Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = solar photovoltaic panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 311
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

24 pages, 533 KiB  
Article
A Gray Predictive Evolutionary Algorithm with Adaptive Threshold Adjustment Strategy for Photovoltaic Model Parameter Estimation
by Wencong Wang, Baoduo Su, Quan Zhou and Qinghua Su
Mathematics 2025, 13(15), 2503; https://doi.org/10.3390/math13152503 - 4 Aug 2025
Viewed by 103
Abstract
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible [...] Read more.
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible regions for each decision variable in the solar parameter estimation problem. The consideration of variable length difference in algorithm design may be beneficial to the efficiency for solving this problem. A gray predictive evolutionary algorithm with adaptive threshold adjustment strategy (GPEat) is proposed in this paper to estimate the parameters of several solar photovoltaic models. Unlike original GPEs and their existing variants with fixed thresholds, GPEat designs an adaptive threshold adjustment strategy (ATS), which adaptively adjusts the threshold parameter of GPE to be proportional to the length of each dimensional variable of the PV problem. The adaptive change of the threshold helps GPEat to select suitable operators for different dimensions of the PV problem. Several sets of experiments are conducted based on single-, double-, and triple-diode models and PV panel models. The experimental results indicate the highly competitive in parameter estimation for solar PV models of the proposed algorithm. Full article
Show Figures

Figure 1

19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Viewed by 189
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

12 pages, 1167 KiB  
Article
Experimental Studies on Partial Energy Harvesting by Novel Solar Cages, Microworlds, to Explore Sustainability
by Mohammad A. Khan, Brian Maricle, Zachary D. Franzel, Gabe Gransden and Matthew Vannette
Solar 2025, 5(3), 36; https://doi.org/10.3390/solar5030036 - 1 Aug 2025
Viewed by 175
Abstract
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, [...] Read more.
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, can impact the ecosystem. This experimental study explores the energy available inside and outside of novel miniature energy harvesting cages by measuring light intensity and power generated. Varying light intensity outside the cage has been utilized to study the remaining energy inside the cage of a flexible design, where the heights of the harvesting panels are parameters. Cages are built from custom photovoltaic panels arranged in a staircase manner to provide access to growing plants. The balance between power generation and biological development is investigated. Two different structures are presented to explore the variation of illumination intensity inside the cages. The experimental results show a substantial reduction in energy inside the cages. The experimental results showed up to 24% reduction in illumination inside the cages in winter. The reduction is even larger in summer, up to 57%. The results from the models provide a framework to study the possible impact on a biological system residing inside the cages, paving the way for practical farming with sustainable energy harvesting. Full article
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 289
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

37 pages, 7561 KiB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 228
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 516
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

22 pages, 3165 KiB  
Article
Efficiency Enhancement of Photovoltaic Panels via Air, Water, and Porous Media Cooling Methods: Thermal–Electrical Modeling
by Brahim Menacer, Nour El Houda Baghdous, Sunny Narayan, Moaz Al-lehaibi, Liomnis Osorio and Víctor Tuninetti
Sustainability 2025, 17(14), 6559; https://doi.org/10.3390/su17146559 - 18 Jul 2025
Viewed by 493
Abstract
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and [...] Read more.
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and electrical modeling based on CFD simulations in ANSYS. The numerical model replicates a PV system operating under peak solar irradiance (900 W/m2) and realistic ambient conditions in Adrar, Algeria. Simulation results show that air cooling leads to a modest temperature reduction of 6 °C and a marginal efficiency gain of 0.25%. Water cooling, employing a top-down laminar flow, reduces cell temperature by over 35 °C and improves net electrical output by 30.9%, despite pump energy consumption. Porous media cooling, leveraging passive evaporation through gravel, decreases panel temperature by around 30 °C and achieves a net output gain of 26.3%. Mesh sensitivity and validation against experimental data support the accuracy of the model. These findings highlight the significant potential of water and porous material cooling strategies to enhance PV performance in hyper-arid environments. The study also demonstrates that porous media can deliver high thermal effectiveness with minimal energy input, making it a suitable low-cost option for off-grid applications. Future work will integrate long-term climate data, real diffuser geometries, and experimental validation to further refine these models. Full article
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 298
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 3168 KiB  
Article
A Multi-Scale Approach to Photovoltaic Waste Prediction: Insights from Italy’s Current and Future Installations
by Andrea Franzoni, Chiara Leggerini, Mariasole Bannò, Mattia Avanzini and Edoardo Vitto
Solar 2025, 5(3), 32; https://doi.org/10.3390/solar5030032 - 15 Jul 2025
Viewed by 493
Abstract
Italy strives to meet its renewable energy targets for 2030 and 2050, with photovoltaic (PV) technology playing a central role. However, the push for increased solar adoption, spurred by past incentive schemes such as “Conto Energia” and “Superbonus 110%”, [...] Read more.
Italy strives to meet its renewable energy targets for 2030 and 2050, with photovoltaic (PV) technology playing a central role. However, the push for increased solar adoption, spurred by past incentive schemes such as “Conto Energia” and “Superbonus 110%”, raises long-term challenges related to PV waste management. In this study, we present a multi-scale approach to forecast End-of-Life (EoL) PV waste across Italy’s 20 regions, aiming to support national circular economy strategies. Historical installation data (2008–2024) were collected and combined with socio-economic and energy-related indicators to train a Backpropagation Neural Network (BPNN) for regional PV capacity forecasting up to 2050. Each model was optimised and validated using R2 and RMSE metrics. The projections indicate that current trends fall short of meeting Italy’s decarbonisation targets. Subsequently, by applying a Weibull reliability function under two distinct scenarios (Early-loss and Regular-loss), we estimated the annual and regional distribution of PV panels reaching their EoL. This analysis provides spatially explicit insights into future PV waste flows, essential for planning regional recycling infrastructures and ensuring sustainable energy transitions. Full article
Show Figures

Figure 1

22 pages, 5644 KiB  
Article
Analysis of the Impact of the Drying Process and the Effects of Corn Race on the Physicochemical Characteristics, Fingerprint, and Cognitive-Sensory Characteristics of Mexican Consumers of Artisanal Tostadas
by Oliver Salas-Valdez, Emmanuel de Jesús Ramírez-Rivera, Adán Cabal-Prieto, Jesús Rodríguez-Miranda, José Manuel Juárez-Barrientos, Gregorio Hernández-Salinas, José Andrés Herrera-Corredor, Jesús Sebastián Rodríguez-Girón, Humberto Marín-Vega, Susana Isabel Castillo-Martínez, Jasiel Valdivia-Sánchez, Fernando Uribe-Cuauhtzihua and Víctor Hugo Montané-Jiménez
Processes 2025, 13(7), 2243; https://doi.org/10.3390/pr13072243 - 14 Jul 2025
Viewed by 726
Abstract
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated [...] Read more.
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated with solar and hybrid (solar-photovoltaic solar panels) dehydration methods. Proximal chemical quantification, instrumental analysis (color, texture), fingerprint by Fourier transform infrared spectroscopy (FTIR), and sensory-cognitive profile (emotions and memories) and its relationship with the level of pleasure were carried out. The data were evaluated using analysis of variance models, Cochran Q, and an external preference map (PREFMAP). The results showed that the drying method and corn race significantly (p < 0.05) affected only moisture content, lipids, carbohydrates, and water activity. Instrumental color was influenced by the corn race effect, and the dehydration type influenced the fracturability effect. FTIR fingerprinting results revealed that hybrid samples exhibited higher intensities, particularly associated with higher lime concentrations, indicating a greater exposure of glycosidic or protein structures. Race and dehydration type effects impacted the intensity of sensory attributes, emotions, and memories. PREFMAP vector model results revealed that consumers preferred tostadas from the Solar-Chiquito, Hybrid-Pepitilla, Hybrid-Cónico, and Hybrid-Chiquito races for their higher protein content, moisture, high fracturability, crunchiness, porousness, sweetness, doughy flavor, corn flavor, and burnt flavor, while images of these tostadas evoked positive emotions (tame, adventurous, free). In contrast, the Solar-Pepitilla tostada had a lower preference because it was perceived as sour and lime-flavored, and its tostada images evoked more negative emotions and memories (worried, accident, hurt, pain, wild) and fewer positive cognitive aspects (joyful, warm, rainy weather, summer, and interested). However, the tostadas of the Solar-Cónico race were the ones that were most rejected due to their high hardness and yellow to blue tones and for evoking negative emotions (nostalgic and bored). Full article
(This article belongs to the Special Issue Applications of Ultrasound and Other Technologies in Food Processing)
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Towards Efficiency and Endurance: Energy–Aerodynamic Co-Optimization for Solar-Powered Micro Air Vehicles
by Weicheng Di, Xin Dong, Zixing Wei, Haoji Liu, Zhan Tu, Daochun Li and Jinwu Xiang
Drones 2025, 9(7), 493; https://doi.org/10.3390/drones9070493 - 11 Jul 2025
Viewed by 348
Abstract
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints [...] Read more.
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints and complex surface geometries. To address this, this work proposes an automated algorithm for optimal solar panel arrangement on complex upper surfaces of the MAV. In addition to that, the aerodynamic performance is evaluated through computational fluid dynamics (CFD) simulations based on the Reynolds-Averaged Navier–Stokes (RANS) method. A multi-objective optimization approach simultaneously considers photovoltaic energy generation and aerodynamic efficiency. Wind tunnel validation and stability analysis of flight dynamics confirm the advantages of our optimized design. To our knowledge, this represents the first systematic framework for the energy–aerodynamic co-optimization of solar-powered MAVs (SMAVs). Flight tests of a 500mm-span tailless prototype demonstrate the practical feasibility of our approach with maximum solar cell deployment. Full article
Show Figures

Figure 1

15 pages, 1296 KiB  
Article
Predicting Photovoltaic Energy Production Using Neural Networks: Renewable Integration in Romania
by Grigore Cican, Adrian-Nicolae Buturache and Valentin Silivestru
Processes 2025, 13(7), 2219; https://doi.org/10.3390/pr13072219 - 11 Jul 2025
Viewed by 360
Abstract
Photovoltaic panels are pivotal in transforming solar irradiance into electricity, making them a key technology in renewable energy. Despite their potential, the distribution of photovoltaic systems in Romania remains sparse, requiring advanced data analytics for effective management, particularly in addressing the intermittent nature [...] Read more.
Photovoltaic panels are pivotal in transforming solar irradiance into electricity, making them a key technology in renewable energy. Despite their potential, the distribution of photovoltaic systems in Romania remains sparse, requiring advanced data analytics for effective management, particularly in addressing the intermittent nature of photovoltaic energy. This study investigates the predictive capabilities of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures for forecasting hourly photovoltaic energy production in Romania. The results indicate that CNN models significantly outperform LSTM models, with 77% of CNNs achieving an R2 of 0.9 or higher compared to only 13% for LSTMs. The best-performing CNN model reached an R2 of 0.9913 with a mean absolute error (MAE) of 9.74, while the top LSTM model achieved an R2 of 0.9880 and an MAE of 12.57. The rapid convergence of the CNN model to stable error rates illustrates its superior generalization capabilities. Moreover, the model’s ability to accurately predict photovoltaic production over a two-day timeframe, which is not included in the testing dataset, confirms its robustness. This research highlights the critical role of accurate energy forecasting in optimizing the integration of photovoltaic energy into Romania’s power grid, thereby supporting sustainable energy management strategies in line with the European Union’s climate goals. Through this methodology, we aim to enhance the operational safety and efficiency of photovoltaic systems, facilitating their large-scale adoption and ultimately contributing to the fight against climate change. Full article
(This article belongs to the Special Issue Design, Modeling and Optimization of Solar Energy Systems)
Show Figures

Figure 1

Back to TopTop