Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = solid fat replacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6670 KB  
Article
Impact of Hydrogel-to-Oleogel Ratio and Presence of Carob Fruit Extracts on Formulated Bigels: Rheological, Thermal, Physicochemical and Microstructural Properties
by María Dolores Álvarez, Arancha Saiz and Susana Cofrades
Foods 2025, 14(21), 3753; https://doi.org/10.3390/foods14213753 - 31 Oct 2025
Viewed by 301
Abstract
This study explores the development of bigels (BGs) combining a hydrophilic hydrogel (HG) and a lipophilic oleogel (OG) for co-delivery of two carob fruit extracts (CFEs): I-CFE (inositols) and P-CFE (phenolics). The BGs were formulated in HG:OG ratios of 70:30 and 30:70, using [...] Read more.
This study explores the development of bigels (BGs) combining a hydrophilic hydrogel (HG) and a lipophilic oleogel (OG) for co-delivery of two carob fruit extracts (CFEs): I-CFE (inositols) and P-CFE (phenolics). The BGs were formulated in HG:OG ratios of 70:30 and 30:70, using a sodium alginate-based HG and an OG composed of olive pomace oil (OPO) and microcrystalline wax (MW). CFEs were loaded in three modes: I-CFE in HG, P-CFE in OG, and both in their respective phases. Rheological, thermal, physicochemical, and microstructural properties were assessed. All the BGs exhibited solid-like viscoelastic behavior, with greater rigidity in 30:70 formulations. The OG phase enhanced the structural BG network, especially when loaded with P-CFE. At 70:30, I-CFE conferred pseudoplasticity and conformational flexibility, particularly in the absence of P-CFE. At 30:70, both extracts acted synergistically, increasing mechanical strength and network organization. Thermal analysis confirmed MW’s role in structuration, with the BGs showing melting peaks between 40–50 °C. The effects studied affected color and stability. Polarized light microscopy confirmed organized microstructures. This is the first work demonstrating the structuring potential and interactive effects of dual carob extracts (I-CFE and P-CFE) within BGs. All the BGs showed suitable fat-replacer properties, remaining self-standing for 21 days, except the 70:30 I-CFE-free formulation. The findings highlight the potential of CFE-loaded BGs as multifunctional fat replacers in healthier meat products. Full article
Show Figures

Graphical abstract

19 pages, 1801 KB  
Article
Oleogels Based on Starch and Natural Extracts from Cassava (Manihot esculenta) as a Fat Replacement in Cookies
by Valeria M. Meza-Castellón, Somaris E. Quintana and Luis A. García-Zapateiro
Appl. Sci. 2025, 15(21), 11545; https://doi.org/10.3390/app152111545 - 29 Oct 2025
Viewed by 396
Abstract
Oleogels, a semi-solid fat-like material, have emerged as a promising alternative to traditional saturated fats in food products. This study aimed to develop and characterize novel oleogels using starch and extracts from cassava (Manihot esculenta) to be used as a fat [...] Read more.
Oleogels, a semi-solid fat-like material, have emerged as a promising alternative to traditional saturated fats in food products. This study aimed to develop and characterize novel oleogels using starch and extracts from cassava (Manihot esculenta) to be used as a fat replacement in cookies, addressing the growing demand for healthier baked goods. Cassava starch was used as the structuring agent, while extracts provided functional properties to the oleogels. The oleogels were prepared and then incorporated into a cookie formulation, fully replacing the conventional fat. The resulting cookies were analyzed for their physicochemical properties, including texture, moisture content, and color. Rheological and microscopy analyses were also subjected to a sensory evaluation panel. The results demonstrated that the cassava-based oleogels effectively mimicked the functional role of fat, producing cookies with a significantly lower fat content. The cookies made with the oleogels exhibited comparable textural attributes and sensory acceptance to the full-fat control group, with no significant differences in flavor or mouthfeel reported by the panelists. These findings suggest that oleogels derived from cassava are a highly effective and innovative solution for producing healthier cookies without compromising quality, representing a viable strategy for fat reduction in the food industry. Full article
(This article belongs to the Special Issue Analytical Studies in Natural Products)
Show Figures

Figure 1

16 pages, 1067 KB  
Article
Incorporation of Black Currant Pomace into Emulsions for Reducing Saturated Fat in Shortbread Cookies
by Rytis Michalkevičius, Loreta Bašinskienė, Jolita Jagelavičiūtė and Dalia Čižeikienė
Appl. Sci. 2025, 15(20), 11266; https://doi.org/10.3390/app152011266 - 21 Oct 2025
Viewed by 298
Abstract
Cookies are widely consumed bakery products valued for their pleasant taste and texture; however, their high fat content contributes significantly to their caloric density and cardiovascular diseases. Therefore, the development of alternatives for replacement of saturated and trans fatty acids in bakery goods [...] Read more.
Cookies are widely consumed bakery products valued for their pleasant taste and texture; however, their high fat content contributes significantly to their caloric density and cardiovascular diseases. Therefore, the development of alternatives for replacement of saturated and trans fatty acids in bakery goods has attracted considerable scientific interest. In this study, the potential application of structured emulsion supplemented with blackcurrant pomace (EBP) as saturated fat (margarine) replacer in shortbread cookies was investigated by employing black currant pomace/rapeseed oil/water (15/30/55 w/w/w) emulsion to replace margarine in cookies at 50 and 70% substitution; full-fat cookies were also tested as a control. With increasing EBP substitution level, the cookie diameter decreased, thickness and hardness increased, and a lower color lightness was noted. Meanwhile, total phenolic content was greater for the EBP-fortified cookies than the control. Nevertheless, the 50% margarine substituted cookie received acceptable ratings for odor, flavor, hardness, fragility, and overall acceptability by sensory evaluation. This indicates that the use of EBP as substitute of solid fats in cookies offers the advantage of producing healthier and more acceptable products depending on the degree of fat replacement. Full article
Show Figures

Figure 1

21 pages, 3600 KB  
Article
Chitosan–Olive Oil Oleogels for Food Applications: Physicochemical and Functional Properties
by Álvaro Mosquera, Leticia Montes, Carlos A. Pena, Maria López-Pedrouso, Jorge Sineiro and Daniel Franco
Foods 2025, 14(19), 3332; https://doi.org/10.3390/foods14193332 - 25 Sep 2025
Viewed by 720
Abstract
The popularity of processed meats stems from modern demand for ready-to-eat foods, but their saturated and trans fats pose health concerns. Oleogel-based systems, which turn healthy oils into solid fat-like matrices, offer a promising alternative. This study characterized virgin olive oil oleogels structured [...] Read more.
The popularity of processed meats stems from modern demand for ready-to-eat foods, but their saturated and trans fats pose health concerns. Oleogel-based systems, which turn healthy oils into solid fat-like matrices, offer a promising alternative. This study characterized virgin olive oil oleogels structured with chitosan, assessing rheological, thermal, structural, and functional properties, examining how chitosan concentration (1–3%) and oil-to-water ratio (50–60) affect their performance. Rheological tests indicated a predominantly elastic behavior, suggesting the formation of stable gel networks, while a thermogravimetric analysis confirmed thermal stability of up to 237 °C, indicating suitability for moderate thermal processing. Texture analysis showed wider values for hardness (1.25–12.20 N) and color measurements indicated a homogeneous appearance across formulations with oleogels with high luminosity (L* > 50). The oleogels demonstrated high oil-binding capacity (>90%) and reduced oxidative degradation compared to bulk olive oil (peroxide values within regulatory limits for olive oils and TBARS values below 0.6 μmol malonaldehyde). In vitro digestion assays showed a slightly reduced lipid release with respect to pure olive oil, highlighting their potential for controlled lipid delivery and enhanced nutritional value. These findings support the potential of chitosan-based oleogels with virgin olive oil as stable and functional fat replacers in food applications. Full article
Show Figures

Figure 1

12 pages, 1465 KB  
Article
Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil
by Aikaterini Papadaki, Ioanna Mandala and Nikolaos Kopsahelis
Foods 2025, 14(15), 2697; https://doi.org/10.3390/foods14152697 - 31 Jul 2025
Viewed by 824
Abstract
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of [...] Read more.
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of BCNW was evaluated as a potential stabilizing and reinforcing agent. All oleogels behaved as “true” gels (tan δ < 0.1). Rheological analysis revealed that higher WP content significantly increased gel strength, indicating enhanced structural integrity and deformation resistance. The addition of BCNW had a significant reinforcing effect in oleogels with a higher oil content (WP:SCGO 1:5), while its influence was less evident in formulations with lower oil content (WP:SCGO 1:2.5). Notably, depending on the WP:SCGO ratio, the storage modulus (G′) data showed that the oleogels resembled both hard (WP:SCGO 1:2.5) and soft (WP:SCGO 1:5) solid fats, highlighting their potential as fat replacers in a wide range of food applications. Consequently, this study presents a sustainable approach to structuring SCGO while tailoring its rheological behavior, aligning with global efforts to reduce food waste and develop sustainable food products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

29 pages, 2969 KB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Cited by 4 | Viewed by 3318
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

11 pages, 1940 KB  
Article
Hydroxyl Derivatives of Oils from Solid Fats as Components for Production of Polyurethane Foams
by Elżbieta Malewska, Maria Kurańska, Klara Grelowska, Aleksandra Put, Hubert Ożóg, Julia Sędzimir, Natalia Kowalik, Michał Kucała and Aleksander Prociak
Molecules 2025, 30(13), 2703; https://doi.org/10.3390/molecules30132703 - 23 Jun 2025
Viewed by 633
Abstract
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the [...] Read more.
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the range of 341–396 mgKOH/g, a viscosity of 60–88 mPa·s, and a functionality of 2.3–3.4. Open-cell polyurethane foams were obtained by replacing from 50 to 100 wt.% of a petrochemical polyol with the biopolyols from solid fats. The most advantageous properties were found for the materials modified with the biopolyol based on pork fat, which was attributed to its high degree of cell openness. At a low apparent density, the foam materials were characterized by good dimensional stability. The use of solid fats offers new possibilities for modifying thermal insulation polyurethane foams. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

14 pages, 1799 KB  
Review
Trends and Future Perspectives of Polysaccharide-Based Bigels from Seeds, Vegetable Oils, and Waxes: A Bibliometric Review
by Monserrat Sanpedro-Díaz, Alitzel Belem García-Hernández, Ana Luisa Gómez-Gómez, Julia Salgado-Cruz, Oswaldo Arturo Ramos-Monroy, Rubén Oliver-Espinoza, Griselda Argelia Rivera-Vargas and Ma de la Paz Salgado-Cruz
Gels 2025, 11(6), 413; https://doi.org/10.3390/gels11060413 - 30 May 2025
Cited by 3 | Viewed by 1380
Abstract
Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. [...] Read more.
Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. Their structure and functionality are influenced by the distribution of gel phases (e.g., oleogel-in-hydrogel or hydrogel-in-oleogel). This study aims to review current trends in polysaccharide-based bigels derived from seeds, vegetable oils and waxes, highlighting their biocompatibility, sustainability and potential food applications. A bibliometric analysis of 157 documents using VOSviewer identified four key thematic clusters: structured materials, delivery systems, pharmaceutical applications, and physicochemical characterization. Principal component analysis revealed strong correlations between terms, while also highlighting emerging areas such as 3D printing. This analysis demonstrated that seed-derived polysaccharides, including chia seed mucilage and guar gum, improve bigel structure and rheological properties, offering sustainable plant-based alternatives. Additionally, innovations such as extrusion-based 3D printing, functional food design, controlled drug release, bioactive compound delivery, and fat replacement are helping to support the further development of these systems. Finally, bibliometric tools remain instrumental in identifying research gaps and guiding future directions in this field. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Graphical abstract

25 pages, 6616 KB  
Article
Optimization and Characterization of Crosslinked Chitosan-Based Oleogels Based on Mechanical Properties of Conventional Solid Fats
by Gabriela Baptista Brito, Jorge da Silva Pinho-Jr, André da Silva Guimarães, Carlos Adam Conte-Júnior, Marcio Nele, Daniel Perrone and Vanessa Naciuk Castelo-Branco
Polymers 2025, 17(11), 1526; https://doi.org/10.3390/polym17111526 - 29 May 2025
Cited by 1 | Viewed by 832
Abstract
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological [...] Read more.
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological properties of solid fats. Oleogelation, especially using polymer-based networks, offers a promising solution. This study optimized chitosan-based oleogels crosslinked with vanillin to mimic the texture of butter, partially hydrogenated fat, margarine, and palm fat while minimizing oil loss. Oleogels were prepared via the emulsion-template method and optimized through a central composite design combined with a desirability function, evaluating the effects of chitosan, vanillin, Tween® 60 concentrations, oil type (canola or soybean), and storage temperature (4 °C or 25 °C). Optimized oleogels were characterized for their rheological and microstructural properties. Chitosan concentration primarily governed oil loss, hardness, and adhesiveness of oleogels, independent of the oil phase and storage temperature. However, storage at 4 °C reduced oil loss but increased the hardness and adhesiveness compared to storage at 25 °C. The highest desirability scores (0.72 to 0.94) were achieved in soybean oil oleogels with 0.99% chitosan, 0.24–0.32% vanillin, and 0.17–0.18% Tween® 60, closely mimicking the texture of butter and margarine. These oleogels demonstrated stronger networks, enhanced gel strength, and elasticity, positioning them as viable alternatives to conventional solid fats. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

16 pages, 2227 KB  
Article
Cellulose-Based Pickering Emulsion-Templated Edible Oleofoam: A Novel Approach to Healthier Solid-Fat Replacers
by Sang Min Lee, Su Jung Hong, Gye Hwa Shin and Jun Tae Kim
Gels 2025, 11(6), 403; https://doi.org/10.3390/gels11060403 - 28 May 2025
Viewed by 870
Abstract
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose [...] Read more.
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose particle-based Pickering emulsions (CP-PEs) were prepared from microcrystalline cellulose and ethylcellulose and then foamed to obtain edible oleofoams (CP-EOs) as a solid-fat replacer. The average size of CP-PE droplets without surfactant was 598 ± 69 nm, as confirmed by confocal and transmission electron microscopy. Foaming with citric acid/NaHCO3 and structuring with ≥6% glyceryl monostearate resulted in CP-EOs with an overrun of 147 ± 4% and volumetric stability for 72 h. Micro-computed tomography showed a uniform microcellular network, while the rheological analysis showed solid-like behavior with a storage modulus higher than butter. Differential scanning calorimetry showed a melting enthalpy similar to unsalted butter (10.1 ± 0.9 J/g). These physicochemical properties demonstrate that CP-EOs can closely mimic the firmness, thermal profile, and mouth-feel of conventional solid fats and may provide a promising solid-fat replacer. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and Innovative Applications)
Show Figures

Figure 1

11 pages, 2351 KB  
Article
Mangosteen Seed Fat: A Typical 1,3-Distearoyl-Sn-2-Linoleoyl-Glycerol-Rich Fat and Its Effects on Delaying Chocolate Fat Bloom
by Xueying Hou, Yuhang Chen, Lai Wei and Jun Jin
Foods 2025, 14(4), 557; https://doi.org/10.3390/foods14040557 - 7 Feb 2025
Viewed by 1409
Abstract
Mangosteen seed fat (MSF), a novel tropical seed fat, predominantly comprises 1,3-distearoyl-2-linoleoyl-glycerol (StLSt) and 1,3-distearoyl-2-oleoyl-glycerol (StOSt). The fat was blended with cocoa butter (CB) in proportions of 5%, 25% and 60% in the present study, and the binary blends achieved acceptable miscibility. It [...] Read more.
Mangosteen seed fat (MSF), a novel tropical seed fat, predominantly comprises 1,3-distearoyl-2-linoleoyl-glycerol (StLSt) and 1,3-distearoyl-2-oleoyl-glycerol (StOSt). The fat was blended with cocoa butter (CB) in proportions of 5%, 25% and 60% in the present study, and the binary blends achieved acceptable miscibility. It was indicated that StLSt could be mixed well with the symmetrical monounsaturated triacylglycerols in CB, especially StOSt, 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POSt) and 1,3-dipalmitoyl-2-oleoyl-glycerol (POP). Although the solid fat contents of the binary blends gradually decreased with the addition of MSF, which resulted from low-melting triacylglycerols in MSF, the well-compatible fat matrix contributed to keeping their desirable melting behaviors and hardness at hot temperatures. A chocolate fat bloom test showed that replacing CB with 25–60% MSF improved fat-bloom-resistant stabilities effectively. The effective steric hindrance of StLSt crystals may improve fat compatibilities and further delay liquid–oil migration and recrystallization in chocolates during temperature fluctuations. Full article
Show Figures

Graphical abstract

26 pages, 1316 KB  
Review
Characteristics and Functional Properties of Bioactive Oleogels: A Current Review
by Md. Jannatul Ferdaus, Niaz Mahmud, Sudipta Talukder and Roberta Claro da Silva
Gels 2025, 11(1), 69; https://doi.org/10.3390/gels11010069 - 16 Jan 2025
Cited by 8 | Viewed by 4420
Abstract
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory [...] Read more.
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory qualities of lipid-based foods. Moreover, oleogels offer an ideal carrier for poorly water-soluble bioactive compounds. The three-dimensional structure of oleogels can protect and deliver bioactive compounds in functional food products. Bioactive compounds also affect the crystalline behavior of oleogelators, the physical properties of oleogels, and storage stability. Generally, different incorporation techniques are applied to entrap bioactive compounds in the oleogel matrix depending on their characteristics. These approaches enhance the bioavailability, controlled release, stability of bioactive compounds, and the shelf life of oleogels. The multifunctionality of oleogels extends their applications beyond fat replacements, e.g., food preservation, nutraceutical delivery, and even novel innovations like 3D food printing. Despite their potential, challenges such as large-scale production, cost efficiency, and consumer acceptance remain areas for further exploration. This review emphasizes the understanding of the relationship between the structure of oleogels and their functional properties to optimize their design in different food applications. It also highlights the latest advancements in bioactive oleogels, focusing on how they incorporate bioactive compounds such as polyphenols, essential oils, and flavonoids into oleogels. The impact of these compounds on the gelation process, storage stability, and overall functionality of oleogels is also critically examined. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

14 pages, 5384 KB  
Article
Preparation of Chitosan Oleogel from Capillary Suspension and Its Application in Pork Meatballs
by Shishuai Wang, Zhongqin Fan, Xinya Huang, Yue Gao, Hongwei Sui, Jun Yang and Bin Li
Gels 2024, 10(12), 826; https://doi.org/10.3390/gels10120826 - 14 Dec 2024
Viewed by 1455
Abstract
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an [...] Read more.
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost. Increasing chitosan from 15% to 45% reduced oil loss from 46% to 13%, and raising the water/chitosan ratio from 0 to 0.8 lowered oil loss from 37% to 13%. After normalization, the optimal soybean oil, chitosan, and water ratio was 1:0.45:0.36, yielding a solid-like appearance, minimal oil loss of 13%, and maximum gel strength and viscosity. To assess the potential application of the optimized oleogel, it was incorporated into pork meatballs as a replacement for pork fat. Textural and cooking experiments revealed that as the oleogel content increased, the hardness of the pork meatballs increased, while the cooking loss decreased. It suggested that the chitosan oleogel could enhance the quality of pork meatballs while also contributing to a healthier product by reducing saturated fat content. Full article
Show Figures

Figure 1

15 pages, 7304 KB  
Article
Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream
by Li-Hua Pan, Jia-Hui Lin, Mei-Jia Li, Lei Cao, Xiao-Yu Liu, Yuan-Yuan Deng, Shui-Zhong Luo and Zhi Zheng
Foods 2024, 13(22), 3660; https://doi.org/10.3390/foods13223660 - 17 Nov 2024
Viewed by 1371
Abstract
Ice cream is popular but contains high amounts of saturated fats and few health-promoting ingredients. In the presence of xanthan gum (0.25%), blueberry peel particles prepared through ball-milling treatment (BMPs) were used to prepare ice cream containing camellia oil as a fat replacer. [...] Read more.
Ice cream is popular but contains high amounts of saturated fats and few health-promoting ingredients. In the presence of xanthan gum (0.25%), blueberry peel particles prepared through ball-milling treatment (BMPs) were used to prepare ice cream containing camellia oil as a fat replacer. The BMPs possessed smaller particle sizes, larger contact angles, and higher contents of anthocyanin aglycone compared with commonly milled blueberry peel particles. BMPs with the largest contact angle (66.30°) were obtained by ball-milling the blueberry peel at 15 Hz for 6 h (BMP15Hz6h). The ice cream mixes were depicted as linear viscoelastic gel-like solids, and their apparent viscosity, G′ and G′, increased with the increase in the BMP15Hz6h concentration. Ice cream with strong antioxidant activity and good freeze–thaw stability was acceptable and desirable in the presence of 0.5% BMP15Hz6h. Full article
Show Figures

Figure 1

22 pages, 6438 KB  
Article
Evaluation of Hazelnut Cake Flour for Use as a Milk Powder Replacer in Ice Cream
by Mirela Lučan Čolić, Antun Jozinović, Jasmina Lukinac, Marko Jukić and Martina Antunović
Appl. Sci. 2024, 14(22), 10303; https://doi.org/10.3390/app142210303 - 9 Nov 2024
Cited by 1 | Viewed by 1853
Abstract
Hazelnut oil cake, a by-product in the cold-pressing of hazelnut oil, is a rich in valuable nutrients, which makes it a promising option for supplementation or as a raw material in the development of functional products. The aim of this work was to [...] Read more.
Hazelnut oil cake, a by-product in the cold-pressing of hazelnut oil, is a rich in valuable nutrients, which makes it a promising option for supplementation or as a raw material in the development of functional products. The aim of this work was to study the influence of partial or complete replacing of skim milk powder (SMP) with hazelnut press cake flour (HPCF) in varying ratios (0%, 25%, 50%, 75%, and 100%) on the physicochemical properties and sensory attributes of milk ice cream. The replacement modified the chemical composition of the ice cream mixture, resulting in a reduction (p < 0.05) of milk solids non-fat (MSNF), protein, and carbohydrates content, while simultaneously elevating the hazelnut content, and total fat content. This modification influenced the rheological characteristics of the ice cream mixtures, leading to an increase in the consistency coefficient from 1.32 to 7.66 Pa sn. Furthermore, a decline in overrun values (from 26.99% to 15.85%), an increase in hardness (from 6881.71 to 23,829.30 g), retarded melting properties, and variations in colour attributes were observed with higher concentrations of HPCF. In the sensory evaluation test, it was found that consumer acceptance was enhanced for the samples with partial substitution of SMP when compared to standard milk ice cream. The findings suggest that a replacement of milk powder with hazelnut cake by up to 75% is achievable, in order to obtain functional ice cream with adequate physicochemical and sensorial qualities. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Graphical abstract

Back to TopTop