products as Novel Ingredients in Non-Alcoholic Malt Beverage Applications
by Muhammad Usman Akram, Helen Oluwaseun Agunbiade, Deepak Kadam, Rotimi Emmanuel Aluko and Filiz Koksel
Foods 2025, 14(16), 2882; https://doi.org/10.3390/foods14162882 - 20 Aug 2025
Viewed by 950
Abstract
The growing population and increasing concerns about food security and sustainability demand innovative solutions to minimize food waste and transform by-products into functional ingredients valuable to the food sector. Brewery by-products, including brewer’s spent grain (BSG) and brewer’s spent yeast (BSY), are underutilized [...] Read more.
The growing population and increasing concerns about food security and sustainability demand innovative solutions to minimize food waste and transform by-products into functional ingredients valuable to the food sector. Brewery by-products, including brewer’s spent grain (BSG) and brewer’s spent yeast (BSY), are underutilized resources despite their high protein contents and potential as sustainable food ingredients. This study aimed to transform BSG and BSY into protein hydrolysates (BSGH and BSYH, respectively) through enzymatic hydrolysis and thus add value to these brewery industry by-products to be used in the food industry. These protein hydrolysates were incorporated into non-alcoholic malt beverages at three different concentrations, and their effects on the physicochemical properties, including color, kinematic viscosity, turbidity, foaming capacity and foam stability, of the non-alcoholic malt beverages were evaluated. Both BSGH and BSYH exhibited higher water solubility (WS) and lower water binding capacity (WBC) values when compared to their native non-hydrolyzed forms, enhancing their suitability as ideal ingredients for protein supplementation of a wide range of food and beverage products. The production of peptides of varying sizes underscored the effectiveness of enzymatic hydrolysis which resulted in an increase in cysteine and methionine levels in BSYH but a decrease in BSGH. The addition of BSGH and BSYH increased the kinematic viscosity and turbidity but reduced the lightness values in color of the non-alcoholic malt beverages. When the properties of the protein hydrolysates were compared, BSYH was more effective than BSGH in forming foams and maintaining their stability for longer periods. These findings highlight the potential of brewery by-products, after enzymatic hydrolysis, as protein-rich ingredients that can support more sustainable food systems and contribute to the nutritional enhancement of various low-protein food and beverage products. Full article
Show Figures

Graphical abstract

12 pages, 708 KB  
Article
Techno-Functional and Nutraceutical Assessment of Unprocessed and Germinated Amaranth Flours and Hydrolysates: Impact of the Reduction of Hydrolysis Time
by Alvaro Montoya-Rodríguez, Maribel Domínguez-Rodríguez, Eslim Sugey Sandoval-Sicairos, Evelia Maria Milán-Noris, Jorge Milán-Carrillo and Ada Keila Milán-Noris
Foods 2025, 14(15), 2666; https://doi.org/10.3390/foods14152666 - 29 Jul 2025
Viewed by 525
Abstract
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth [...] Read more.
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth functional ingredients. The aim of this study was to estimate the influence of the germination and pepsin/pancreatin hydrolysis reduction time on the techno-functional properties and nutraceutical potential of amaranth flours and hydrolysates. The germination process increased 12.5% soluble protein (SP), 23.7% total phenolics (TPC), 259% water solubility, and 26% oil absorption in germinated amaranth flours (GAFs) compared to ungerminated amaranth flours (UAFs). The ungerminated (UAFH) and germinated (GAFH) amaranth hydrolysates showed values of degree of hydrolysis up to 50% with 150 min of sequential (pepsin + pancreatin) hydrolysis. The enzymatic hydrolysis released 1.5-fold SP and 14-fold TPC in both amaranth flours. The water solubility was higher in both hydrolysates than in their unhydrolyzed flour counterparts. The reduction in hydrolysis time did not significantly affect the nutraceutical potential of GAFH, enhancing its potential for further investigations. Finally, combining germination and enzymatic hydrolysis in amaranth enhances nutraceutical and techno-functional properties, increasing the seed. Consequently, GAF or GAFH could be used to elaborate on functional or gluten-free food products. Full article
Show Figures

Figure 1

19 pages, 2440 KB  
Article
Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties
by Kanokwan Promjeen, Suphat Phongthai, Kanjana Singh, Worrapob Chaisan, Peeraporn Pakakaew, Somdet Srichairatanakool, Rajnibhas Sukeaw Samakradhamrongthai and Niramon Utama-ang
Foods 2025, 14(14), 2459; https://doi.org/10.3390/foods14142459 - 13 Jul 2025
Viewed by 890
Abstract
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This [...] Read more.
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This study optimized mung bean protein hydrolysate (MBPH) production using response surface methodology (RSM), investigating the effects of alcalase concentration (2–7%) and hydrolysis time (2–7 h) on its physicochemical and functional properties. The results showed that an alcalase concentration of 5.88% and a hydrolysis duration of 3.56 h were the optimal conditions, resulting in a degree of hydrolysis of approximately 33.09%. Under these conditions, MBPH contained 79.33 ± 0.62% protein and a molecular weight distribution of 45.57% and 47.29% at 1.1–10 kDa and <10 kDa, respectively. Additionally, MBPH exhibited strong antioxidant activity, improved foam capacity, and enhanced solubility, making it a valuable ingredient for sustainable food production and promoting equitable access to nutritious functional ingredients. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

17 pages, 1430 KB  
Article
Circular Animal Protein Hydrolysates: A Comparative Approach of Functional Properties
by Marta Monteiro, Luciano Rodrigues-dos-Santos, Andreia Filipa-Silva, Diana A. Marques, Manuela Pintado, André Almeida and Luisa M. P. Valente
Antioxidants 2025, 14(7), 782; https://doi.org/10.3390/antiox14070782 - 25 Jun 2025
Viewed by 1377
Abstract
The growing demand for nutraceuticals has driven interest in upcycling low-value proteins from processed animal by-products and insect larvae into functional protein hydrolysates. This study evaluated five such hydrolysates in comparison to a high-value commercial reference (CPSP90), assessing the proximate composition, amino acid [...] Read more.
The growing demand for nutraceuticals has driven interest in upcycling low-value proteins from processed animal by-products and insect larvae into functional protein hydrolysates. This study evaluated five such hydrolysates in comparison to a high-value commercial reference (CPSP90), assessing the proximate composition, amino acid profile, molecular weight distribution, antioxidant activity, and bacterial growth dynamics. Results revealed a wide variability in the composition and bioactivity, driven by the raw material and processing conditions. All hydrolysates displayed a medium to high crude protein content (55.1–89.5% DM), with SHARK being the most protein-rich. SHARK and SWINE hydrolysates were particularly rich in collagenic amino acids, while FISH and CPSP90 contained higher levels of essential amino acids. FISH and INSECT demonstrated the strongest antioxidant activity, with INSECT also showing the highest protein solubility. INSECT and SWINE further displayed mild, selective antibacterial effects, indicating a potential for disease mitigation. Conversely, SHARK and FISH supported opportunistic bacteria growth, suggesting a potential use as nitrogen sources in microbial media. These findings highlight the nutritional and functional versatility of animal-derived protein hydrolysates and support their integration into sustainable feed strategies within a circular bioeconomy. Full article
Show Figures

Figure 1

13 pages, 1480 KB  
Article
Development of Chitosan-Based Composite Films Incorporating Anchovy Byproduct Hydrolysates
by Bilge Bilgin Fıçıcılar and Koray Korkmaz
Polymers 2025, 17(13), 1754; https://doi.org/10.3390/polym17131754 - 25 Jun 2025
Viewed by 499
Abstract
This study developed edible composite films incorporating the anchovy (Engraulis encrasicolus) byproduct protein hydrolysate (ABPH) into a chitosan matrix and evaluated their physicochemical, structural, and functional properties for food packaging applications. ABPH, produced by Flavourzyme enzymatic hydrolysis, exhibited high hydrolysis (54–57%) [...] Read more.
This study developed edible composite films incorporating the anchovy (Engraulis encrasicolus) byproduct protein hydrolysate (ABPH) into a chitosan matrix and evaluated their physicochemical, structural, and functional properties for food packaging applications. ABPH, produced by Flavourzyme enzymatic hydrolysis, exhibited high hydrolysis (54–57%) and high protein content (80.7 ± 0.94%). Films were produced using 1%, 2%, and 3% ABPH (CH-FP1, CH-FP2, and CH-FP3) by the casting method. Characterization of the films revealed that a higher ABPH concentration increased water swelling, solubility, and opacity, while tensile strength decreased and elongation at break improved, indicating greater flexibility. FTIR analysis showed that ABPH was incorporated through enlarged amide I and II bands and broader -OH/NH regions, suggesting hydrogen bonding and protein–polysaccharide interactions. SEM images demonstrated good dispersion at low concentrations and more uniform surfaces at higher ABPH levels. This suggests that chitosan–ABPH composite films can serve as biodegradable, protein-enriched packaging materials with adjustable mechanical and barrier properties to valorize fishery waste and sustainable food packaging solutions. Full article
Show Figures

Figure 1

30 pages, 6442 KB  
Article
Impact of Carrageenan-Based Encapsulation on the Physicochemical, Structural, and Antioxidant Properties of Freshwater Snail (Bellamya bengalensis) Protein Hydrolysates
by Anand Vaishnav, Naresh Kumar Mehta, Mocherla Bhargavi Priyadarshini, Soibam Khogen Singh, Pratap Chandra Acharya, Satyajeet Biswal, Harjeet Nath, Syed Arshad Hussain, Prasenjit Pal, Jham Lal, Nongthongbam Sureshchandra Singh and Bikash Kumar Pati
Colloids Interfaces 2025, 9(3), 29; https://doi.org/10.3390/colloids9030029 - 13 May 2025
Cited by 1 | Viewed by 1864
Abstract
This study investigated the encapsulation of snail protein hydrolysates (SPHs) using carrageenan as a microencapsulating agent at concentrations of 1%, 2%, and 3%. SPHs were prepared from the soft tissue of freshwater snails (Bellamya bengalensis) through enzymatic hydrolysis using bromelain, resulting [...] Read more.
This study investigated the encapsulation of snail protein hydrolysates (SPHs) using carrageenan as a microencapsulating agent at concentrations of 1%, 2%, and 3%. SPHs were prepared from the soft tissue of freshwater snails (Bellamya bengalensis) through enzymatic hydrolysis using bromelain, resulting in a degree of hydrolysis of 48.05%. The encapsulation process was carried out using the spray-drying technique. Encapsulation with 3% carrageenan enhanced the yield, encapsulation efficiency (up to 84.96%), colloidal stability (up to −33.8 mV), and thermal stability (up to 75 °C). The particle size increased as the carrageenan concentration increased, reaching 206.9 nm at 3%, and the uniform polydispersity index (0.26) indicated stable encapsulation. While encapsulation reduces solubility and antioxidant activity (DPPH, FRAP, ABTS, and HRSA), it effectively protects SPH from environmental factors such as hygroscopicity and storage stability, thus maintaining high scavenging activity. Fourier transform infrared spectroscopy confirmed that carrageenan and SPH strongly interact. Scanning electron microscopy revealed that the particles had better shapes and smooth, cohesive surfaces. This study demonstrates the effectiveness of carrageenan as an encapsulating agent for SPH, enhancing its stability and bioactivity for potential applications in the food and nutraceutical industries as a bioactive additive and offering an alternative to conventional coating materials. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 5382 KB  
Article
Aqueous Solution Spray Drying Preparations of Binary Amorphous Solid Dispersions
by Wenling Zheng, Junni Ke, Kaerdun Liu, Rongrong Xue and Fenghua Chen
Crystals 2025, 15(4), 323; https://doi.org/10.3390/cryst15040323 - 28 Mar 2025
Viewed by 979
Abstract
Spray drying of poorly water-soluble drugs in organic solvents is a mature process in the preparation of drugs amorphous solids dispersions (ASDs). The use of organic solvents is under increasing environmental protection and safety pressure and restricts the application of advanced polymers as [...] Read more.
Spray drying of poorly water-soluble drugs in organic solvents is a mature process in the preparation of drugs amorphous solids dispersions (ASDs). The use of organic solvents is under increasing environmental protection and safety pressure and restricts the application of advanced polymers as proteins which are usually insoluble and unstable in organic solvents. Aqueous solution spray drying technology is a candidate method for preparing ASDs without the use of organic solvents. Increasing temperature and adding volatile additives can improve the solubility of poorly water-soluble drugs in water without introducing additional components and energy needed. In this work, ammonia assisted aqueous solution spray drying method was successfully used to prepare various ASDs of indomethacin (25%) with synthetic polymers as polyvinylpyrrolidone and proteins as β-lactoglobulin, lactalbumin hydrolysate, bovine serum albumin, with high yields, special micro golfs morphology, precise compositions and longtime stabilities, compared to high-temperature aqueous solution spray drying method. ASDs with lactalbumin hydrolysate and bovine serum albumin show better dissolution profiles than other ASDs. Aqueous solution spray drying is easily extended to prepare the ASDs of sulfamerazine and celecoxib, providing a possibility to avoid the use of organic solvents in advanced ASDs preparations via spray drying. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

18 pages, 2568 KB  
Article
Enhancing the Functional and Emulsifying Properties of Potato Protein via Enzymatic Hydrolysis with Papain and Bromelain for Gluten-Free Cake Emulsifiers
by Wen-Chieh Sung, Chui-Xuan Tan, Pei-Hsuan Lai, Shang-Ta Wang, Tai-Ying Chiou and Wei-Ju Lee
Foods 2025, 14(6), 978; https://doi.org/10.3390/foods14060978 - 13 Mar 2025
Cited by 1 | Viewed by 1801
Abstract
In recent years, plant-derived food proteins have gained increasing attention due to their economic, ecological, and health benefits. This study aimed to enhance the functional properties of potato protein isolate (PPI) through enzymatic hydrolysis with papain and bromelain, evaluating the physicochemical and emulsifying [...] Read more.
In recent years, plant-derived food proteins have gained increasing attention due to their economic, ecological, and health benefits. This study aimed to enhance the functional properties of potato protein isolate (PPI) through enzymatic hydrolysis with papain and bromelain, evaluating the physicochemical and emulsifying characteristics of the resulting potato protein hydrolysates (PPHs) for their potential use as plant-based emulsifiers. PPHs were prepared at various hydrolysis times (0.25–2 h), resulting in reduced molecular weights and improved solubility under acidic conditions (pH 4–6). PPHs exhibited higher ABTS radical-scavenging activity than PPI. The foaming stability (FS) of bromelain-treated PPI was maintained, whereas papain-treated PPI showed decreased FS with increased hydrolysis. Bromelain-treated PPHs demonstrated a superior emulsifying activity index (EAI: 306 m2/g), polydispersity index (PDI), higher surface potential, and higher viscosity compared to papain-treated PPHs, particularly after 15 min of hydrolysis. Incorporating PPHs into gluten-free chiffon rice cake batter reduced the batter density, increased the specific volume, and improved the cake’s textural properties, including springiness, cohesiveness, and resilience. These findings suggest that bromelain-treated PPHs are promising plant-based emulsifiers with applications in food systems requiring enhanced stability and functionality. Full article
(This article belongs to the Special Issue Gluten-Free Food and Celiac Disease: 2nd Edition)
Show Figures

Figure 1

29 pages, 1560 KB  
Review
Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance
by Laura Quintieri, Anna Luparelli, Leonardo Caputo, William Schirinzi, Federica De Bellis, Leonardo Smiriglia and Linda Monaci
Nutrients 2025, 17(6), 938; https://doi.org/10.3390/nu17060938 - 7 Mar 2025
Cited by 1 | Viewed by 3661
Abstract
Whey is a natural by-product of the cheese-making process and represents a valuable source of nutrients, including vitamins, all essential amino acids and proteins with high quality and digestibility characteristics. Thanks to its different techno-functional characteristics, such as solubility, emulsification, gelling and foaming, [...] Read more.
Whey is a natural by-product of the cheese-making process and represents a valuable source of nutrients, including vitamins, all essential amino acids and proteins with high quality and digestibility characteristics. Thanks to its different techno-functional characteristics, such as solubility, emulsification, gelling and foaming, it has been widely exploited in food manufacturing. Also, advances in processing technologies have enabled the industrial production of a variety of whey-based products exerting biological activities. The beneficial properties of whey proteins (WPs) include their documented effects on cardiovascular, digestive, endocrine, immune and nervous systems, and their putative role in the prevention and treatment of non-communicable diseases (NCDs). In this regard, research on their application for health enhancement, based on the optimization of product formulation and the development of pharmaceuticals, is highly relevant. Beyond the health and nutritionally relevant effects as in in vivo animal studies, the allergenicity of WPs and WP hydrolysates is also herein tackled and discussed, as well as their potential role as therapeutics for immune tolerance and so-called tolerogenic effects. Grounded on the WPs’ health-promoting functions, this paper presents the latest research showing the potential of whey-derived peptides as an alternative strategy in NCD treatment. This work also reports a careful analysis of their current use, also revealing which obstacles limit their full exploitation, thus highlighting the future challenges in the field. Concluding, safety considerations, encompassing WP allergenicity, are also discussed, providing some insights on the role of WPs and peptides in milk allergen immunotolerance. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules, 2nd Volume)
Show Figures

Graphical abstract

18 pages, 3384 KB  
Article
Identification and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides from the Hydrolysate of Hemp Seed Proteins: Peptidomic Analysis, Molecular Docking, and Dynamics Simulation
by Zhang Mengyuan, Chen Chen, Wei Feng, Zhao Ning, Yang Wanyu, Zhang Tianrong, Ren Guoyan, Qiu Zhijun and Zhang Bin
Int. J. Mol. Sci. 2025, 26(5), 2222; https://doi.org/10.3390/ijms26052222 - 28 Feb 2025
Cited by 6 | Viewed by 1338
Abstract
There is a growing demand for natural and potent α-glucosidase inhibitors due to the rising prevalence of diabetes. In this study, newly identified α-glucosidase inhibitory peptides were identified from the tryptic hydrolysate of hemp seed proteins based on peptidomics and in silico analysis. [...] Read more.
There is a growing demand for natural and potent α-glucosidase inhibitors due to the rising prevalence of diabetes. In this study, newly identified α-glucosidase inhibitory peptides were identified from the tryptic hydrolysate of hemp seed proteins based on peptidomics and in silico analysis. A total of 424 peptides, primarily derived from four cupin-type-1 domain-containing proteins, were identified, and 13 ultimately were selected for validation based on their higher PeptideRanker scores, solubility, non-toxicity, and favorable ADMET properties. Molecular docking revealed that these 13 peptides primarily interacted with α-glucosidase via hydrogen bonding and hydrophobic interactions. Among them, three novel peptides—NPVSLPGR (−8.7 kcal/mol), LSAERGFLY (−8.5 kcal/mol), and PDDVLANAF (−8.4 kcal/mol)—demonstrated potent α-glucosidase inhibitory activity due to their lower binding energies than acarbose (−8.1 kcal/mol), the first approved α-glucosidase inhibitor for type 2 diabetes treatment. The molecular mechanism analysis revealed that the peptides NPVSLPGR and LSAERGFLY inhibited α-glucosidase by simultaneously blocking substrate entry through occupying the entrance of the active site gorge and preventing catalysis by binding to active sites. In contrast, the peptide PDDVLANAF primarily exerted inhibitory effects by occupying the entrance of the active site gorge. Molecular dynamics simulation validated the stability of the complexes and provided additional insights into the molecular mechanism determined through docking. These findings contribute essential knowledge for the advancement of natural α-glucosidase inhibitors and offer a promising approach to effectively manage diabetes. Full article
Show Figures

Figure 1

17 pages, 2297 KB  
Article
The Action of Plant Protein Hydrolysates, Plant Extracts and Trichoderma atroviride Modulates the Performance of Cherry Tomato Plants Cultivated in a Soilless System
by Emanuela Campana, Beppe Benedetto Consentino, Lorena Vultaggio, Pietro Bellitto, Fabiana Mancuso, Gaetano Giuseppe La Placa, Giuseppe Colla, Leo Sabatino, Salvatore La Bella, Youssef Rouphael and Michele Ciriello
Horticulturae 2025, 11(3), 248; https://doi.org/10.3390/horticulturae11030248 - 25 Feb 2025
Cited by 1 | Viewed by 852
Abstract
The study and definition of synergistic, additive and antagonistic effects among biostimulants of microbial and nonmicrobial origin represents one of the most interesting prospects for future research. As part of the SO.MI.PR.O.N regional project, we evaluated the effects of the single and combined [...] Read more.
The study and definition of synergistic, additive and antagonistic effects among biostimulants of microbial and nonmicrobial origin represents one of the most interesting prospects for future research. As part of the SO.MI.PR.O.N regional project, we evaluated the effects of the single and combined applications of three different biostimulants [a plant-derived protein hydrolysate (PH), a tropical plant extract (PE) and a microbial biostimulant based on Trichoderma atroviride (Tricho)] on tomatoes (Solanum lycopersicum L.) grown in a protected environment. From the analysis of our results, we observed that compared with the control conditions, all combinations containing Trichoderma atroviride (Tricho+PH, Tricho+PE and Tricho+PE+PH) significantly increased the marketable fruit production. For the latter parameter, the combined application of all tested biostimulants ensured the much-aspired-for synergistic effect. The combined application of all tested biostimulants (Tricho+PE+PH) significantly improved the quality traits (lycopene content, total polyphenols and total soluble solids) of the tomatoes. Although the understanding of the mechanisms activated by the combined application of the different biostimulants still remains complex to define, the results obtained underscore their potential. Not least, it will be necessary to assess the economic feasibility of the combined applications of biostimulants in order to have a more real picture that fully considers the sustainability of this strategy. Full article
(This article belongs to the Special Issue Productivity and Quality of Vegetable Crops under Climate Change)
Show Figures

Figure 1

Back to TopTop