Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = soil moisture soil radiative transfer model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3185 KiB  
Article
Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation
by Asmaa Abdelbaki, Robert Milewski, Mohammadmehdi Saberioon, Katja Berger, José A. M. Demattê and Sabine Chabrillat
Remote Sens. 2025, 17(14), 2355; https://doi.org/10.3390/rs17142355 - 9 Jul 2025
Viewed by 354
Abstract
Soils serve as critical carbon reservoirs, playing an essential role in climate change mitigation and agricultural sustainability. Accurate soil property determination relies on soil spectral reflectance data from Earth observation (EO), but current vegetation models often oversimplify soil conditions. This study introduces a [...] Read more.
Soils serve as critical carbon reservoirs, playing an essential role in climate change mitigation and agricultural sustainability. Accurate soil property determination relies on soil spectral reflectance data from Earth observation (EO), but current vegetation models often oversimplify soil conditions. This study introduces a novel approach that combines radiative transfer models (RTMs) with open-access soil spectral libraries to address this challenge. Focusing on conditions of low soil moisture content (SMC), photosynthetic vegetation (PV), and non-photosynthetic vegetation (NPV), the coupled Marmit–Leaf–Canopy (MLC) model is used to simulate early crop growth stages. The MLC model, which integrates MARMIT and PRO4SAIL2, enables the generation of mixed soil–vegetation scenarios. A simulated EO disturbed soil spectral library (DSSL) was created, significantly expanding the EU LUCAS cropland soil spectral library. A 1D convolutional neural network (1D-CNN) was trained on this database to predict Soil Organic Carbon (SOC) content. The results demonstrated relatively high SOC prediction accuracy compared to previous approaches that rely only on RTMs and/or machine learning approaches. Incorporating soil moisture content significantly improved performance over bare soil alone, yielding an R2 of 0.86 and RMSE of 4.05 g/kg, compared to R2 = 0.71 and RMSE = 6.01 g/kg for bare soil. Adding PV slightly reduced accuracy (R2 = 0.71, RMSE = 6.31 g/kg), while the inclusion of NPV alongside moisture led to modest improvement (R2 = 0.74, RMSE = 5.84 g/kg). The most comprehensive model, incorporating bare soil, SMC, PV, and NPV, achieved a balanced performance (R2 = 0.76, RMSE = 5.49 g/kg), highlighting the importance of accounting for all surface components in SOC estimation. While further validation with additional scenarios and SOC prediction methods is needed, these findings demonstrate, for the first time, using radiative-transfer simulations of mixed vegetation-soil-water environments, that an EO-DSSL approach enhances machine learning-based SOC modeling from EO data, improving SOC mapping accuracy. This innovative framework could significantly improve global-scale SOC predictions, supporting the design of next-generation EO products for more accurate carbon monitoring. Full article
Show Figures

Graphical abstract

27 pages, 7955 KiB  
Article
Land Surface Condition-Driven Emissivity Variation and Its Impact on Diurnal Land Surface Temperature Retrieval Uncertainty
by Lijuan Wang, Ping Yue, Yang Yang, Sha Sha, Die Hu, Xueyuan Ren, Xiaoping Wang, Hui Han and Xiaoyu Jiang
Remote Sens. 2025, 17(14), 2353; https://doi.org/10.3390/rs17142353 - 9 Jul 2025
Viewed by 219
Abstract
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected [...] Read more.
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected from diverse underlying surfaces from 2017 to 2024 to analyze LSE variation characteristics across different surface types, spectral bands, and temporal scales. Key influencing factors are quantified to establish empirical relationships between LSE dynamics and environmental variables. Furthermore, the impact of LSE models on diurnal LST retrieval accuracy is systematically evaluated through comparative experiments, emphasizing the necessity of integrating time-dependent LSE corrections into radiative transfer equations. The results indicate that LSE in the 8–11 µm band is highly sensitive to surface composition, with distinct dual-valley absorption features observed between 8 and 9.5 µm across different soil types, highlighting spectral variability. The 9.6 µm LSE exhibits strong sensitivity to crop growth dynamics, characterized by pronounced absorption valleys linked to vegetation biochemical properties. Beyond soil composition, LSE is significantly influenced by soil moisture, temperature, and vegetation coverage, emphasizing the need for multi-factor parameterization. LSE demonstrates typical diurnal variations, with an amplitude reaching an order of magnitude of 0.01, driven by thermal inertia and environmental interactions. A diurnal LSE retrieval model, integrating time-averaged LSE and diurnal perturbations, was developed based on underlying surface characteristics. This model reduced the root mean square error (RMSE) of LST retrieved from geostationary satellites from 6.02 °C to 2.97 °C, significantly enhancing retrieval accuracy. These findings deepen the understanding of LSE characteristics and provide a scientific basis for refining LST/LSE separation algorithms in thermal infrared remote sensing and for optimizing LSE parameterization schemes in land surface process models for climate and hydrological simulations. Full article
Show Figures

Graphical abstract

21 pages, 6115 KiB  
Article
Spatiotemporal Landslide Monitoring in Complex Environments Using Radiative Transfer Model and SBAS-InSAR Technology
by Bing Wang, Li He, Zhengwei He, Yongze Song, Rui Qu, Jiao Hu, Zhifei Wang and Zehua Zhang
Land 2025, 14(5), 956; https://doi.org/10.3390/land14050956 - 28 Apr 2025
Viewed by 512
Abstract
Landslides are among the most frequent geological hazards, often resulting in casualties and economic losses, particularly in alpine valley areas characterized by complex topography and dense vegetation. Landslides in these regions are distinguished by their high altitude, concealment, and sudden onset, which render [...] Read more.
Landslides are among the most frequent geological hazards, often resulting in casualties and economic losses, particularly in alpine valley areas characterized by complex topography and dense vegetation. Landslides in these regions are distinguished by their high altitude, concealment, and sudden onset, which render traditional monitoring methods inefficient. This study proposes a landslide monitoring method for complex environments that leverages multi-source remote sensing data, incorporating the radiative transfer model and Small Baseline Subset-Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology. The proposed method was implemented to monitor the instability of the Baige landslide in Tibet, China. The results show that the vegetation Canopy Water Content (CWC) estimated using the radiative transfer model indirectly reflects landslide susceptibility. Specifically, excessive soil moisture from rainfall reduces oxygen in plant roots, affecting growth and lowering canopy water content. The region with lower Canopy Water Content (CWC < 0.04) exhibited an increasing trend in the number of pixels, rising from 271 to 549 before the landslide event, indicating poorer vegetation conditions in the area. Additionally, the SBAS-InSAR technique was utilized to extract surface displacement, achieving a maximum displacement of 112 mm during the monitoring period. Ultimately, the spatial changes of the two monitoring signals exhibited a high consistency. This study enhances the reliability of landslide displacement monitoring in complex environments and provides substantial scientific support for future large-scale monitoring efforts. Full article
Show Figures

Figure 1

26 pages, 394 KiB  
Review
Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review
by Abid Ali and Hans-Peter Kaul
Remote Sens. 2025, 17(2), 279; https://doi.org/10.3390/rs17020279 - 15 Jan 2025
Cited by 7 | Viewed by 3052
Abstract
The potential of precision agriculture (PA) in forage and grassland management should be more extensively exploited to meet the increasing global food demand on a sustainable basis. Monitoring biomass yield and quality traits directly impacts the fertilization and irrigation practises and frequency of [...] Read more.
The potential of precision agriculture (PA) in forage and grassland management should be more extensively exploited to meet the increasing global food demand on a sustainable basis. Monitoring biomass yield and quality traits directly impacts the fertilization and irrigation practises and frequency of utilization (cuts) in grasslands. Therefore, the main goal of the review is to examine the techniques for using PA applications to monitor productivity and quality in forage and grasslands. To achieve this, the authors discuss several monitoring technologies for biomass and plant stand characteristics (including quality) that make it possible to adopt digital farming in forages and grassland management. The review provides an overview about mass flow and impact sensors, moisture sensors, remote sensing-based approaches, near-infrared (NIR) spectroscopy, and mapping field heterogeneity and promotes decision support systems (DSSs) in this field. At a small scale, advanced sensors such as optical, thermal, and radar sensors mountable on drones; LiDAR (Light Detection and Ranging); and hyperspectral imaging techniques can be used for assessing plant and soil characteristics. At a larger scale, we discuss coupling of remote sensing with weather data (synergistic grassland yield modelling), Sentinel-2 data with radiative transfer modelling (RTM), Sentinel-1 backscatter, and Catboost–machine learning methods for digital mapping in terms of precision harvesting and site-specific farming decisions. It is known that the delineation of sward heterogeneity is more difficult in mixed grasslands due to spectral similarity among species. Thanks to Diversity-Interactions models, jointly assessing various species interactions under mixed grasslands is allowed. Further, understanding such complex sward heterogeneity might be feasible by integrating spectral un-mixing techniques such as the super-pixel segmentation technique, multi-level fusion procedure, and combined NIR spectroscopy with neural network models. This review offers a digital option for enhancing yield monitoring systems and implementing PA applications in forages and grassland management. The authors recommend a future research direction for the inclusion of costs and economic returns of digital technologies for precision grasslands and fodder production. Full article
Show Figures

Graphical abstract

26 pages, 43142 KiB  
Article
Can Measurement and Input Uncertainty Explain Discrepancies Between the Wheat Canopy Scattering Model and SMAPVEX12 Observations?
by Lilangi Wijesinghe, Andrew W. Western, Jagannath Aryal and Dongryeol Ryu
Remote Sens. 2025, 17(1), 164; https://doi.org/10.3390/rs17010164 - 6 Jan 2025
Viewed by 1069
Abstract
Realistic representation of microwave backscattering from vegetated surfaces is important for developing accurate soil moisture retrieval algorithms that use synthetic aperture radar (SAR) imagery. Many studies have reported considerable discrepancies between the simulated and observed backscatter. However, there has been limited effort to [...] Read more.
Realistic representation of microwave backscattering from vegetated surfaces is important for developing accurate soil moisture retrieval algorithms that use synthetic aperture radar (SAR) imagery. Many studies have reported considerable discrepancies between the simulated and observed backscatter. However, there has been limited effort to identify the sources of errors and contributions quantitatively using process-based backscatter simulation in comparison with extensive ground observations. This study examined the influence of input uncertainties on simulated backscatter from a first-order radiative transfer model, named the Wheat Canopy Scattering Model (WCSM), using ground-based and airborne data collected during the SMAPVEX12 campaign. Input uncertainties to WCSM were simulated using error statistics for two crop growth stages. The Sobol’ method was adopted to analyze the uncertainty in WCSM-simulated backscatters originating from different inputs before and after the wheat ear emergence. The results show that despite the presence of wheat ears, uncertainty in root mean square (RMS) height of 0.2 cm significantly influences simulated co-polarized backscatter uncertainty. After ear emergence, uncertainty in ears dominates simulated cross-polarized backscatter uncertainty. In contrast, uncertainty in RMS height before ear emergence dominates the accuracy of simulated cross-polarized backscatter. These findings suggest that considering wheat ears in the model structure and precise representation of surface roughness is essential to accurately simulate backscatter from a wheat field. Since the discrepancy between the simulated and observed backscatter coefficients is due to both model and observation uncertainty, the uncertainty of the UAVSAR data was estimated by analyzing the scatter between multiple backscatter coefficients obtained from the same targets near-simultaneously, assuming the scatter represents the observation uncertainty. Observation uncertainty of UAVSAR backscatter for HH, VV, and HV polarizations are 0.8 dB, 0.87 dB, and 0.86 dB, respectively. Discrepancies between WCSM-simulated backscatter and UAVSAR observations are discussed in terms of simulation and observation uncertainty. Full article
Show Figures

Graphical abstract

23 pages, 9223 KiB  
Article
Potential of Solar-Induced Chlorophyll Fluorescence for Monitoring Gross Primary Productivity and Evapotranspiration in Tidally-Influenced Coastal Salt Marshes
by Jianlin Lai and Ying Huang
Remote Sens. 2024, 16(24), 4636; https://doi.org/10.3390/rs16244636 - 11 Dec 2024
Cited by 1 | Viewed by 956
Abstract
Solar-induced chlorophyll fluorescence (SIF) offers significant potential as a novel approach for quantifying carbon and water cycling in coastal wetland ecosystems across multiple spatial scales. However, the mechanisms governing these biogeochemical processes remain insufficiently understood, largely due to the periodic influence of tidal [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) offers significant potential as a novel approach for quantifying carbon and water cycling in coastal wetland ecosystems across multiple spatial scales. However, the mechanisms governing these biogeochemical processes remain insufficiently understood, largely due to the periodic influence of tidal inundation. In this study, we investigated the effects and underlying mechanisms of meteorological and tidal factors on the relationships between canopy-level solar-induced chlorophyll fluorescence at 760 nm (SIF760) and key ecosystem processes, including gross primary productivity (GPP) and evapotranspiration (ET), in coastal wetlands. These processes are critical components of the ecosystem carbon and water cycles. Our approach involved a comparative analysis of simulations from the Soil Canopy Observation, Photochemistry and Energy Fluxes (SCOPE) model with field measurements. The results showed that: (1) simulations of SIF760 improved following observation-based calibration of the fluorescence photosynthesis module in the SCOPE model; (2) under optimal moisture and temperature conditions (VPD 1.2–1.4 kPa and temperatures of 20–23 °C for air, soil, and water), the simulations of GPP, ET, and SIF760 were most accurate, although salinity stress reduced performance. GPP simulations tended to overestimate under drought stress but improved at higher air temperatures (30–32 °C); (3) during tidal inundation, the SIF760-GPP relationship weakened while the SIF760-ET strengthened. The range of significant correlations between SIF760, water levels, and temperature narrowed, with both relationships becoming more complex due to salinity stress. These findings suggest that tidal inundation can alleviate temperature stress on photosynthesis and transpiration; however, it also decreases photosynthetic efficiency and alters radiative transfer processes due to elevated salinity and water levels. These factors are critical considerations when using SIF to monitor GPP and ET dynamics in coastal wetlands. This study demonstrated that the tidal dynamics significantly affected the SIF760-GPP and SIF760-ET relationships, underscoring the necessity of incorporating tidal influences in the application of SIF remote sensing for monitoring GPP and ET dynamics. The results of this study not only contribute to a deeper understanding of the mechanisms linking SIF760 with GPP and ET but also provide new insights into the development and refinement of SIF-based remote sensing for carbon quantification in coastal blue-carbon ecosystems on a large-scale domain. Full article
(This article belongs to the Special Issue Remote Sensing of Coastal, Wetland, and Intertidal Zones)
Show Figures

Figure 1

14 pages, 6637 KiB  
Article
The Impact of Sentinel-1-Corrected Fractal Roughness on Soil Moisture Retrievals
by Ju Hyoung Lee and Hyun-Cheol Kim
Fractal Fract. 2024, 8(3), 137; https://doi.org/10.3390/fractalfract8030137 - 27 Feb 2024
Cited by 3 | Viewed by 1626
Abstract
Fractals are widely recognized as one of the best geometric models to depict soil roughness on various scales from tillage to micro-topography smaller than radar wavelength. However, most fractal approaches require an additional geometric description of experimental sites to be analysed by existing [...] Read more.
Fractals are widely recognized as one of the best geometric models to depict soil roughness on various scales from tillage to micro-topography smaller than radar wavelength. However, most fractal approaches require an additional geometric description of experimental sites to be analysed by existing radiative transfer models. For example, fractal dimension or spectral parameter is often related to root-mean-square (RMS) height to be characterized as the microwave surface. However, field measurements hardly represent multi-scale roughness. In this study, we rescaled Power Spectral Density with Synthetic Aperture Radar (SAR)-inverted rms height, and estimated non-stationary fractal roughness to accommodate multi-scale roughness into a radiative transfer model structure. As a result, soil moisture was retrieved over the Yanco site in Australia. Local validation shows that the Integral Equation Model (IEM) poorly simulated backscatters using inverted roughness as compared to fractal roughness even in anisotropic conditions. This is considered due to a violation of time-invariance assumption used for inversion. Spatial analysis also shows that multi-scale fractal roughness better illustrated the hydrologically reasonable backscattering partitioning, as compared to inverted roughness. Fractal roughness showed a greater contribution of roughness to backscattering in dry conditions. Differences between IEM backscattering and measurement were lower, even when the isotropic assumption of the fractal model was violated. In wet conditions, the contribution of soil moisture to backscattering was shown more clearly by fractal roughness. These results suggest that the multi-scale fractal roughness can be better adapted to the IEM even in anisotropic conditions than the inversion to assume time-invariance of roughness. Full article
(This article belongs to the Special Issue Fractal Analysis for Remote Sensing Data)
Show Figures

Figure 1

5 pages, 1853 KiB  
Proceeding Paper
Improved Hapke Model to Characterize Soil Moisture Content Variation
by Anxin Ding, Han Ma, Ping Zhao, Shenglian Ren, Kaijian Xu and Hailan Jiang
Environ. Sci. Proc. 2024, 29(1), 76; https://doi.org/10.3390/ECRS2023-16859 - 6 Feb 2024
Viewed by 1141
Abstract
The Hapke model has been widely used in the field of soil remote sensing. However, the latest development of the Hapke model (i.e., Hapke-HSR model) adopted a simple hypothesis to consider the influence of the soil moisture content (SMC), which brought great difficulties [...] Read more.
The Hapke model has been widely used in the field of soil remote sensing. However, the latest development of the Hapke model (i.e., Hapke-HSR model) adopted a simple hypothesis to consider the influence of the soil moisture content (SMC), which brought great difficulties to SMC parameter inversion. This paper presents a method to improve the Hapke model using the improved multilayer radiative transfer model of soil reflectance (MARMIT-2), which can effectively improve the ability of the Hapke-HSR model to characterize the variation in the SMC. Finally, we used the soil database to comprehensively verify the ability of the improved Hapke model. The results show that the improved Hapke can effectively characterize the spectral characteristics of soil and show a higher fitting accuracy (RMSE = 0.009) compared with the Hapke-HSR model (RMSE = 0.031), especially at a high SMC (≥30%). Therefore, the improved Hapke model can better understand soil physical properties and improve the inversion accuracy of soil–vegetation physical parameters, which can be used to enhance agricultural water use efficiency. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

24 pages, 10588 KiB  
Article
Evaluation and Application of SMRT Model for L-Band Brightness Temperature Simulation in Arctic Sea Ice
by Yanfei Fan, Lele Li, Haihua Chen and Lei Guan
Remote Sens. 2023, 15(15), 3889; https://doi.org/10.3390/rs15153889 - 5 Aug 2023
Cited by 3 | Viewed by 1992
Abstract
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature [...] Read more.
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature (TB) in Arctic sea ice. The snow microwave radiative transfer (SMRT) model, developed with the support of the European Space Agency in 2018, has been used to simulate high-frequency TB in polar regions and has obtained good results, but no studies have shown whether it can be used appropriately in the L-band. Therefore, in this study, we systematically evaluate the ability of the SMRT model to simulate L-band TB in the Arctic sea ice and snow environment, and we show that the results are significantly optimized by improving the simulation method. In this paper, we first consider the thermal insulation effect of snow by adding the thermodynamic equation, then use a reasonable salinity profile formula for multi-layer model simulation to solve the problem of excessive L-band penetration in the SMRT single-layer model, and finally add ice lead correction to resolve the large influence it has on the results. The improved SMRT model is evaluated using Operation IceBridge (OIB) data from 2012 to 2015 and compared with the snow-corrected classical L-band radiative transfer model for Arctic sea ice proposed in 2010 (KA2010). The results show that the SMRT model has better simulation results, and the correlation coefficient (R) between SMRT-simulated TB and Soil Moisture and Ocean Salinity (SMOS) satellite TB is 0.65, and the RMSE is 3.11 K. Finally, the SMRT model with the improved simulation method is applied to the whole Arctic from November 2014 to April 2015, and the simulated R is 0.63, and the RMSE is 5.22 K. The results show that the SMRT multi-layer model is feasible for simulating L-band TB in the Arctic sea ice and snow environment, which provides a basis for the retrieval of Arctic parameters. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Sea Ice)
Show Figures

Figure 1

18 pages, 9599 KiB  
Article
An Illustration of FY-3E GNOS-R for Global Soil Moisture Monitoring
by Guanglin Yang, Xiaoyong Du, Lingyong Huang, Xuerui Wu, Ling Sun, Chengli Qi, Xiaoxin Zhang, Jinsong Wang and Shaohui Song
Sensors 2023, 23(13), 5825; https://doi.org/10.3390/s23135825 - 22 Jun 2023
Cited by 9 | Viewed by 2331
Abstract
An effective soil moisture retrieval method for FY-3E (Fengyun-3E) GNOS-R (GNSS occultation sounder II-reflectometry) is developed in this paper. Here, the LAGRS model, which is totally oriented for GNOS-R, is employed to estimate vegetation and surface roughness effects on surface reflectivity. Since the [...] Read more.
An effective soil moisture retrieval method for FY-3E (Fengyun-3E) GNOS-R (GNSS occultation sounder II-reflectometry) is developed in this paper. Here, the LAGRS model, which is totally oriented for GNOS-R, is employed to estimate vegetation and surface roughness effects on surface reflectivity. Since the LAGRS (land surface GNSS reflection simulator) model is a space-borne GNSS-R (GNSS reflectometry) simulator based on the microwave radiative transfer equation model, the method presented in this paper takes more consideration on the physical scattering properties for retrieval. Ancillary information from SMAP (soil moisture active passive) such as the vegetation water content and the roughness coefficient are investigated for the final algorithm’s development. At first, the SR (surface reflectivity) data calculated from GNOS-R is calculated and then calibrated, and then the vegetation roughness factor is achieved and used to eliminate the effects on both factors. After receiving the Fresnel reflectivity, the corresponding soil moisture estimated from this method is retrieved. The results demonstrate good consistency between soil moisture derived from GNOS-R data and SMAP soil moisture, with a correlation coefficient of 0.9599 and a root mean square error of 0.0483 cm3/cm3. This method succeeds in providing soil moisture on a global scale and is based on the previously developed physical LAGRS model. In this way, the great potential of GNOS-R for soil moisture estimation is presented. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 10391 KiB  
Article
Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations
by Xiaowen Gao, Jinmei Pan, Zhiqing Peng, Tianjie Zhao, Yu Bai, Jianwei Yang, Lingmei Jiang, Jiancheng Shi and Letu Husi
Remote Sens. 2023, 15(8), 2065; https://doi.org/10.3390/rs15082065 - 13 Apr 2023
Cited by 8 | Viewed by 2693
Abstract
Snow density varies spatially, temporally, and vertically within the snowpack and is the key to converting snow depth to snow water equivalent. While previous studies have demonstrated the feasibility of retrieving snow density using a multiple-angle L-band radiometer in theory and in ground-based [...] Read more.
Snow density varies spatially, temporally, and vertically within the snowpack and is the key to converting snow depth to snow water equivalent. While previous studies have demonstrated the feasibility of retrieving snow density using a multiple-angle L-band radiometer in theory and in ground-based radiometer experiments, this technique has not yet been applied to satellites. In this study, the snow density was retrieved using the Soil Moisture Ocean Salinity (SMOS) satellite radiometer observations at 43 stations in Quebec, Canada. We used a one-layer snow radiative transfer model and added a τ-ω vegetation model over the snow to consider the forest influence. We developed an objective method to estimate the forest parameters (τ, ω) and soil roughness (SD) from SMOS measurements during the snow-free period and applied them to estimate snow density. Prior knowledge of soil permittivity was used in the entire process, which was calculated from the Global Land Data Assimilation System (GLDAS) soil simulations using a frozen soil dielectric model. Results showed that the retrieved snow density had an overall root-mean-squared error (RMSE) of 83 kg/m3 for all stations, with a mean bias of 9.4 kg/m3. The RMSE can be further reduced if an artificial tuning of three predetermined parameters (τ, ω, and SD) is allowed to reduce systematic biases at some stations. The remote sensing retrieved snow density outperforms the reanalysis snow density from GLDAS in terms of bias and temporal variation characteristics. Full article
Show Figures

Figure 1

32 pages, 27455 KiB  
Review
Assimilation of Satellite-Derived Soil Moisture and Brightness Temperature in Land Surface Models: A Review
by Reza Khandan, Jean-Pierre Wigneron, Stefania Bonafoni, Arastoo Pour Biazar and Mehdi Gholamnia
Remote Sens. 2022, 14(3), 770; https://doi.org/10.3390/rs14030770 - 7 Feb 2022
Cited by 9 | Viewed by 4185
Abstract
The correction of Soil Moisture (SM) estimates in Land Surface Models (LSMs) is considered essential for improving the performance of numerical weather forecasting and hydrologic models used in weather and climate studies. Along with surface screen-level variables, the satellite data, including Brightness Temperature [...] Read more.
The correction of Soil Moisture (SM) estimates in Land Surface Models (LSMs) is considered essential for improving the performance of numerical weather forecasting and hydrologic models used in weather and climate studies. Along with surface screen-level variables, the satellite data, including Brightness Temperature (BT) from passive microwave sensors, and retrieved SM from active, passive, or combined active–passive sensor products have been used as two critical inputs in improvements of the LSM. The present study reviewed the current status in correcting LSM SM estimates, evaluating the results with in situ measurements. Based on findings from previous studies, a detailed analysis of related issues in the assimilation of SM in LSM, including bias correction of satellite data, applied LSMs and in situ observations, input data from various satellite sensors, sources of errors, calibration (both LSM and radiative transfer model), are discussed. Moreover, assimilation approaches are compared, and considerations for assimilation implementation are presented. A quantitative representation of results from the literature review, including ranges and variability of improvements in LSMs due to assimilation, are analyzed for both surface and root zone SM. A direction for future studies is then presented. Full article
Show Figures

Figure 1

11 pages, 2114 KiB  
Article
Strategies for the Efficient Estimation of Soil Moisture through Spectroscopy: Sensitive Wavelength Algorithm, Spectral Resampling and Signal-to-Noise Ratio Selection
by Jing Yuan, Bo Yu, Changxiang Yan, Junqiang Zhang, Ning Ding and Youzhi Dong
Appl. Sci. 2022, 12(2), 826; https://doi.org/10.3390/app12020826 - 14 Jan 2022
Cited by 4 | Viewed by 2330
Abstract
It is found that the remote sensing parameters such as spectral range, spectral resolution and signal-to-noise ratio directly affect the estimation accuracy of soil moisture content. However, the lack of research on the relationship between the parameters and estimation accuracy restricts the prolongation [...] Read more.
It is found that the remote sensing parameters such as spectral range, spectral resolution and signal-to-noise ratio directly affect the estimation accuracy of soil moisture content. However, the lack of research on the relationship between the parameters and estimation accuracy restricts the prolongation of application. Therefore, this study took the demand for this application as the foothold for developing spectrometry. Firstly, a method based on sensitivity analysis of soil radiative transfer model-successive projection algorithm (SA-SPA) was proposed to select sensitive wavelengths. Then, the spectral resampling method was used to select the best spectral resolution in the corresponding sensitive wavelengths. Finally, the noise-free spectral data simulated by the soil radiative transfer model was added with Gaussian random noise to change the signal-to-noise ratio, so as to explore the influence of signal-to-noise ratio on the estimation accuracy. The research results show that the estimation accuracy obtained through the SA-SPA (RMSEP < 12.1 g kg−1) is generally superior to that from full-spectrum data (RMSEP < 14 g kg−1). At selected sensitive wavelengths, the best spectral resolution is 34 nm, and the applicable signal-to-noise ratio ranges from 150 to 350. This study provides technical support for the efficient estimation of soil moisture content and the development of spectrometry, which comprehensively considers the common influence of spectral range, spectral resolution and signal-to-noise ratio on the estimation accuracy of soil moisture content. Full article
Show Figures

Figure 1

22 pages, 5825 KiB  
Article
Satellite Retrieval of Microwave Land Surface Emissivity under Clear and Cloudy Skies in China Using Observations from AMSR-E and MODIS
by Jiheng Hu, Yuyun Fu, Peng Zhang, Qilong Min, Zongting Gao, Shengli Wu and Rui Li
Remote Sens. 2021, 13(19), 3980; https://doi.org/10.3390/rs13193980 - 5 Oct 2021
Cited by 21 | Viewed by 4010
Abstract
Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the [...] Read more.
Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the parameters of interactions between atmosphere and terrestrial ecosystem (e.g., evapotranspiration rate, gross primary production rate). In this study, MLSE in China under both clear and cloudy sky conditions was retrieved using satellite passive microwave measurements from Aqua Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), combined with visible/infrared observations from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere reanalysis dataset of ERA-20C. Attenuations from atmospheric oxygen and water vapor, as well as the emissions and scatterings from cloud particles are taken into account using a microwave radiation transfer model to do atmosphere corrections. All cloud parameters needed are derived from MODIS visible and infrared instantaneous measurements. Ancillary surface skin temperature as well as atmospheric temperature-humidity profiles are collected from ECMWF reanalysis data. Quality control and sensitivity analyses were conducted for the input variables of surface skin temperature, air temperature, and atmospheric humidity. The ground-based validations show acceptable biases of primary input parameters (skin temperature, 2 m air temperature, near surface relative humidity, rain flag) for retrieving using. The subsequent sensitivity tests suggest that 10 K bias of skin temperature or observed brightness temperature may result in a 4% (~0.04) or 7% (0.07) retrieving error in MLSE at 23.5 GHz. A nonlinear sensitivity in the same magnitude is found for air temperature perturbation, while the sensitivity is less than 1% for 300 g/m2 error in cloud water path. Results show that our algorithm can successfully retrieve MLSE over 90% of the satellite detected land surface area in a typical cloudy day (cloud fraction of 64%), which is considerably higher than that of the 29% area by the clear-sky only algorithms. The spatial distribution of MLSE in China is highly dependent on the land surface types and topography. The retrieved MLSE is assessed by compared with other existing clear-sky AMSR-E emissivity products and the vegetation optical depth (VOD) product. Overall, high consistencies are shown for the MLSE retrieved in this study with other AMSR-E emissivity products across China though noticeable discrepancies are observed in Tibetan Plateau and Qinling-Taihang Mountains due to different sources of input skin temperature. In addition, the retrieved MLSE exhibits strong positive correlations in spatial patterns with microwave vegetation optical depth reported in the literature. Full article
Show Figures

Graphical abstract

24 pages, 8615 KiB  
Project Report
Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE)
by Zhongbo Su, Yaoming Ma, Xuelong Chen, Xiaohua Dong, Junping Du, Cunbo Han, Yanbo He, Jan G. Hofste, Maoshan Li, Mengna Li, Shaoning Lv, Weiqiang Ma, María J. Polo, Jian Peng, Hui Qian, Jose Sobrino, Rogier van der Velde, Jun Wen, Binbin Wang, Xin Wang, Lianyu Yu, Pei Zhang, Hong Zhao, Han Zheng, Donghai Zheng, Lei Zhong and Yijian Zengadd Show full author list remove Hide full author list
Remote Sens. 2021, 13(18), 3661; https://doi.org/10.3390/rs13183661 - 13 Sep 2021
Cited by 10 | Viewed by 3918
Abstract
A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon [...] Read more.
A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented. Full article
(This article belongs to the Special Issue ESA - NRSCC Cooperation Dragon 4 Final Results)
Show Figures

Graphical abstract

Back to TopTop