Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = solid phosphate sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5115 KiB  
Article
Facile Recovery of Polycationic Metals from Acid Mine Drainage and Their Subsequent Valorisation for the Treatment of Municipal Wastewater
by Khathutshelo Lilith Muedi, Job Tatenda Tendenedzai, Vhahangwele Masindi, Nils Hendrik Haneklaus and Hendrik Gideon Brink
Sustainability 2025, 17(6), 2701; https://doi.org/10.3390/su17062701 - 18 Mar 2025
Cited by 1 | Viewed by 535
Abstract
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for [...] Read more.
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for municipal wastewater treatment, demonstrating a novel approach that integrates resource recovery with wastewater remediation. A key strength of this study is the use of real municipal wastewater (authentic MWW) in the treatment phase, ensuring that the findings accurately reflect real-world conditions. Advanced analytical techniques were employed to characterise both aqueous and solid samples, and batch experiments were conducted to assess the removal efficiency of polycationic metals for key contaminants: ammonium (NH4+), sulphate (SO42−), phosphate (PO43−), and nitrate (NO3). The optimised conditions are 2 g of polycationic metals per 100 mL, 90 min of contact time, and 35 °C. The yielded exceptional removal efficiencies are PO43− (>99.9%), NH4+ (>99.7%), NO3 (>99%), and SO42− (>96%), achieving final concentrations of <0.5 mg/L for PO43− and NH4+, 2.1 mg/L for NO3, and 9.1 mg/L for SO42−. Adsorption kinetics followed a pseudo-first-order model, indicating physisorption, while the Two-Surface Langmuir model suggested a combination of homogeneous and heterogeneous adsorption mechanisms. FTIR, SEM-EDX mapping, and XRF analyses confirmed the retention of P, S, and N in the product sludge, validating the adsorption process. This study is the first of its kind to recover Al-rich Fe species from real AMD and activate them for municipal wastewater remediation using authentic MWW, bridging the gap between laboratory-scale research and real-world applications. By simultaneously addressing AMD pollution and municipal wastewater treatment, this research advances circular economy principles, promotes sustainable water management, and contributes to national and global efforts toward water security and environmental protection. Full article
Show Figures

Figure 1

20 pages, 15447 KiB  
Article
Investigation of the Innovative Combined Reuse of Phosphate Mine Waste Rock and Phosphate Washing Sludge to Produce Eco-Friendly Bricks
by Omar Inabi, Abdessamad Khalil, Abir Zouine, Rachid Hakkou, Mostafa Benzaazoua and Yassine Taha
Buildings 2024, 14(9), 2600; https://doi.org/10.3390/buildings14092600 - 23 Aug 2024
Cited by 5 | Viewed by 1933
Abstract
Phosphate mining generates substantial quantities of waste rock during the extraction of sedimentary ores, leading to significant environmental concerns as these wastes accumulate around mining sites. The industry is under increasing pressure to adopt more sustainable practices, necessitating considerable financial investments in remediation [...] Read more.
Phosphate mining generates substantial quantities of waste rock during the extraction of sedimentary ores, leading to significant environmental concerns as these wastes accumulate around mining sites. The industry is under increasing pressure to adopt more sustainable practices, necessitating considerable financial investments in remediation and technological advancements. Addressing these challenges requires a holistic strategy that balances social responsibility, environmental preservation, and economic viability. This study proposes an innovative, cost-effective, and environmentally friendly method to manufacture compressed stabilized earth bricks by combining the valorization of phosphate waste rock (PWR) and phosphate washing sludge (PWS). These bricks offer numerous advantages, including low embodied energy, robust mechanical performance, and excellent insulation and thermal properties. Initially, a Toxicity Characteristic Leaching Procedure (TCLP) test and radiometric surface contamination measurement, carried out on raw materials (PWR and PWS), showed that the results were below the permissible limits. Then, the chemical, mineralogical, and geotechnical properties of the raw materials were characterized. Subsequently, various mixtures were formulated in the laboratory using PWR and PWS, with and without cement as a stabilizer. Optimal formulations were identified and scaled up for pilot production of solid bricks with dimensions of 250 × 125 × 75 mm3. The resulting bricks exhibited thermal conductivity and water absorption coefficients that satisfied standard requirements. This method not only addresses the environmental issues associated with phosphate mining waste but also provides a sustainable solution for building materials production. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

15 pages, 2562 KiB  
Article
Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst
by Ju Gao, Fucheng Sun, Pei Liu, Jizhi Zhou and Yufeng Zhang
Catalysts 2024, 14(8), 535; https://doi.org/10.3390/catal14080535 - 17 Aug 2024
Viewed by 4478
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst [...] Read more.
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

13 pages, 2678 KiB  
Article
Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response
by Qingshuang Kou, Quan Yuan, Song Chen, Heng Xu, Shanghui Wei and Kaijun Wang
Water 2024, 16(14), 2057; https://doi.org/10.3390/w16142057 - 20 Jul 2024
Cited by 1 | Viewed by 1637
Abstract
Concentrating organic matter in sludge and converting it into methane through anaerobic bioconversion can improve resource recovery from domestic wastewater. Enhanced membrane coagulation (EMC) is highly efficient at concentrating organic matter, but residual coagulants (aluminum salts) can obstruct bioconversion by blocking microbial access. [...] Read more.
Concentrating organic matter in sludge and converting it into methane through anaerobic bioconversion can improve resource recovery from domestic wastewater. Enhanced membrane coagulation (EMC) is highly efficient at concentrating organic matter, but residual coagulants (aluminum salts) can obstruct bioconversion by blocking microbial access. Limited research exists on evaluating EMC sludge bioconversion performance and addressing coagulant inhibition. This study proposes alkaline pre-fermentation to break down HO-Al-P backbones in coagulated sludge flocs, thereby improving hydrolysis and organic acid production for anaerobic digestion. Among the tested alkaline conditions (pH 9, pH 10, pH 11), pre-fermentation at pH 11 released the most organic matter (4710.0 mg/L SCOD), 20.4 times higher than without alkaline treatment. At pH 11, phosphate (61 mg/L PO43−–P) and organic acid production (2728.1 mg COD/L, with nearly 50% acetic acid) peaked, resulting in superior volatile solids removal (65.2%) and methane production (185.8 mL/g VS) during anaerobic digestion. Alkaline pre-fermentation favored alkali-tolerant bacteria such as Firmicutes and Actinobacteria, especially at pH 11, while neutrophilic Proteobacteria were suppressed. Trichococcus and Bifidobacterium, known acid producers, dominated under all conditions, with their abundance increasing at higher pH levels. Anaerobic digestion enriched fermentative bacteria like Chloroflexi and Synergistota (e.g., Thermovirga), especially in high pH reactors. Methanothrix, an acetoclastic methanogen, became the dominant methanogenic archaeon, indicating that methane production from EMC sludge primarily followed the acetoclastic methanogenesis pathway. Our findings demonstrate that alkaline pre-fermentation at pH 11 significantly enhances the hydrolysis efficiency of EMC sludge for methane recovery. Full article
(This article belongs to the Special Issue Microbial Biotechnology for Water and Sludge Treatment)
Show Figures

Graphical abstract

13 pages, 1322 KiB  
Article
Elevating Sorghum Prosperity: Unveiling Growth Trends through Phosphate-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi Inoculation in Phosphate-Enriched Substrates
by Fatima Zahra Aliyat, Mohammed El Guilli, Laila Nassiri, Rachid Lahlali, Essaid Ait Barka and Jamal Ibijbijen
Agronomy 2024, 14(2), 370; https://doi.org/10.3390/agronomy14020370 - 14 Feb 2024
Cited by 2 | Viewed by 1758
Abstract
This study aimed to elucidate the impact of phosphate-solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) inoculation on sorghum growth within substrates derived from phosphate solid sludge, with the overarching objective of repurposing phosphate sludge to be a viable agricultural substrate. Four PSB [...] Read more.
This study aimed to elucidate the impact of phosphate-solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) inoculation on sorghum growth within substrates derived from phosphate solid sludge, with the overarching objective of repurposing phosphate sludge to be a viable agricultural substrate. Four PSB strains (Serratia rubidaea, Enterobacter bugandensis, Pantoea agglomerans, Pseudomonas sp.) were meticulously selected from phosphate solid sludge, along with two AMF strains (Rhizophagus intraradices and Funneliformis mosseae), constituting the experimental inocula. Phosphate solid sludge was judiciously blended with peat at varying volumetric proportions (0%, 10%, 20%, 40%, and 60%), providing the matrix for sorghum cultivation, and concomitantly subjected to inoculation with PSB and AMF. Following a meticulously monitored two-month duration, a comprehensive evaluation of diverse morphological parameters, biomass accrual, nitrogen content, total phosphorus concentration, potassium levels, calcium content, and root colonization in sorghum plants was conducted. The empirical findings underscored a discernible decline in the assessed parameters with escalating concentrations of phosphate solid sludge. Particularly noteworthy was the pronounced amelioration observed in plants inoculated with AMF in comparison to both the control and PSB-inoculated counterparts. In conclusion, the application of raw phosphate solid sludge as an agricultural substrate is deemed unsuitable, prompting the imperative need for further in-depth investigations to ascertain the nuanced intricacies underlying these outcomes. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1863 KiB  
Article
New Insight into Magnetic Enhanced Methane Production from Oily Sludge via Mesophilic Anaerobic Degradation Processes
by Jieying Liu and Zhigao Bi
Water 2023, 15(11), 2114; https://doi.org/10.3390/w15112114 - 2 Jun 2023
Cited by 2 | Viewed by 1853
Abstract
Anaerobic digestion is a promising technology for treating and disposing of oily sludge, but the presence of oil in the sludge reduces methane production and sludge volume reduction. To overcome this limitation, this study creatively reports the use of magnetite to enhance methane [...] Read more.
Anaerobic digestion is a promising technology for treating and disposing of oily sludge, but the presence of oil in the sludge reduces methane production and sludge volume reduction. To overcome this limitation, this study creatively reports the use of magnetite to enhance methane production in oily sludge mesophilic anaerobic digestion and elucidates the underlying mechanism. Results show that the addition of magnetite increases methane production, with a 5% magnetite content leading to a 1.42-fold increase in cumulative methane output compared to the blank. Mechanistically, magnetite accelerates the release of organic matter, promotes oil degradation, increases volatile fatty acids (VFA) accumulation, and reduces the proportion of propionate. Additionally, magnetite alleviates pH decreases and increases the release of ammonia nitrogen and phosphate, resulting in effective sludge reduction, with volatile suspended solids (VSS) reduction ranging from 26.9% to 32.6%, higher than that of the blank. Moreover, magnetite accelerates electron transfer and increased the relative abundance of microorganisms associated with methane production, with the relative abundance of Methanosarcina increasing to 37.6~38.5% due to the presence of magnetite. This study provides a theoretical framework for effectively utilizing oily sludge through the application of magnetite. Full article
Show Figures

Figure 1

15 pages, 3790 KiB  
Article
Phosphate Removal by Ca-Modified Magnetic Sludge Biochar Prepared by a One-Step Hydrothermal Method
by Xu Liu, Yushan Li, Hao Zhou, Jing Guo, Yonghou Xiao, Cong Liu, Boxing An and Zhengqi Liang
Catalysts 2023, 13(6), 927; https://doi.org/10.3390/catal13060927 - 24 May 2023
Cited by 13 | Viewed by 2511
Abstract
The problem of phosphorus pollution and its resource utilization has been a source of general concern. The preparation of green, renewable, and non-secondary pollution adsorbents has become a research direction. In this paper, a one-step hydrothermal preparation method of Ca-modified magnetic sludge biochar [...] Read more.
The problem of phosphorus pollution and its resource utilization has been a source of general concern. The preparation of green, renewable, and non-secondary pollution adsorbents has become a research direction. In this paper, a one-step hydrothermal preparation method of Ca-modified magnetic sludge biochar (Ca-MSBC) is used for enhancing phosphate removal. The results show that the adsorption rate of phosphate by Ca-MSBC is mainly controlled by chemisorption but is also related to physical adsorption and an internal diffusion mechanism. The maximum phosphorus adsorption capacity of Ca-MSBC was 89.25 mg g−1 at 343 K (initial phosphate concentration 500 mg L−1). After nine cycles of adsorption experiments, the adsorption capacity of 70.16 mg g−1 was still high. In addition, coexisting ions Cl, NO3, SO42−, and CO32− have no significant effect on the adsorption properties of phosphate. XRD, FT-IR, VSM, XPS, and N2 adsorption/desorption isotherms showed that the mechanism of phosphate removal from water by Ca-MSBC was mainly the chemical precipitation reaction of phosphate and calcium. The results of this study indicate that Ca-MSBC has potential application and environmental value as a solid waste recycling material for environmental remediation. Full article
Show Figures

Figure 1

15 pages, 4145 KiB  
Article
Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives
by Regimantas Dauknys and Aušra Mažeikienė
Energies 2023, 16(7), 3285; https://doi.org/10.3390/en16073285 - 6 Apr 2023
Cited by 3 | Viewed by 2214
Abstract
Iron additives are effective in the anaerobic sewage sludge digestion process, but the composition and dosage of these additives are not precisely defined. This research investigates the effects of three iron oxides-based additives on the destruction of volatile solids, the production and quality [...] Read more.
Iron additives are effective in the anaerobic sewage sludge digestion process, but the composition and dosage of these additives are not precisely defined. This research investigates the effects of three iron oxides-based additives on the destruction of volatile solids, the production and quality of biogas, as well as the quality of the supernatant. Additive No 1 contained >41.5% of FeO and >41.5% of Fe2O3, additive No 2 contained ≥86% of Fe3O4, and additive No 3 contained ≥98% of Fe3O4. The best results were obtained by applying an iron oxides-based additive with a higher content of divalent iron oxide. The increase in efficiency of the VSs destruction was not significant and on average 2.2%. The increase in biogas production was on average 20% while the average increase in the content of methane in the biogas was 6.3%. Applying the additive, the reduction in the concentration of ammonium nitrogen in the supernatant was up to 28%, as well as a reduction in the concentration of phosphate phosphorus in the supernatant by up to 3.1 times could be expected compared to the case when the additive was not applied. The dose of additive No 1 was between 7.5 g/kg of dry solids and 15 g/kg of dry solids in the lab-scale test. The dose was specified in the full-scale test, and the recommended dose of the additive was 10 g/kg of dry solids to improve biogas production. Full article
(This article belongs to the Special Issue Wastewater Treatment Related to Energy)
Show Figures

Figure 1

13 pages, 2842 KiB  
Article
Processing of Phosphoric Solid Waste by Humic Acid Leaching Method
by Ulzhalgas Nazarbek, Perizat Abdurazova, Saule Nazarbekova, Yerkebulan Raiymbekov and Maksat Kambatyrov
Inorganics 2023, 11(3), 90; https://doi.org/10.3390/inorganics11030090 - 21 Feb 2023
Cited by 3 | Viewed by 1920
Abstract
This article presents the results of research on the leaching of solid phosphorus-containing waste with humic acid. Such waste includes the by-products of the electrothermal processing of phosphate raw materials—phosphorus sludge and cottrel dust. Chemical and X-ray diffraction analyses have been used to [...] Read more.
This article presents the results of research on the leaching of solid phosphorus-containing waste with humic acid. Such waste includes the by-products of the electrothermal processing of phosphate raw materials—phosphorus sludge and cottrel dust. Chemical and X-ray diffraction analyses have been used to study their composition and phase structure, according to which these substances have an amorphous structure. The leaching of phosphoric sludge and cottrel dust was investigated by varying the main parameters. The obtained data were processed using the method of formal kinetics to study the features of the process. The reaction rate constants and the apparent activation energy were calculated, and the values found made it possible to determine that the process under study is limited by diffusion. The scientific novelty of the article is the use of humic acid for leaching phosphoric solid waste as opposed to traditional methods. This new method may offer improved efficiency, reduced environmental impact, and a potential alternative solution for the processing of phosphoric waste. Full article
Show Figures

Figure 1

11 pages, 4001 KiB  
Article
Enhanced Sewage Sludge Disintegration and Nutrients Release by Catalytic Microbubbles Ozonation Using Sewage Sludge-Based Char as Catalyst
by Xin Zhang, Guangming Li, Yijing Li, Yan Ma, Xiaomeng Han and Xinyu Zhou
Sustainability 2023, 15(2), 1641; https://doi.org/10.3390/su15021641 - 14 Jan 2023
Cited by 4 | Viewed by 1873
Abstract
Using microbubble ozonation (MO) technique to disintegrate sludge is a promising sludge treatment process. To enhance the lysis and reduction of sludge, the catalytic ozonation consisting of MO and sewage sludge derived char (SC) were combined. Total solids (TS), volatile solids (VS), total [...] Read more.
Using microbubble ozonation (MO) technique to disintegrate sludge is a promising sludge treatment process. To enhance the lysis and reduction of sludge, the catalytic ozonation consisting of MO and sewage sludge derived char (SC) were combined. Total solids (TS), volatile solids (VS), total nitrogen and phosphate (TN and TP) were selected as main parameters for evaluating the treatment performance both in solids and supernatant. With the utilization of the catalytic MO, the ozone utilization and sludge reduction were largely improved. At a reaction time of 90 min, an ozone utilization efficiency exceeding 99% was achieved by using a MO system. The optical ozone and sludge char dosages of 150 mg/g suspended solids (SS) and 1 g/L were found for sludge lysis, respectively. TS and VS concentrations decreased by 43% and 56%, respectively, as compared to those of 16.7% and 17.9% obtained by the treatment with MO alone under the condition of sludge solution pH 4. The supernatant soluble chemical oxygen demand (SCOD), TN, TP, NH4+-N and NO3-N increased by 1750%, 205%, 25%, 31% and 43%, respectively. A small amount of additional SC exhibited strong catalytic activity on dissolving organic matter of the sludge, demonstrating the positive effect caused by the heterogeneous catalytic ozonation on sludge disintegration. Full article
Show Figures

Figure 1

14 pages, 1924 KiB  
Article
Heavy Metal Estimation and Quality Assurance Parameters for Water Resources in the Northern Region of Pakistan
by Rizwan Hayder, Muhammad Hafeez, Pervaiz Ahmad, Najma Memon, Mayeen Uddin Khandaker, Zainab Mufarreh Elqahtani, M. S. Al-Buriahi, Zakaria M. M. Mahmoud and Muhammad Naeem Ahmed
Water 2023, 15(1), 77; https://doi.org/10.3390/w15010077 - 26 Dec 2022
Cited by 7 | Viewed by 5513
Abstract
The current study investigates the water quality parameters of drinking water resources in District Neelam (DNLM), Azad Jammu & Kashmir (AJK), Northwestern Pakistan. The studied area has been recently reported with many waterborne diseases, which probed this analytical study. The samples were aseptically [...] Read more.
The current study investigates the water quality parameters of drinking water resources in District Neelam (DNLM), Azad Jammu & Kashmir (AJK), Northwestern Pakistan. The studied area has been recently reported with many waterborne diseases, which probed this analytical study. The samples were aseptically collected from springs, taps, and surface water bodies. The water quality parameters, such as physical, microbiological, anions, and heavy metals, were tested. Results showed that the electrical conductance (EC) and total dissolved solids (TDS), were 974.60 µS/cm and 912.10 mg/L, respectively, exacerbating the quality of drinking water in DNLM. For microbial water testing, we used 3M-Petrifilms as a detection source, which could separate coliform bacteria from E. coli by creating unique surface chromophores. Out of sixty collected samples, 76% had bacterial contamination. Nitrite, nitrate, and phosphate (9.8, 15.0, and 15.1 mg/L), were also surpassing the safe limits of the World Health Organization (WHO) standards for water quality measurement. The heavy metals, i.e., As, Cr, Cu, and Pb were also tested in current analysis. Pb and Cr (0.04 mg/L and 0.06 mg/L) exceeded from safe drinking water guidelines of the WHO and more than 50% of the collected samples had Pb as a major water pollutant in DNLM. Poor waste management, open sludge discharge, lack of municipality measures, and mineral leaching into the freshwaters of DNLM due to mining and metal extraction processes were the main sources of water pollution in the region. The inorganic pollutants were responsible for the sudden rise of different malignancies and other fatal diseases (vital organ failures and reproductive disorders) in the region, which has not been reported in the past. The current investigation yielded useful baseline data of the drinking water reserves of NW Pakistan that could help to develop techniques for the mitigation of water pollutants present in the region. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Effect of Solid Phosphate Sludge Amendments on the Growth of Fruit and Forest Trees in the Nursery
by Zakaria Baiz, Khalid Azim, Abdelhak Hamza, Jamila Dahmani and Mohammed Elguilli
Sustainability 2022, 14(24), 16819; https://doi.org/10.3390/su142416819 - 15 Dec 2022
Cited by 1 | Viewed by 1892
Abstract
Phosphorus deficiency is a major limiting factor in horticultural production. One potential solution can be restoring soil phosphorus from mineral resources, such as solid phosphate sludge (SPS) generated from phosphate treatment processes at mining sites in agriculture. This study explores the possibility of [...] Read more.
Phosphorus deficiency is a major limiting factor in horticultural production. One potential solution can be restoring soil phosphorus from mineral resources, such as solid phosphate sludge (SPS) generated from phosphate treatment processes at mining sites in agriculture. This study explores the possibility of using this sludge in nurseries to produce fruit and forest plants. We tested six mixtures of SPS with the sandy soil of the Maamora forest on ten plant species. In the second experiment, we tested the same mixtures with sea sand. In addition, one concentration of four composts based on phosphate sludge was also tested on two citrus rootstocks and carob. The first experiment’s results showed significantly higher growth with the control mixture for pomegranate, acacia, and C. volkameriana plants. The relative growth was higher at SPS concentrations of 20% to 30% for the other plant species, although there was no significant difference between treatments. The estimations of AUGPC (area under the growth progress curve) showed no significant difference in most species. In the second experiment, the relative growth in the M4 (30% of SPS + 70% of sand) mixture was higher, and the AUGCP showed a significant difference compared to the M1 control mixture. The application of solid phosphate sludge positively affects and improves the growth of fruit and forest trees in the nurseries, especially when the concentration is between 20 and 30%. For this purpose, the phosphate sludge could have great potential to be used in nurseries and create a favourable soil condition as a cultivation substrate. Full article
Show Figures

Figure 1

28 pages, 2347 KiB  
Article
Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework
by Piotr Sakiewicz, Krzysztof Piotrowski, Mariola Rajca, Izabella Maj, Sylwester Kalisz, Józef Ober, Janusz Karwot and Krishna R. Pagilla
Int. J. Environ. Res. Public Health 2022, 19(17), 11119; https://doi.org/10.3390/ijerph191711119 - 5 Sep 2022
Cited by 10 | Viewed by 2513
Abstract
This paper presents a new, innovative technological approach, in line with Circular Economy principles, to the effective management of sludge generated during municipal wastewater treatment processes and subsequently used for biogas production. This approach allows for optimal, functional, and controlled cascade-type biotechnological thermal [...] Read more.
This paper presents a new, innovative technological approach, in line with Circular Economy principles, to the effective management of sludge generated during municipal wastewater treatment processes and subsequently used for biogas production. This approach allows for optimal, functional, and controlled cascade-type biotechnological thermal conversion of carbon compounds present in sewage sludge, later in solid digestate residues (after biogas production), and finally in the ash structure (after incineration, purposefully dosed nanostructural additives make the production of a useful solid product possible, especially for cyclic adsorption and slow release of nutrients (N, P, K) in the soil). The idea is generally targeted at achieving an innovative conversion cycle under a Circular Economy framework. In particular, it is based on an energy carrier (methane biogas) and direct energy production. The functionalized combustion by-products can be advantageous in agriculture. The use of ashes with nanostructural additives (halloysite, kaolinite) from combustion of sewage sludge after the anaerobic fermentation as an adsorbent of selected nutrients important in agriculture (Na+, K+, NO3, SO42−, PO43−, Cl) was verified at laboratory scale. The tests were carried out both for pure ash and for the ash derived from combustion with the purposeful addition of kaolinite or halloysite. The equilibrium conditions for nitrate, potassium, sodium, phosphate(V), sulphate(VI), and chloride ions from aqueous solutions with the use of the three adsorbent structures were determined. The obtained innovative results were interpreted theoretically with adsorption isotherm models (Langmuir, Freundlich, Temkin, Jovanović). The most spectacular and clearly favorable results related to the influence of nanostructural additives in the process of sludge combustion, and formation of sorption surfaces under high temperature conditions were identified in the case of sorption-based separation of phosphate(V) ions (an increase from 1.13% to 61.24% with the addition of kaolinite, and even up to 76.19% with addition of halloysite). Full article
Show Figures

Figure 1

13 pages, 1270 KiB  
Article
Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates
by Fatima Zahra Aliyat, Mohamed Maldani, Mohammed El Guilli, Laila Nassiri and Jamal Ibijbijen
Microorganisms 2022, 10(5), 980; https://doi.org/10.3390/microorganisms10050980 - 7 May 2022
Cited by 50 | Viewed by 8118
Abstract
Biofertilizers are a key component of organic agriculture. Bacterial biofertilizers enhance plant growth through a variety of mechanisms, including soil compound mobilization and phosphate solubilizing bacteria (PSB), which convert insoluble phosphorus to plant-available forms. This specificity of PSB allows them to be used [...] Read more.
Biofertilizers are a key component of organic agriculture. Bacterial biofertilizers enhance plant growth through a variety of mechanisms, including soil compound mobilization and phosphate solubilizing bacteria (PSB), which convert insoluble phosphorus to plant-available forms. This specificity of PSB allows them to be used as biofertilizers in order to increase P availability, which is an immobile element in the soil. The objective of our study is to assess the capacity of PSB strains isolated from phosphate solid sludge to solubilize three forms of inorganic phosphates: tricalcium phosphate (Ca3(PO4)2), aluminum phosphate (AlPO4), and iron phosphate (FePO4), in order to select efficient solubilization strains and use them as biofertilizers in any type of soil, either acidic or calcareous soil. Nine strains were selected and they were evaluated for their ability to dissolve phosphate in the National Botanical Research Institute’s Phosphate (NBRIP) medium with each form of phosphate (Ca3(PO4)2, AlPO4, and FePO4) as the sole source of phosphorus. The phosphate solubilizing activity was assessed by the vanadate-molybdate method. All the strains tested showed significantly (p ≤ 0.05) the ability to solubilize the three different forms of phosphates, with a variation between strains, and all strains solubilized Ca3(PO4)2 more than FePO4 and AlPO4. Full article
Show Figures

Figure 1

14 pages, 1548 KiB  
Article
Analysis of Reject Water Formed in the Mechanical Dewatering Process of Digested Sludge Conditioned by Physical and Chemical Methods
by Beata Bień and Jurand D. Bień
Energies 2022, 15(5), 1678; https://doi.org/10.3390/en15051678 - 24 Feb 2022
Cited by 16 | Viewed by 2701
Abstract
Reject water separated from digested sludge may be a potential source of nutrients due to its high content. However, most often, reject water after sludge dewatering is directed to sewage lines at wastewater treatment plants, negatively affecting their operation, especially in the biological [...] Read more.
Reject water separated from digested sludge may be a potential source of nutrients due to its high content. However, most often, reject water after sludge dewatering is directed to sewage lines at wastewater treatment plants, negatively affecting their operation, especially in the biological part. The activities related to sludge conditioning before dewatering have a direct impact on the quality of the reject water. The reject water of raw digested sludge is characterized by very high concentrations of ammonium nitrogen, at 1718 mgN-NH4+/dm3; phosphates, at 122.4 mgPO43−/dm3; and chemical oxygen demand (COD), at 2240 mgO2/dm3. The objective of the research was to determine the impact of selected sludge conditioning methods on the quality of reject water obtained after sludge dewatering. The following parameters were analyzed in the reject water: the chemical oxygen demand (COD), phosphates, ammonium nitrogen, and total suspended solids (TSS). It has been observed that the sludge sonification process increases the content of impurities (COD, phosphates) in reject water with an increase in the amplitude of the ultrasonic field. On the other hand, the chemical reagents cause a decrease in the concentration of the pollutants with an increase of the chemical dose. It has been found that the inorganic coagulant PIX 113 gives much better results regarding the reduction of contamination than the polyelectrolyte Zetag 8180. Full article
(This article belongs to the Special Issue Energy and Matter Recovery from Organic Waste Processing and Reuse)
Show Figures

Figure 1

Back to TopTop