Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = solar power thermal plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Viewed by 250
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 3267 KiB  
Article
Analysis of Experimental Data from a Concentrating Parabolic Solar Plant and Comparison with Simulation Model Results
by Giuseppe Canneto, Irena Balog, Primo Di Ascenzi and Giampaolo Caputo
Energies 2025, 18(12), 3161; https://doi.org/10.3390/en18123161 - 16 Jun 2025
Viewed by 621
Abstract
Among the concentrating solar power (CSP) technologies, the parabolic trough (PT) solar collector is a proven technology mainly used to produce electricity and heat for industrial processes. Since 2003, a stand-alone Molten Salt Parabolic Trough (MSPT) experimental plant, located in the ENEA research [...] Read more.
Among the concentrating solar power (CSP) technologies, the parabolic trough (PT) solar collector is a proven technology mainly used to produce electricity and heat for industrial processes. Since 2003, a stand-alone Molten Salt Parabolic Trough (MSPT) experimental plant, located in the ENEA research centre of Casaccia (PCS plant), has been in operation. In this paper a brief description of the plant, the main plant operation figures, and a report of the main results obtained during the experimental test campaigns are presented. The aim of the tests was the evaluation of the thermal power collected as a function of DNI, mass flow rate, and inlet temperature of molten salt; experimental data were compared with simulation results obtained using a heat transfer software model of the solar receiver. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

25 pages, 2627 KiB  
Article
Photovoltaic Power Estimation for Energy Management Systems Addressing NMOT Removal with Simplified Thermal Models
by Juan G. Marroquín-Pimentel, Manuel Madrigal-Martínez, Juan C. Olivares-Galvan and Alma L. Núñez-González
Technologies 2025, 13(6), 240; https://doi.org/10.3390/technologies13060240 - 11 Jun 2025
Viewed by 427
Abstract
For energy management systems, it is crucial to determine, in advance, the available energy from renewable sources to be dispatched in the next hours or days, in order to meet their generation and consumption goals. Predicting the photovoltaic power output strongly depends on [...] Read more.
For energy management systems, it is crucial to determine, in advance, the available energy from renewable sources to be dispatched in the next hours or days, in order to meet their generation and consumption goals. Predicting the photovoltaic power output strongly depends on accurate weather forecasting data and properly photovoltaic panel models. In this context, several traditional thermal models are expected to become obsolete due to the removal of the widely used Nominal Module Operating Temperature parameter, stated in the IEC 61215-2:2021 standard, according to reports of longer time periods in test data processing. The main contribution of the photovoltaic power estimation algorithm developed in this paper is the integration of an accurate procedure to calculate the hourly day-ahead power output of a photovoltaic plant, based on three simplified thermal models in steady state. These models are proposed and evaluated as remedial alternatives to the removal of the Nominal Module Operating Temperature parameter—a subject that has not been widely addressed in the related literature. The proposed estimation algorithm converts specific Numerical Weather Prediction data and solar module specifications into photovoltaic power output, which can be used in energy management applications to provide economic and ecological benefits. This approach focuses on rooftop-mounted mono-crystalline silicon photovoltaic panel arrays and incorporates a nonlinear translation of Standard Test Conditions parameters to real operating conditions. All necessary input data are provided for the analysis, and the accuracy of experimental results is validated using appropriate error metrics. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

24 pages, 2458 KiB  
Article
Renewable Energy Curtailment Storage in Molten Salt and Solid Particle Solar Thermal Power Plants: A Comparative Analysis in Spain
by Sergio González-Barredo and Miguel Ángel Reyes-Belmonte
Appl. Sci. 2025, 15(11), 6162; https://doi.org/10.3390/app15116162 - 30 May 2025
Viewed by 672
Abstract
Spain’s energy transition poses the dual challenge of managing renewable curtailment and enhancing the competitiveness of concentrated solar power (CSP) technologies. This study evaluates the suitability of replacing molten salts with solid particles for energy storage and, additionally, explores the storage of surplus [...] Read more.
Spain’s energy transition poses the dual challenge of managing renewable curtailment and enhancing the competitiveness of concentrated solar power (CSP) technologies. This study evaluates the suitability of replacing molten salts with solid particles for energy storage and, additionally, explores the storage of surplus electricity from grid in Carnot batteries. Four scenarios were analyzed using a Gemasolar-type plant model: each storage medium was studied with and without the integration of curtailed electricity. The solar field was modeled with SAM (System Advisor Model), while curtailment data from Red Eléctrica de España (2016–2021) quantified the available surplus. Results show that solid particles lead to 7.4% higher annual electricity production compared to molten salts, mainly due to improved power cycle efficiency. The integration of curtailment increased output further, with the solid particle Carnot battery scenario achieving the highest performance (up to 19.0% sun-to-electricity efficiency and 69.7% capacity factor). However, round-trip efficiency for curtailment storage was limited (~25–27%), and although solid particles showed lower LCOE (levelized cost of energy) than salts (192 vs. 211 USD/MWh), the Carnot battery increased costs. These findings suggest that while solid particles offer clear advantages, the economic viability of Carnot batteries remains constrained by current cost and operational limitations. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

21 pages, 4100 KiB  
Article
Enhancing Pumped Hydro Storage Regulation Through Adaptive Initial Reservoir Capacity in Multistage Stochastic Coordinated Planning
by Chao Chen, Shan Huang, Yue Yin, Zifan Tang and Qiang Shuai
Energies 2025, 18(11), 2707; https://doi.org/10.3390/en18112707 - 23 May 2025
Viewed by 399
Abstract
Hybrid pumped hydro storage plants, by integrating pump stations between cascade hydropower stations, have overcome the challenges associated with site selection and construction of pure pumped hydro storage systems, thereby becoming the optimal large-scale energy storage solution for enhancing the absorption of renewable [...] Read more.
Hybrid pumped hydro storage plants, by integrating pump stations between cascade hydropower stations, have overcome the challenges associated with site selection and construction of pure pumped hydro storage systems, thereby becoming the optimal large-scale energy storage solution for enhancing the absorption of renewable energy. However, the multi-energy conversion between pump stations, hydropower, wind power, and photovoltaic plants poses challenges to both their planning schemes and operational performance. This study proposes a multistage stochastic coordinated planning model for cascade hydropower-wind-solar-thermal-pumped hydro storage (CHWS-PHS) systems. First, a Hybrid Pumped Hydro Storage Adaptive Initial Reservoir Capacity (HPHS-AIRC) strategy is developed to enhance the system’s regulation capability by optimizing initial reservoir levels that are synchronized with renewable generation patterns. Then, Non-anticipativity Constraints (NACs) are incorporated into this model to ensure the dynamic adaptation of investment decisions under multi-timescale uncertainties, including inter-annual natural water inflow (NWI) variations and hourly fluctuations in wind and solar power. Simulation results on the IEEE 118-bus system show that the proposed MSSP model reduces total costs by 6% compared with the traditional two-stage approach (TSSP). Moreover, the HPHS-AIRC strategy improves pumped hydro utilization by 33.8%, particularly benefiting scenarios with drought conditions or operational constraints. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

42 pages, 4883 KiB  
Article
A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants
by Tao Li, Wei Wu, Xiufeng Li, Yongquan Li, Xueru Gong, Shuai Zhang, Ruijiao Ma, Xiaowei Liu and Meng Zou
Sustainability 2025, 17(11), 4774; https://doi.org/10.3390/su17114774 - 22 May 2025
Viewed by 405
Abstract
Under extreme operating conditions such as high temperatures, strong corrosion, and cyclic thermal shocks, key equipment in solar tower power plants (STPPs) is prone to severe accidents and results in significant losses. To systematically quantify potential failure risks and address the methodological gaps [...] Read more.
Under extreme operating conditions such as high temperatures, strong corrosion, and cyclic thermal shocks, key equipment in solar tower power plants (STPPs) is prone to severe accidents and results in significant losses. To systematically quantify potential failure risks and address the methodological gaps in existing research, this study proposes a risk assessment framework combining a novel scenario propagation model covering triggering factors, precursor events, accident scenarios, and response measures with an interval type-2 fuzzy set (IT2FS) Bayesian network. This framework establishes equipment failure evolution pathways and consequence evaluation criteria. To address data scarcity, the methodology integrates actual case data and expert elicitation to obtain assessment parameters. Specifically, an IT2FS-based similarity aggregation method quantifies expert opinions for prior probability estimation. Additionally, to reduce computational complexity and enhance reliability in conditional probability acquisition, the IT2FS-integrated best–worst method evaluates the relative importance of parent nodes, combined with a leakage-weighted summation algorithm to generate conditional probability tables. The model was applied to a western Chinese STPP and the results show the probabilities of receiver blockage, pipeline blockage, tank leakage, and heat exchanger blockage are 0.061, 0.059, 0.04, and 0.08, respectively. Under normal operating conditions, the occurrence rates of level II accident consequences for all four equipment types remain below 6%, with response measures demonstrating significant suppression effects on accidents. The research results provide critical decision-making support for risk management and mitigation strategies in STPPs. Full article
Show Figures

Figure 1

17 pages, 3087 KiB  
Article
Coordinated Scheduling and Operational Characterization of Electricity and District Heating Systems: A Case Study
by Peng Yu, Dianyang Li, Dai Cui, Jing Xu, Chengcheng Li and Huiqing Cao
Energies 2025, 18(9), 2211; https://doi.org/10.3390/en18092211 - 26 Apr 2025
Viewed by 430
Abstract
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing [...] Read more.
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing systems. Therefore, this study systematically explores the deep transfer modifications of a specific thermal power plant based in Liaoning, China, and the operational characteristics of the heating supply system of a particular heating company. In addition, the overall PHS operational performance is analyzed. The results indicate that both absorption heat pumps and solid-state electric thermal storage technologies effectively improve system load regulation capabilities. The temperature decrease in the water medium in the primary network was proportional to the pipeline distance. When the pipeline lengths were 1175 and 14,665 m, the temperature decreased by 0.66 and 3.48 °C, respectively. The heat exchanger effectiveness and logarithmic mean temperature difference (LMTD) were positively correlated with the outdoor temperature. When the outdoor temperature dropped to −18 °C, the heat exchanger efficiency decreased to 60%, and the LMTD decreased to 17.5 °C. The study findings provide practical data analysis support to address the balance between power supply and heating demand. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 3127 KiB  
Article
The Strategic Selection of Concentrated Solar Thermal Power Technologies in Developing Countries Using a Fuzzy Decision Framework
by Abdulrahman AlKassem, Kamal Al-Haddad, Dragan Komljenovic and Andrea Schiffauerova
Energies 2025, 18(8), 1957; https://doi.org/10.3390/en18081957 - 11 Apr 2025
Viewed by 539
Abstract
Relative to other renewable energy technologies, concentrated solar power (CSP) is only in the beginning phases of large-scale deployment. Its incorporation into national grids is steadily growing, with anticipation of its substantial contribution to the energy mix. A number of emerging economies are [...] Read more.
Relative to other renewable energy technologies, concentrated solar power (CSP) is only in the beginning phases of large-scale deployment. Its incorporation into national grids is steadily growing, with anticipation of its substantial contribution to the energy mix. A number of emerging economies are situated in areas that receive abundant amounts of direct normal irradiance (DNI), which translates into expectations of significant effectiveness for CSP. However, any assessment related to the planning of CSP facilities is challenging because of the complexity of the associated criteria and the number of stakeholders. Additional complications are the differing concepts and configurations for CSP plants available, a dearth of related experience, and inadequate amounts of data in some developing countries. The goal of the work presented in this paper was to evaluate the practical CSP implementation options for such parts of the world. Ambiguity and imprecision issues were addressed through the application of multi-criteria decision-making (MCDM) in a fuzzy environment. Six technology combinations, involving dry cooling and varied installed capacity levels, were examined: three parabolic trough collectors with and without thermal storage, two solar towers with differing storage levels, and a linear Fresnel with direct steam generation. The in-depth performance analysis was based on 4 main criteria and 29 sub-criteria. Quantitative and qualitative data, plus input from 44 stakeholders, were incorporated into the proposed fuzzy analytic hierarchy process (AHP) model. In addition to demonstrating the advantages and drawbacks of each scenario relative to the local energy sector requirements, the model’s results also provide accurate recommendation guidelines for integrating CSP technology into national grids while respecting stakeholders’ priorities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 25475 KiB  
Article
Impact of Mechanical Arc Oscillation on the Microstructure and Durability of Welded Joints in Molten Salt Thermal Storage System
by Raúl Pastén, Mauro Henríquez, Mehran Nabahat, Victor Vergara, Juan C. Reinoso-Burrows, Carlos Soto, Carlos Durán, Edward Fuentealba and Luis Guerreiro
Materials 2025, 18(7), 1619; https://doi.org/10.3390/ma18071619 - 2 Apr 2025
Viewed by 607
Abstract
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar [...] Read more.
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar tower technology, where the molten salts must operate at temperatures ranging from 290 °C to 565 °C, several issues related to tank failures have emerged in recent years, with some of these failures attributed to the welding process. The welding process of joints in 316L stainless steel (ASS) probes exposed to a moving flow of a binary mixture containing 60% NaNO3 and 40% KNO3 (solar salt) is analysed. The results were evaluated using scanning electron microscopy (SEM) at 120, 500, 1000, 1500, and 2300 h of exposure. It was identified that arc mechanical oscillations significantly improve the microstructural properties and geometrical characteristics of welded joints, reducing structural defects and improving corrosion resistance. The technique promotes uniform thermal distribution, refined dendrite morphology, and homogeneous alloying element distribution, resulting in lower mass loss in high-temperature molten salt environments. Additionally, oscillation welding optimises the bead geometry, with reduced wetting angles and controlled penetration, making it ideal for high-precision industrial applications and extreme environments, such as molten salt thermal storage systems. Full article
Show Figures

Figure 1

18 pages, 8929 KiB  
Article
Concept of Adapting the Liquidated Underground Mine Workings into High-Temperature Sand Thermal Energy Storage
by Kamil Szewerda, Dariusz Michalak, Piotr Matusiak and Daniel Kowol
Appl. Sci. 2025, 15(7), 3868; https://doi.org/10.3390/app15073868 - 1 Apr 2025
Viewed by 513
Abstract
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate [...] Read more.
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate energy intermittently, depending on weather conditions. Given the increasing number of new installations, ensuring the power balance and transmission capacity of the electrical grid has become a major challenge. To address this issue, the authors propose a technical solution that allows the energy generated by photovoltaic systems to be stored in the form of heat. Thermal energy from solar power and wind energy offers significant potential for energy storage. It can be accumulated during summer in specially designed sand-based heat storage systems and then used for heating purposes in winter. This approach not only reduces heating costs but also decreases greenhouse gas emissions and helps balance the power grid during sunny periods. Post-industrial areas, often located near city centers, are suitable locations for large-scale heat storage facilities supplying, among others, public utility buildings. Therefore, this article presents a concept for utilizing high-temperature sand-based heat storage systems built in decommissioned underground mining excavations. Full article
(This article belongs to the Special Issue Surface and Underground Mining Technology and Sustainability)
Show Figures

Figure 1

21 pages, 6449 KiB  
Article
An Evaluation of the Power System Stability for a Hybrid Power Plant Using Wind Speed and Cloud Distribution Forecasts
by Théodore Desiré Tchokomani Moukam, Akira Sugawara, Yuancheng Li and Yakubu Bello
Energies 2025, 18(6), 1540; https://doi.org/10.3390/en18061540 - 20 Mar 2025
Cited by 1 | Viewed by 748
Abstract
Power system stability (PSS) refers to the capacity of an electrical system to maintain a consistent equilibrium between the generation and consumption of electric power. In this paper, the PSS is evaluated for a “hybrid power plant” (HPP) which combines thermal, wind, solar [...] Read more.
Power system stability (PSS) refers to the capacity of an electrical system to maintain a consistent equilibrium between the generation and consumption of electric power. In this paper, the PSS is evaluated for a “hybrid power plant” (HPP) which combines thermal, wind, solar photovoltaic (PV), and hydropower generation in Niigata City. A new method for estimating its PV power generation is also introduced based on NHK (the Japan Broadcasting Corporation)’s cloud distribution forecasts (CDFs) and land ratio settings. Our objective is to achieve frequency stability (FS) while reducing CO2 emissions in the power generation sector. So, the PSS is evaluated according to the results in terms of the FS variable. Six-minute autoregressive wind speed prediction (6ARW) support is used for wind power (WP). One-hour GPV wind farm (1HWF) power is computed from the Grid Point Value (GPV) wind speed prediction data. The PV power is predicted using autoregressive modelling and the CDFs. In accordance with the daily power curve and the prediction time, we can support thermal power generation planning. Actual data on wind and solar are measured every 10 min and 1 min, respectively, and the hydropower is controlled. The simulation results for the electricity frequency fluctuations are within ±0.2 Hz of the requirements of Tohoku Electric Power Network Co,. Inc. for testing and evaluation days. Therefore, the proposed system supplies electricity optimally and stably while contributing to reductions in CO2 emissions. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

20 pages, 1827 KiB  
Review
Hybrid Small Modular Nuclear Reactor with Concentrated Solar Power: Towards 4+ Reactors?
by Ruben Bartali, Emanuele De Bona, Michele Bolognese, Alessandro Vaccari, Matteo Testi and Luigi Crema
Solar 2025, 5(1), 12; https://doi.org/10.3390/solar5010012 - 19 Mar 2025
Viewed by 811
Abstract
Solar thermal energy is one of the most interesting sustainable solutions for decarbonizing the energy sector. Integrating solar collectors with other energy sources is common, as seen in domestic heating, where solar collectors are combined with common heaters to reduce fuel consumption (gasoline, [...] Read more.
Solar thermal energy is one of the most interesting sustainable solutions for decarbonizing the energy sector. Integrating solar collectors with other energy sources is common, as seen in domestic heating, where solar collectors are combined with common heaters to reduce fuel consumption (gasoline, electricity, gas, and biomass) and therefore, the energy cost. Similarly, this concept can be applied to nuclear energy, where the reduction in nuclear fuel consumption is very strategic for decreasing not only its cost but also the risk in handling, transportation, and storage (both the fuel and the nuclear waste as well). Nuclear energy, on the other hand, seems to be very useful in reducing the land occupation of concentrated solar power plants (CSPs) and helping a more constant production of electricity, both points being two important bottlenecks of CSP technologies. CSP and nuclear reactors, on the other hand, share common heating technologies and both can produce energy without CO2 emissions. Solar and nuclear energy, especially with the advent of the fourth generation of small modular reactors (SMRs), present a compelling opportunity for sustainable electricity generation. In this work, we present a brief review of CSP technology, a brief review of SMR concepts and development, and a brief overview of the combination of these two technologies. The review shows that in general, combined SMR + CSP technologies offer several advantages in terms of a strong reduction in the solar field extension areas, improved dispatchability of energy, improved efficiency of the SMRs, and, in particular, lower nuclear fuel consumption (hence, e.g., with a lowered refueling frequency). Full article
Show Figures

Figure 1

18 pages, 5502 KiB  
Article
Interaction Mechanism and Oscillation Characteristics of Grid-Connected Concentrating Solar Power–Battery Energy Storage System–Wind Hybrid Energy System
by Shengliang Cai, Guobin Fu, Xuebin Wang, Guoqiang Lu, Rui Song, Haibin Sun, Zhihang Xue, Yangsunnan Xu and Peng Kou
Energies 2025, 18(6), 1339; https://doi.org/10.3390/en18061339 - 8 Mar 2025
Cited by 1 | Viewed by 1006
Abstract
Solar thermal concentrating solar power (CSP) plants have attracted growing interest in the field of renewable energy generation due to their capability for large-scale electricity generation, high photoelectric conversion efficiency, and enhanced reliability and flexibility. Meanwhile, driven by the rapid advancement of power [...] Read more.
Solar thermal concentrating solar power (CSP) plants have attracted growing interest in the field of renewable energy generation due to their capability for large-scale electricity generation, high photoelectric conversion efficiency, and enhanced reliability and flexibility. Meanwhile, driven by the rapid advancement of power electronics technology, extensive wind farms (WFs) and large-scale battery energy storage systems (BESSs) are being increasingly integrated into the power grid. From these points of view, grid-connected CSP–BESS–wind hybrid energy systems are expected to emerge in the future. Currently, most studies focus solely on the stability of renewable energy generation systems connected to the grid via power converters. In fact, within CSP–BESS–wind hybrid energy systems, interactions between the CSP, collection grid, and the converter controllers can also arise, potentially triggering system oscillations. To fill this gap, this paper investigated the interaction mechanism and oscillation characteristics of a grid-connected CSP–BESS–wind hybrid energy system. Firstly, by considering the dynamics of CSP, BESSs, and wind turbines, a comprehensive model of a grid-connected CSP–BESS–wind hybrid energy system was developed. With this model, the Nyquist stability criterion was utilized to analyze the potential interaction mechanism within the hybrid system. Subsequently, the oscillation characteristics were examined in detail, providing insights to inform the design of the damping controller. Finally, the analytical results were validated through MATLAB/Simulink simulations. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 2302 KiB  
Article
Exergy Analysis of the Discharge of Sensible Heat Thermal Energy Storage Systems: Granular Material vs. Solid Blocks
by Antonio Soria-Verdugo, Alberto Sánchez-González, Gerardo Carbajal and Néstor García-Hernando
Appl. Sci. 2025, 15(5), 2543; https://doi.org/10.3390/app15052543 - 27 Feb 2025
Viewed by 599
Abstract
Thermal energy storage (TES) systems are essential components of concentrating solar power (CSP) plants that enable uniform generation of green electricity and process heat. The performance of sensible heat TES systems based on granular material and on solid blocks was experimentally analyzed during [...] Read more.
Thermal energy storage (TES) systems are essential components of concentrating solar power (CSP) plants that enable uniform generation of green electricity and process heat. The performance of sensible heat TES systems based on granular material and on solid blocks was experimentally analyzed during the discharge process. A granular material TES system was studied in its operation as a regular fluidized bed and as a confined bed that restricted the motion of the granular material via mechanical confinement. The pressure drop required to circulate the heat transfer fluid (HTF) through the TES system made of alumina blocks was measured to be two orders of magnitude lower than that used in the granular material TES system, being uniform and close to 0.2 bar for operation of the fluidized bed and decreasing from 0.65 to 0.3 bar for the confined bed. The evolution of the exergy efficiency of the TES systems along the discharge process was determined by obtaining an inversed exponential reduction for the fluidized bed TES system, a parabolic reduction for the alumina block TES system, and a roughly uniform value for the confined bed TES system. The exergy efficiency of the confined bed TES system, considering the HTF pressure drop as a parasitic consumption of the plant, remained higher than 90% during the complete discharge process. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 3615 KiB  
Article
Improvement in Energy Self-Sufficiency in Residential Buildings Using Photovoltaic Thermal Plants, Heat Pumps, and Electrical and Thermal Storage
by Antonio Gagliano, Giuseppe Marco Tina and Stefano Aneli
Energies 2025, 18(5), 1159; https://doi.org/10.3390/en18051159 - 27 Feb 2025
Cited by 5 | Viewed by 956
Abstract
Promoting complete decarbonization by entrusting the energy supply through renewable sources (wind, photovoltaic, solar thermal, etc.) is one of the key strategies in the building sector. However, renewable energy’s intermittent and space–time mismatch characteristics pose challenges to its compatibility with the power grid. [...] Read more.
Promoting complete decarbonization by entrusting the energy supply through renewable sources (wind, photovoltaic, solar thermal, etc.) is one of the key strategies in the building sector. However, renewable energy’s intermittent and space–time mismatch characteristics pose challenges to its compatibility with the power grid. Challenges can be mitigated by introducing thermal and electrical storage to increase the self-consumption of renewable energy in the buildings. This work proposes a comparison between different energy systems equipped with a heat pump, solar plant (photovoltaic or photovoltaic thermal), and thermal and electrical storage. All year-round performances of the different energy system configurations have been simulated using the TRNSYS 17.2 software. The energy analyses revealed that the energy system equipped with a photovoltaic plant, when incorporating the two storages, improves self-consumption (Rsc) from 34.1% to 69.4 and self-sufficiency (Dss) from 27.9% to 59.9%, respectively. Additionally, the energy system equipped with photovoltaic thermal collectors and both storages further improve the system performance; an Rsc of 96.2% and Dss of 86.9% are attained. These results demonstrate that the previous energy system configuration can facilitate the near attainment of net-zero energy buildings. Furthermore, the proposed energy system is characterized by a minimal energy imbalance between the building’s energy demand and the energy produced, thereby reducing the need for energy exchange with the electrical grid. Full article
Show Figures

Figure 1

Back to TopTop