Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,047)

Search Parameters:
Keywords = soil physics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4352 KB  
Article
Impacts of Forest-to-Pasture Conversion on Soil Water Retention in the Amazon Biome
by Moacir Tuzzin de Moraes, Luiz Henrique Quecine Grande, Geane Alves de Moura, Wanderlei Bieluczyk, Dasiel Obregón Alvarez, Leandro Fonseca de Souza, Siu Mui Tsai and Plínio Barbosa de Camargo
Forests 2026, 17(2), 157; https://doi.org/10.3390/f17020157 (registering DOI) - 24 Jan 2026
Abstract
Land-use conversion from forest-to-pasture in the Amazon can affect soil physical quality and hydraulic functioning. The study evaluates the effects of land use (forest and pasture) and soil texture (fine and coarse) on soil structure and hydraulic properties, using the soil water retention [...] Read more.
Land-use conversion from forest-to-pasture in the Amazon can affect soil physical quality and hydraulic functioning. The study evaluates the effects of land use (forest and pasture) and soil texture (fine and coarse) on soil structure and hydraulic properties, using the soil water retention curve as an integrative indicator. The study was conducted with soil samples from the Tapajós National Forest region, Pará State, Brazil, with eight sites (four forest and four pasture), balanced by texture. Undisturbed samples were collected from five profile layers (0–10, 10–20, 20–30, and 30–40 cm) for each site, totaling 160 samples. Samples were saturated and measured at soil water matric potentials from −0.1 to −15,000 hPa to obtain the soil water retention curve, which was fitted using the van Genuchten–Mualem model. Pore size distribution was derived from the relationship between soil water matric potential and equivalent pore diameter. Results are reported for the 0–40 cm soil profile (integrating the four sampled layers). Forest-to-pasture conversion altered soil pore structure and water retention in a texture-dependent manner. For fine-textured soils, bulk density increased from 1.03 to 1.31 Mg m−3 (+27%) from forest to pasture. In coarse-textured soils, the drainable pore volume up to −15,000 hPa, equivalent diameter > 0.2 µm) decreased from 0.296 to 0.147 m3 m−3 (−50%) from forest to pasture. Plant-available water across the 0–40 cm profile ranged from 0.107 m3 m−3 (pasture, fine-textured) to 0.137 m3 m−3 (forest, coarse-textured). Coarse-textured soils showed a marked reduction in macroporosity, water retention, and plant-available water, whereas fine-texture soils showed smaller changes in water availability but reduced aeration associated with macropore reduction. These results indicate higher physical quality vulnerability of coarse-textured soils following forest-to-pasture conversion. Full article
(This article belongs to the Special Issue Forest Soil Stability in Response to Global Change Scenarios)
Show Figures

Figure 1

17 pages, 3128 KB  
Article
Semi-Analytical Solutions for Consolidation in Multi-Layered Unsaturated Silt with Depth-Dependent Initial Condition
by Junhao Chen, Bote Luo, Xun Wu, Shi Shu and Juan Qiang
Appl. Sci. 2026, 16(3), 1168; https://doi.org/10.3390/app16031168 - 23 Jan 2026
Abstract
This paper presents an analytical model for one-dimensional consolidation analysis of multi-layered unsaturated soils under depth-dependent initial conditions. The general solutions are derived explicitly using the Laplace transform. By combining these general solutions with interfacial continuity conditions between layers and the boundary conditions, [...] Read more.
This paper presents an analytical model for one-dimensional consolidation analysis of multi-layered unsaturated soils under depth-dependent initial conditions. The general solutions are derived explicitly using the Laplace transform. By combining these general solutions with interfacial continuity conditions between layers and the boundary conditions, the reduced-order system is solved via the Euler method to obtain analytical solutions in the Laplace domain. Numerical inversion of the Laplace transform is then performed using Crump’s method to yield the final analytical solutions in the time domain. The model incorporates initial conditions that account for both uniform and linear distributions of initial excess pore pressure within the soil stratum. The proposed solution is verified by reducing it to degenerated cases (e.g., uniform initial pressure) and comparing it with existing analytical solutions, showing excellent agreement. This confirms the model’s correctness and demonstrates its generalization to multi-layered systems with depth-dependent initial conditions. Focusing on a double-layered unsaturated soil system, the one-dimensional consolidation characteristics under depth-dependent initial conditions are investigated by varying the physical parameters of individual layers. The proposed solution can serve as a theoretical reference for the consolidation analysis of multi-layered unsaturated soils with depth-dependent initial conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 4450 KB  
Article
On-Farm Assessment of No-Till Onion Production and Cover Crop Effects on Soil Physical and Chemical Properties and Greenhouse Gas Emissions
by Paulo Henrique da Silva Câmara, Bruna da Rosa Dutra, Guilherme Wilbert Ferreira, Lucas Dupont Giumbelli, Lucas Raimundo Rauber, Denílson Dortzbach, Júlio César Ramos, Marisa de Cássia Piccolo, José Luiz Rodrigues Torres, Daniel Pena Pereira, Claudinei Kurtz, Cimélio Bayer, Jucinei José Comin and Arcângelo Loss
Agronomy 2026, 16(3), 278; https://doi.org/10.3390/agronomy16030278 - 23 Jan 2026
Viewed by 29
Abstract
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating [...] Read more.
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating soil management systems for onion (Allium cepa L.) production in a Humic Dystrudept (Cambissolo Húmico Distrófico, Brazilian Soil Classification System) in Southern Brazil. Three management systems based on permanent soil cover and crop diversification were evaluated in an onion–maize rotation: conventional tillage (CT) without cover crops, no-till (NT) without cover crops, and a no-till vegetable system (NTV) with a summer cover crop mixture of pearl millet (Pennisetum americanum), velvet bean (Mucuna aterrima), and sunflower (Helianthus annuus). Short-term GHG emissions were monitored during one onion growing season (106 days), while soil chemical and physical properties reflect long-term management effects. Evaluations included (i) daily and cumulative GHG (N2O, CH4, and CO2) emissions, (ii) soil carbon (C) and nitrogen (N) stocks, (iii) soil aggregation, porosity, and bulk density in different soil layers (0.00–0.05, 0.05–0.10, and 0.10–0.30 m), and (iv) onion yield and cover crop dry matter production. The NTV system improved soil physical and chemical quality and increased onion yield compared to NT and CT. However, higher cumulative N2O emissions were observed in NTV, highlighting a short-term trade-off between increased N2O emissions and long-term improvements in soil quality and crop productivity. All systems acted as methane sinks, with greater CH4 uptake under NTV. Despite higher short-term emissions, the NTV system maintained a positive C balance due to long-term C accumulation in soil. Short-term greenhouse gas emissions were assessed during a single onion growing season, whereas soil carbon stocks reflect long-term management effects; CO2 fluxes measured using static chambers represent ecosystem respiration rather than net ecosystem carbon balance. These results provide an initial baseline of GHG dynamics within a long-term agroecological system and support future multi-year assessments aimed at refining mitigation strategies in diversified vegetable production systems. Full article
20 pages, 3818 KB  
Article
Mechanistic Shifts in Organic Carbon Stabilization in a Black Soil Driven by Nitrogen Fertilization
by Yantian Cui, Qi Li, Hongyan Chang, Yanan Li, Chengyu Wang, Rong Jiang, Shuxia Liu and Wentian He
Agronomy 2026, 16(2), 268; https://doi.org/10.3390/agronomy16020268 - 22 Jan 2026
Viewed by 12
Abstract
The phaeozem in Northeast China is rich in soil organic carbon (SOC). However, the excessive and inefficient application of chemical fertilizers, particularly nitrogen fertilizers, has primarily led to a decrease in soil pH in this region. Currently, the relationship between soil pH and [...] Read more.
The phaeozem in Northeast China is rich in soil organic carbon (SOC). However, the excessive and inefficient application of chemical fertilizers, particularly nitrogen fertilizers, has primarily led to a decrease in soil pH in this region. Currently, the relationship between soil pH and the stability of soil organic carbon (SOC) remains ambiguous. This study, conducted over 13 years of field experiments, focused on soils exhibiting varying degrees of pH resulting from different nitrogen application rates. The research employed aggregate classification, 13C nuclear magnetic resonance spectroscopy, and analysis of microbial community composition to investigate the alterations in the SOC stabilization mechanisms under varying nitrogen application levels. Our results demonstrated that the decline in soil pH led to reductions in macroaggregates (>2 mm) and the soil aggregate destruction rate (PAD) by 4.8–14.6%, and in soil aggregate unstable agglomerate index (ELT) by 9.7–13.4%. The mean weight diameter (MWD) and geometric mean diameter (GMD) exhibited significant declines (p < 0.05) with decreasing pH levels. According to the 13C NMR analysis, the SOC was predominantly composed of O-alkyl carbon and aromatic carbon. At a pH of 5.32, the Alip/Arom values decreased, while the molecular structure of SOC became more complex under different levels of pH. In addition, the increase in [Fe(Al)-OC] (31.4–71.9%) complex indicates a shift in the stability of organic carbon from physical protection to organic mineral binding. Declining soil pH significantly reduced the diversity of soil microbial communities and promoted a shift toward copiotrophic microbial groups. Overall, declining soil pH resulted in a decline in soil aggregate stability and an increase in SOC aromaticity. This drove the shift in the stabilization mechanism of SOC in the black soil ecosystem of meadows in Northeast China from physical protection to chemical stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

48 pages, 16631 KB  
Article
The Use of GIS Techniques for Land Use in a South Carpathian River Basin—Case Study: Pesceana River Basin, Romania
by Daniela Mihaela Măceșeanu, Remus Crețan, Ionuț-Adrian Drăguleasa, Amalia Niță and Marius Făgăraș
Sustainability 2026, 18(2), 1134; https://doi.org/10.3390/su18021134 - 22 Jan 2026
Viewed by 31
Abstract
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil [...] Read more.
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil texture, slope gradient, and slope orientation. The present research focuses on the Pesceana river basin in the Southern Carpathians, Romania. It addresses three main objectives: (1) to analyze land-use dynamics derived from CORINE Land Cover (CLC) data between 1990 and 2018, along with the long-term distribution of the Normalized Difference Vegetation Index (NDVI) for the period 2000–2025; (2) to evaluate the basin’s natural potential byintegrating topographic data (contour lines and profiles) with relief fragmentation density, relief energy, vegetation cover, soil texture, slope gradient, aspect, the Stream Power Index (SPI), and the Topographic Wetness Index (TWI); and (3) to assess the spatial distribution of habitat types, characteristic plant associations, and soil properties obtained through field investigations. For the first two research objectives, ArcGIS v. 10.7.2 served as the main tool for geospatial processing. For the third, field data were essential for geolocating soil samples and defining vegetation types across the entire 247 km2 area. The spatiotemporal analysis from 1990 to 2018 reveals a landscape in which deciduous forests clearly dominate; they expanded from an initial area of 80 km2 in 1990 to over 90 km2 in 2012–2018. This increase, together with agricultural expansion, is reflected in the NDVI values after 2000, which show a sharp increase in vegetation density. Interestingly, other categories—such as water bodies, natural grasslands, and industrial areas—barely changed, each consistently representing less than 1 km2 throughout the study period. These findings emphasize the importance of land-use/land-cover (LULC) data within the applied GIS model, which enhances the spatial characterization of geomorphological processes—such as vegetation distribution, soil texture, slope morphology, and relief fragmentation density. This integration allows a realistic assessment of the physical–geographic, landscape, and pedological conditions of the river basin. Full article
(This article belongs to the Special Issue Agro-Ecosystem Approaches to Sustainable Land Use and Food Security)
22 pages, 10592 KB  
Article
Dominant Role of Horizontal Swelling Pressure in Progressive Failure of Expansive Soil Slopes: An Integrated FAHP and 3D Numerical Analysis
by Chao Zheng, Shiguang Xu, Lixiong Deng, Jiawei Zhang, Zhihao Lu and Xian Li
Appl. Sci. 2026, 16(2), 1110; https://doi.org/10.3390/app16021110 - 21 Jan 2026
Viewed by 45
Abstract
Directional swelling pressure is a critical yet often overlooked factor governing the instability of expansive soil slopes. Most existing studies simplify swelling behavior as a uniform or purely vertical stress, thereby underestimating the distinct contribution of horizontal swelling pressure. In this study, an [...] Read more.
Directional swelling pressure is a critical yet often overlooked factor governing the instability of expansive soil slopes. Most existing studies simplify swelling behavior as a uniform or purely vertical stress, thereby underestimating the distinct contribution of horizontal swelling pressure. In this study, an integrated framework combining the Fuzzy Analytic Hierarchy Process (FAHP), multivariate regression analysis based on 35 expansive soil samples, and three-dimensional strength-reduction numerical modeling was developed to systematically evaluate the mechanistic roles of vertical and horizontal swelling pressures in slope deformation. The FAHP and regression analyses indicate that water content is the dominant factor controlling both the free swell ratio and swelling pressure, leading to predictive relationships that link swelling behavior to fundamental physical indices. These empirical correlations were subsequently incorporated into a three-dimensional numerical model of a representative Neogene expansive soil slope. The simulation results demonstrate that neglecting swelling pressure results in substantial discrepancies between predicted and observed displacements. Vertical swelling pressure induces moderate surface uplift but exerts a limited influence on overall failure patterns. In contrast, horizontal swelling pressure markedly amplifies downslope displacement—by more than four times under saturated conditions—reduces the factor of safety by 24.7%, and promotes the progressive development of a continuous slip surface. These findings clearly demonstrate that horizontal swelling pressure is the dominant driver of progressive failure in expansive soil slopes. This study provides new mechanistic insights into swelling-induced deformation and offers a quantitative framework for incorporating directional swelling stresses into slope stability assessment, design optimization, and mitigation strategies for geotechnical structures in expansive soil regions. Full article
Show Figures

Figure 1

39 pages, 2502 KB  
Article
Rigid Inclusions for Soft Soil Improvement: A State-of-the-Art Review of Principles, Design, and Performance
by Navid Bohlooli, Hadi Bahadori, Hamid Alielahi, Daniel Dias and Mohammad Vasef
CivilEng 2026, 7(1), 6; https://doi.org/10.3390/civileng7010006 (registering DOI) - 21 Jan 2026
Viewed by 142
Abstract
Construction on soft, highly compressible soils increasingly requires reliable ground improvement solutions. Among these, Rigid Inclusions (RIs) have emerged as one of the most efficient soil-reinforcement techniques. This paper synthesizes evidence from over 180 studies to provide a comprehensive state-of-the-art review of RI [...] Read more.
Construction on soft, highly compressible soils increasingly requires reliable ground improvement solutions. Among these, Rigid Inclusions (RIs) have emerged as one of the most efficient soil-reinforcement techniques. This paper synthesizes evidence from over 180 studies to provide a comprehensive state-of-the-art review of RI technology encompassing its governing mechanisms, design methodologies, and field performance. While the static behavior of RI systems has now been extensively studied and is supported by international design guidelines, the response under cyclic and seismic loading, particularly in liquefiable soils, remains less documented and subject to significant uncertainty. This review critically analyzes the degradation of key load-transfer mechanisms including soil arching, membrane tension, and interface shear transfer under repeated loading conditions. It further emphasizes the distinct role of RIs in liquefiable soils, where mitigation relies primarily on reinforcement and confinement rather than on drainage-driven mechanisms typical of granular columns. The evolution of design practice is traced from analytical formulations validated under static conditions toward advanced numerical and physical modeling frameworks suitable for dynamic loading. The lack of validated seismic design guidelines is high-lighted, and critical knowledge gaps are identified, underscoring the need for advanced numerical simulations and large-scale physical testing to support the future development of performance-based seismic design (PBSD) approaches for RI-improved ground. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

20 pages, 10017 KB  
Article
Calcium-Modified Coal-Based Humin Waste Residue: Enhanced Cadmium Remediation in Combined Soil–Plant Systems
by Fei Wang, Nan Guo, Yuxin Ma, Zhi Yuan, Xiaofang Qin, Yun Jia, Guixi Chen, Haokai Yu, Ping Wang and Zhanyong Fu
Sustainability 2026, 18(2), 1103; https://doi.org/10.3390/su18021103 - 21 Jan 2026
Viewed by 67
Abstract
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) [...] Read more.
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) was synthesized via a low-temperature-assisted method. The material was characterized and its cadmium passivation mechanism was investigated using scanning electron microscopy (SEM), zeta potential analysis (Zeta), carbon nuclear magnetic resonance (13C-CPMAS-NMR), and X-ray photoelectron spectroscopy (XPS). Soil incubation experiments were conducted to determine the actual cadmium adsorption capacity of coal-based humin in soils and to evaluate the stability of cadmium passivation. Plant cultivation experiments were carried out to verify the effects of coal-based humin on migration and transformation in soil, as well as on cadmium bioefficiency. The results showed that Ca-NHM passivated soil cadmium through multiple mechanisms such as ion exchange, electrostatic adsorption, complexation reactions, and physical adsorption. Compared with NHM, Ca-NHM exhibited a 69.71% increase in passivation efficiency, and a 2.44% reduction in cadmium leaching concentration. In Ca-NHM treatments, the above- and below-ground biomass of pakchoi increased by 18.06%, and 80.95%, respectively, relative to the control group. Furthermore, Ca-NHM enhanced the cadmium resistance of pakchoi, reduced the enrichment coefficient, activity coefficient, and activity-to-stability ratio in the above-ground portion of pakchoi, and maintained a transfer coefficient below 1, thereby alleviating cadmium toxicity. In summary, this study provides a theoretical foundation for understanding the mechanisms by which coal-based humin mitigates cadmium toxicity in pakchoi. Full article
(This article belongs to the Special Issue Sustainable Risk Assessment and Remediation of Soil Pollution)
Show Figures

Figure 1

20 pages, 2717 KB  
Article
Profile Differentiation of Soil Properties and Soil Organic Matter Quality as a Result of Soil Degradation in Drained Peatlands of the Temperate Zone
by Marcin Becher, Magdalena Banach-Szott, Dawid Jaremko, Agnieszka Godlewska and Natalia Barbarczyk
Sustainability 2026, 18(2), 1096; https://doi.org/10.3390/su18021096 - 21 Jan 2026
Viewed by 44
Abstract
In achieving sustainable development goals, soils play a key role in environmental protection, natural resources, and food security. Peatlands are particularly important here, as they function at the interface between terrestrial and aquatic ecosystems and store large amounts of organic matter. However, organic [...] Read more.
In achieving sustainable development goals, soils play a key role in environmental protection, natural resources, and food security. Peatlands are particularly important here, as they function at the interface between terrestrial and aquatic ecosystems and store large amounts of organic matter. However, organic soils are highly susceptible to transformation and degradation; therefore, their degradation caused by, among others, drainage properties is a high risk to both the environment and agriculture—it disrupts the ecosystems, causes greenhouse gas emissions, and eutrophicates the hydrosphere. Soil degradation in drained peatlands is associated with the transformation of soil organic matter (SOM), which in organic soils is the dominant component of the solid phase of the soil. The aim of our study was to assess the properties and degree of organic matter transformation in drained temperate peatland soils, with particular emphasis on sequential fractionation of SOM and humic acid properties. Due to the fact that in Poland, as many as 90% of non-forest peat bogs have been drained, we compare the mursh horizons that formed after peat bog drainage with the peat horizons that constitute the parent rock (where anaerobiosis occurs and morphological changes in the soil material are absent due to peat bog drainage). Studies were conducted on 11 soil profiles located in central-eastern Poland. Basic physicochemical soil properties were determined: pH, bulk density, contents of ash, SOM, total carbon (TC), and total nitrogen (TN). Sequential carbon fractionation was used to qualitatively analyze organic matter, which allowed for the identification of labile fractions, lipid fractions, humic substances (fulvic and humic acids), and residual fractions. Humic acids (HAs) were extracted using the Schnitzer method and analyzed for their elemental composition and spectrometric parameters in the VIS range. It was demonstrated that SOM transformation in drained temperate peatland soils was correlated with comprehensive changes in the soil’s physical and chemical properties. Compared to peat horizons, topsoil horizons were characterized by higher ash content and density, lower SOM content, and a lower TC/TN ratio. Qualitative SOM transformation during aerobic SOM transformation after draining the studied peatlands consisted of an increase in the amount of labile fractions and humic substances and a decrease in the lipid and residual fractions. The research results have shown that the HAs properties depended on the depth. HAs from topsoil horizons, compared to peat horizons, were characterized by a lower “degree of maturity,” as reflected by the values of atomic ratios (H/C, O/C) and absorbance coefficients (A4/6 and ΔlogK). It was found that the share of the distinguished SOM fractions and HAs properties were closely correlated with the physical and chemical properties of the soils. The study demonstrated the usefulness of the sequential carbon fractionation method for assessing the effects of dewatered peat transformation. The obtained results could contribute to the development of good practices ensuring high quality of organic matter and stability of ecosystems, as well as to the development of methods for limiting the mineralization of organic matter (SOM), greenhouse gas emissions, and the loss of organic soils in agricultural areas. Full article
(This article belongs to the Special Issue Soil Restoration and Sustainable Utilization)
21 pages, 3953 KB  
Article
Effects of Biochar on Soil Nutrients and Microorganisms in Litchi Seedling Cultivation
by Rong Chen, Jie Yang, Wei Liu and Chao Fan
Horticulturae 2026, 12(1), 119; https://doi.org/10.3390/horticulturae12010119 - 21 Jan 2026
Viewed by 33
Abstract
Biochar, a highly effective amendment, is widely used for soil improvement and environmental remediation. However, research on its application in litchi (Litchi chinensis) cultivation is relatively scarce, particularly regarding its potential to enhance the rhizospheric soil ecological environment. In this study, [...] Read more.
Biochar, a highly effective amendment, is widely used for soil improvement and environmental remediation. However, research on its application in litchi (Litchi chinensis) cultivation is relatively scarce, particularly regarding its potential to enhance the rhizospheric soil ecological environment. In this study, a pot experiment was conducted to investigate the effects of biochar derived from maize (Zea mays) and rice (Oryza sativa), applied at different rates (3%, 6%, 10%), on the physical and chemical properties, enzyme activities, and microbial community structure and diversity in the rhizospheric soil of litchi seedlings. The results showed that biochar application significantly (p < 0.05) improved soil nutrient conditions, including total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), pH, and soil sucrase (SC) enzyme activity. Notably, treatment with 10% maize biochar exhibited the most pronounced improvement across all parameters, barring AP. Furthermore, biochar application stimulated the proliferation of specific bacterial taxa (Acidobacteriota, Bacteroidota, and Chloroflexota) and fungal phyla (Ascomycota and Mortierellomycota), increasing bacterial diversity while decreasing fungal diversity and richness. Correlation analysis further revealed the close relationships between soil microbial communities and fertility factors. This study provides substantial evidence regarding the efficacy and feasibility of biochar in improving the rhizospheric soil ecological environment of litchi. It offers a theoretical foundation for the scientific application of biochar in orchard soil management. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 3923 KB  
Article
Soil Carbon Content in Areas with Different Land Uses and Vegetation Cover in the Cerrado–Amazon Transition, Mato Grosso, Brazil
by Marco Aurélio Barbosa Alves, Daniela Roberta Borella, Frederico Terra de Almeida, Adilson Pacheco de Souza and Daniel Fonseca de Carvalho
Soil Syst. 2026, 10(1), 19; https://doi.org/10.3390/soilsystems10010019 - 21 Jan 2026
Viewed by 63
Abstract
The conversion of native forests into agricultural areas without conservation practices can expose tons of soil organic carbon (SOC) to the atmosphere. This study aimed to evaluate the effect of land use and cover (LULC) on C in regions of the Caiabi (SBC) [...] Read more.
The conversion of native forests into agricultural areas without conservation practices can expose tons of soil organic carbon (SOC) to the atmosphere. This study aimed to evaluate the effect of land use and cover (LULC) on C in regions of the Caiabi (SBC) and Renato (SBR) River sub-basins, located in the Brazilian Cerrado–Amazon transition. Data on physical attributes and SOC were obtained by region (upper, middle, and lower), LULC (cropland, pasture, and native forest), and depth (0–10, 10–20, and 20–40 cm), with five replicates for each variable. The highest SOC values were found in areas with higher clay contents or in areas of native forest or crop residues. In the SBC, there was a negative correlation of SOC with sand and particle density (PD) and a positive correlation with silt. In the SBR, there was a positive correlation between SOC and microporosity and total porosity, and a negative correlation with sand, soil bulk density, and PD. The highest SOC values were found in the SBC upper region, in native forest (107 Mg ha−1), cropland (69 Mg ha−1), and pasture (49 Mg ha−1). In the SBR upper region, the values were highest in pasture and cropland (93 and 58 Mg ha−1), and in the lower region, the values were highest in native forest (48 Mg ha−1). SOC varied in relation to the SBC and SBR regions, the LULC, depth, and physical attributes, especially soil texture. Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes: 2nd Edition)
Show Figures

Figure 1

23 pages, 1395 KB  
Review
Impacts of Tillage on Soil’s Physical and Hydraulic Properties in Temperate Agroecosystems
by Md Nayem Hasan Munna and Rattan Lal
Sustainability 2026, 18(2), 1083; https://doi.org/10.3390/su18021083 - 21 Jan 2026
Viewed by 106
Abstract
Tillage practices critically influence soil’s physical properties, which are fundamental to sustainable agriculture in temperate climates. This review evaluates how conventional tillage (CvT; e.g., moldboard and chisel plowing), reduced tillage (RT), and conservation tillage (CT), particularly no-tillage (NT), affect six key indicators: bulk [...] Read more.
Tillage practices critically influence soil’s physical properties, which are fundamental to sustainable agriculture in temperate climates. This review evaluates how conventional tillage (CvT; e.g., moldboard and chisel plowing), reduced tillage (RT), and conservation tillage (CT), particularly no-tillage (NT), affect six key indicators: bulk density (BD), saturated hydraulic conductivity (Ks), wet aggregate stability (WAS), penetration resistance (PR), available water capacity (AWC), and soil organic carbon (SOC). Special emphasis is placed on differentiating topsoil and subsoil responses to inform climate-resilient land management. A total of 70 peer-reviewed studies published between 1991 and 2025 were analyzed. Data were extracted for BD, Ks, WAS, PR, AWC, and SOC across tillage systems. Depths were standardized into topsoil (0–10 cm) and composite (>10 cm) categories. Descriptive statistics were used to synthesize cross-study trends. NT showed lower mean BD in the topsoil (1.32 ± 0.08 Mg/m3) compared with moldboard plow (1.33 ± 0.09) and chisel tillage (1.39 ± 0.12); however, the effects of tillage on BD were not statistically significant, while BD was higher at composite depths under NT (1.56 ± 0.09 Mg/m3), indicating subsoil compaction. Ks improved under NT, reaching 4.2 mm/h with residue retention. WAS rose by 33.4%, and SOC increased by 25% under CT systems. PR tended to be elevated in deeper layers under NT. Overall, CT, particularly NT, improves surface soil’s physical health and SOC accumulation in temperate agroecosystems; however, persistent subsoil compaction highlights the need for depth-targeted management strategies, such as controlled traffic, periodic subsoil alleviation, or deep-rooted cover crops, to sustain long-term soil functionality and climate-resilient production systems. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

18 pages, 2888 KB  
Review
Advancement in In Situ and Laboratory Testing Technologies for Marine Sediment Properties: A Review of Resistivity and Acoustic Characteristics
by Bin Zhu, Mengrui Zhao, Yuan Sun, Chao Li, Huaibo Song and Weiling Liu
Geosciences 2026, 16(1), 47; https://doi.org/10.3390/geosciences16010047 - 20 Jan 2026
Viewed by 107
Abstract
The electrical resistivity and acoustic properties of marine sediments are essential for understanding their physical and mechanical behavior. Over recent decades, significant advancements have been made in both in situ and laboratory measurement techniques, alongside theoretical models, to establish correlations between these geophysical [...] Read more.
The electrical resistivity and acoustic properties of marine sediments are essential for understanding their physical and mechanical behavior. Over recent decades, significant advancements have been made in both in situ and laboratory measurement techniques, alongside theoretical models, to establish correlations between these geophysical parameters and sediment properties such as porosity, saturation, and consolidation degree. However, a comprehensive comparison of the advantages, limitations, and applicability of different measurement methods remains underexplored, particularly in complex scenarios such as gas hydrate-bearing sediments. This review provides an in-depth synthesis of recent developments in in situ and laboratory testing technologies for assessing the resistivity and acoustic characteristics of marine sediments. Special emphasis is placed on the latest advances in acoustic measurements during gas hydrate formation and decomposition. The review highlights key challenges, including (1) limited vertical resolution in in situ resistivity measurements due to probe geometry; (2) errors arising from electrode polarization and poor soil–electrode contact; and (3) discrepancies in theoretical models linking geophysical parameters to sediment properties. To address these challenges, future research directions are proposed, focusing on optimizing electrode array designs for high-resolution resistivity measurements and developing non-destructive acoustic techniques for deep-sea sediments. This work offers a critical reference for marine geophysics and offshore engineering researchers, aiding the selection and development of testing technologies for effective marine sediment characterization. Full article
Show Figures

Figure 1

44 pages, 1655 KB  
Review
Bio-Based Fertilizers from Waste: Nutrient Recovery, Soil Health, and Circular Economy Impacts
by Moses Akintayo Aborisade, Huazhan Long, Hongwei Rong, Akash Kumar, Baihui Cui, Olaide Ayodele Oladeji, Oluwaseun Princess Okimiji, Belay Tafa Oba and Dabin Guo
Toxics 2026, 14(1), 90; https://doi.org/10.3390/toxics14010090 - 19 Jan 2026
Viewed by 169
Abstract
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits [...] Read more.
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits of a circular economy. This review, based on an analysis of peer-reviewed studies, demonstrates that BBFs consistently improve the physical, chemical, and biological properties of soil while reducing environmental impacts by 15–45% compared to synthetic alternatives. Advanced biological treatment technologies, including anaerobic digestion, vermicomposting, and biochar production, achieve nutrient recovery efficiencies of 60–95% in diverse waste streams. Market analysis reveals a rapidly expanding sector projected to grow from $2.53 billion (2024) to $6.3 billion by 2032, driven by regulatory support and circular economy policies. Critical research gaps remain in standardisation, long-term performance evaluation, and integration with precision agriculture systems. Future developments should focus on AI-driven optimisation, climate-adaptive formulations, and nanobioconjugate technologies. Full article
(This article belongs to the Special Issue Study on Biological Treatment Technology for Waste Management)
Show Figures

Figure 1

12 pages, 2684 KB  
Article
Enhanced Water–Root Coupling in Mongolian Pine Plantations Induced by Coal Mining Subsidence: A Comparative Study of Sand-Capped Loess and Sandy Soil
by Yongjin Guo, Haoyan Wei, Jie Fang, Min Li, Zhenguo Xing and Da Lei
Water 2026, 18(2), 264; https://doi.org/10.3390/w18020264 - 19 Jan 2026
Viewed by 239
Abstract
Understanding the dynamics of soil water and root systems is essential for managing and restoring ecosystems impacted by coal mining subsidence. However, existing research treats soil and plant responses separately, also with limited comparisons across different soil types, which hampers our understanding of [...] Read more.
Understanding the dynamics of soil water and root systems is essential for managing and restoring ecosystems impacted by coal mining subsidence. However, existing research treats soil and plant responses separately, also with limited comparisons across different soil types, which hampers our understanding of their coupled effects. We examined the distribution of plant roots, soil water content and stable isotopes within the root zone in the subsidence and non-subsidence plots located in mining areas with sand-capped loess and sandy soil. Our results show that coal mining subsidence induces cracks and fissures in both sand-capped loess and sandy soil, enhancing soil infiltration and increasing deep soil water (>1 m). The increase in deep soil water was more pronounced in sand-capped loess, where subsidence exhibited near-precipitation lc-excess values (−5.9‰ to −0.2‰) and also shifted the soil water infiltration mechanism from piston flow to preferential flow. Moreover, land subsidence provides a more suitable soil physical environment that supports the growth of deeper and more extensive plant roots. The coupling degree (D) between the soil water system and root system was significantly higher in subsidence areas (D > 0.4), indicating enhanced root water absorption. These changes benefit plant physiological activities and stress response, providing an adaptive mechanism for plants in subsidence regions. This study provides new insights into the effects of coal mining subsidence on the root-soil interface in Earth’s Critical Zones and serves as a foundation for ecological restoration and management in subsidence-impacted areas. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

Back to TopTop