Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,120)

Search Parameters:
Keywords = soil image analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 14312 KB  
Article
Identification of Non-Photosynthetic Vegetation Fractional Cover via Spectral Data Constrained Unmixing Algorithm Optimization
by Xueting Han, Chengyi Zhao, Menghao Ji and Jianting Zhu
Remote Sens. 2025, 17(20), 3480; https://doi.org/10.3390/rs17203480 - 18 Oct 2025
Viewed by 203
Abstract
Non-photosynthetic vegetation fractional cover (fNPV) is a key indicator of vegetation decline and ecological health. Traditional inversion models assume identical spectral signatures for the same vegetation cover class across entire study areas. Spectral variations occur among regions due to divergent [...] Read more.
Non-photosynthetic vegetation fractional cover (fNPV) is a key indicator of vegetation decline and ecological health. Traditional inversion models assume identical spectral signatures for the same vegetation cover class across entire study areas. Spectral variations occur among regions due to divergent soil properties and vegetation types. To address this limitation, extensive ground sampling was conducted; ground observation data from multiple regions were utilized to establish localized spectral libraries, thereby enhancing spectral variability representation within the study area while concurrently optimizing vegetation indices across different sensor systems. The results reveal that, within the optimized spectral mixture analysis model, the coefficient of determination (R2) for fNPV using the NPV soil separation index (NSSI) for Sentinel sensor is 0.6258, and that of fPV using the modified soil adjusted vegetation index (MSAVI) is 0.8055. The MSAVI-NSSI achieved an R2 of 0.7825 for fNPV and 0.8725 for photosynthetic vegetation fractional cover (fPV). Optimized vegetation indices also yielded favorable validation results. Landsat’s theoretical predictions improved by 0.1725, with validated results up by 0.1635. MODIS showed improvements of 0.1365 and 0.1923, respectively. This enhancement significantly improves the accuracy of NPV fractional cover identification, providing critical insights for vegetation ecological health assessment in arid and semi-arid regions under global warming. Furthermore, by optimizing the spectral constraint weights in remote sensing images, a solution is provided for the long-term monitoring of vegetation health status. Full article
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Rapid Discrimination of Platycodonis radix Geographical Origins Using Hyperspectral Imaging and Deep Learning
by Weihang Xing, Xuquan Wang, Zhiyuan Ma, Yujie Xing, Xiong Dun and Xinbin Cheng
Optics 2025, 6(4), 52; https://doi.org/10.3390/opt6040052 - 13 Oct 2025
Viewed by 241
Abstract
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such [...] Read more.
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such as soil and climate. These differences can affect the medicinal value. Therefore, accurate identification of Platycodonis radix origin is crucial for drug safety and scientific research. Traditional methods of identification of TCM materials, such as morphological identification and physicochemical analysis, cannot meet the efficiency requirements. Although emerging technologies such as computer vision and spectroscopy can achieve rapid detection, their accuracy in identifying the origin of Platycodonis radix is limited when relying solely on RGB images or spectral features. To solve this problem, we aim to develop a rapid, non-destructive, and accurate method for origin identification of Platycodonis radix using hyperspectral imaging (HSI) combined with deep learning. We captured hyperspectral images of Platycodonis radix slices in 400–1000 nm range, and proposed a deep learning classification model based on these images. Our model uses one-dimensional (1D) convolution kernels to extract spectral features and two-dimensional (2D) convolution kernels to extract spatial features, fully utilizing the hyperspectral data. The average accuracy has reached 96.2%, significantly better than that of 49.0% based on RGB images and 81.8% based on spectral features in 400–1000 nm range. Furthermore, based on hyperspectral images, our model’s accuracy is 14.6%, 8.4%, and 9.6% higher than the variants of VGG, ResNet, and GoogLeNet, respectively. These results not only demonstrate the advantages of HSI in identifying the origin of Platycodonis radix, but also demonstrate the advantages of combining 1D convolution and 2D convolution in hyperspectral image classification. Full article
Show Figures

Figure 1

19 pages, 4382 KB  
Article
Prediction of Spatial Distribution of Soil Heavy Metal Pollution Using Integrated Geochemistry and Three-Dimensional Electrical Resistivity Tomography
by Wangming Li, Haifei Liu, Shizhen Yang, Daowei Zhu, Yanglian Zhao, Min Luo, Bin Zeng and Xiang Xiao
Appl. Sci. 2025, 15(20), 10969; https://doi.org/10.3390/app152010969 - 13 Oct 2025
Viewed by 266
Abstract
Soil heavy metal contamination poses a serious threat to soil ecosystems and human health. Geochemistry is often used in soil heavy metal contamination research to identify pollution sources, identify elemental cycling mechanisms, and assess the spatial distribution and risk of contamination. However, it [...] Read more.
Soil heavy metal contamination poses a serious threat to soil ecosystems and human health. Geochemistry is often used in soil heavy metal contamination research to identify pollution sources, identify elemental cycling mechanisms, and assess the spatial distribution and risk of contamination. However, it is difficult to directly reflect the spatial continuity and deep distribution patterns of contamination. Three-dimensional electrical resistivity tomography (3D ERT) technology often indirectly predicts the distribution of soil contamination by leveraging the electrical structure of the subsurface medium. However, many factors influence this electrical structure, leading to biased predictions. This paper combines geochemistry with 3D ERT technology. A nonlinear statistical model is established based on the geochemical analysis results and resistivity of soil samples. A 3D ERT model is then constructed. This model is used to further investigate the spatial distribution patterns of soil heavy metal contamination and assess the extent of contamination. This study investigated soil sample collection and chemical analysis of heavy metal content at a heavy metal contaminated site in Hunan Province. Antimony contamination was particularly severe in the soil. The 3D ERT data collection and inversion imaging were performed in the soil sample collection area. A 3D ERT model was established to analyze and evaluate the distribution range and extent of antimony contamination in the area. Comparing the antimony content predicted by the model with the actual test data, the results show that the error range is 0.6–16.6%, and the average error is 5.8%. The model has high accuracy, achieving good overall prediction and evaluation results. Full article
Show Figures

Figure 1

21 pages, 3543 KB  
Article
Application of Convolutional and Recurrent Neural Networks in Classifying Plant Responses to Abiotic Stress
by Chinwe Aghadinuno, Yasser Ismail, Faiza Dad, Eman El Dakkak, Yadong Qi, Wesley Gray, Jiecai Luo and Fred Lacy
Appl. Sci. 2025, 15(20), 10960; https://doi.org/10.3390/app152010960 - 12 Oct 2025
Viewed by 396
Abstract
Agriculture is a major economic industry that sustains life. Moreover, plant health is a crucial aspect of a highly functional agricultural system. Because stress agents can damage crops and plants, it is important to understand what effect these agents can have and be [...] Read more.
Agriculture is a major economic industry that sustains life. Moreover, plant health is a crucial aspect of a highly functional agricultural system. Because stress agents can damage crops and plants, it is important to understand what effect these agents can have and be able to detect this negative impact early in the process. Machine learning technology can help to prevent these undesirable consequences. This research investigates machine learning applications for plant health analysis and classification. Specifically, Residual Networks (ResNet) and Long Short-Term Memory (LSTM) models are utilized to detect and classify plants response to abiotic external stressors. Two types of plants, azalea (shrub) and Chinese tallow (tree), were used in this research study and different concentrations of sodium chloride (NaCL) and acetic acid were used to treat the plants. Data from cameras and soil sensors were analyzed by the machine learning algorithms. The ResNet34 and LSTM models achieved accuracies of 96% and 97.8%, respectively, in classifying plants with good, medium, or bad health status on test data sets. These results demonstrate that machine learning algorithms can be used to accurately detect plant health status as well as healthy and unhealthy plant conditions and thus potentially prevent negative long-term effects in agriculture. Full article
Show Figures

Figure 1

24 pages, 6738 KB  
Article
SVMobileNetV2: A Hybrid and Hierarchical CNN-SVM Network Architecture Utilising UAV-Based Multispectral Images and IoT Nodes for the Precise Classification of Crop Diseases
by Rafael Linero-Ramos, Carlos Parra-Rodríguez and Mario Gongora
AgriEngineering 2025, 7(10), 341; https://doi.org/10.3390/agriengineering7100341 - 10 Oct 2025
Viewed by 358
Abstract
This paper presents a novel hybrid and hierarchical architecture of a Convolutional Neural Network (CNN), based on MobileNetV2 and Support Vector Machines (SVM) for the classification of crop diseases (SVMobileNetV2). The system feeds from multispectral images captured by Unmanned Aerial Vehicles (UAVs) alongside [...] Read more.
This paper presents a novel hybrid and hierarchical architecture of a Convolutional Neural Network (CNN), based on MobileNetV2 and Support Vector Machines (SVM) for the classification of crop diseases (SVMobileNetV2). The system feeds from multispectral images captured by Unmanned Aerial Vehicles (UAVs) alongside data from IoT nodes. The primary objective is to improve classification performance in terms of both accuracy and precision. This is achieved by integrating contemporary Deep Learning techniques, specifically different CNN models, a prevalent type of artificial neural network composed of multiple interconnected layers, tailored for the analysis of agricultural imagery. The initial layers are responsible for identifying basic visual features such as edges and contours, while deeper layers progressively extract more abstract and complex patterns, enabling the recognition of intricate shapes. In this study, different datasets of tropical crop images, in this case banana crops, were constructed to evaluate the performance and accuracy of CNNs in detecting diseases in the crops, supported by transfer learning. For this, multispectral images are used to create false-color images to discriminate disease through spectra related to the blue, green and red colors in addition to red edge and near-infrared. Moreover, we used IoT nodes to include environmental data related to the temperature and humidity of the environment and the soil. Machine Learning models were evaluated and fine-tuned using standard evaluation metrics. For classification, we used fundamental metrics such as accuracy, precision, and the confusion matrix; in this study was obtained a performance of up to 86.5% using current deep learning models and up to 98.5% accuracy using the proposed hybrid and hierarchical architecture (SVMobileNetV2). This represents a new paradigm to significantly improve classification using the proposed hybrid CNN-SVM architecture and UAV-based multispectral images. Full article
Show Figures

Figure 1

34 pages, 13615 KB  
Article
Seamless Reconstruction of MODIS Land Surface Temperature via Multi-Source Data Fusion and Multi-Stage Optimization
by Yanjie Tang, Yanling Zhao, Yueming Sun, Shenshen Ren and Zhibin Li
Remote Sens. 2025, 17(19), 3374; https://doi.org/10.3390/rs17193374 - 7 Oct 2025
Viewed by 442
Abstract
Land Surface Temperature (LST) is a critical variable for understanding land–atmosphere interactions and is widely applied in urban heat monitoring, evapotranspiration estimation, near-surface air temperature modeling, soil moisture assessment, and climate studies. MODIS LST products, with their global coverage, long-term consistency, and radiometric [...] Read more.
Land Surface Temperature (LST) is a critical variable for understanding land–atmosphere interactions and is widely applied in urban heat monitoring, evapotranspiration estimation, near-surface air temperature modeling, soil moisture assessment, and climate studies. MODIS LST products, with their global coverage, long-term consistency, and radiometric calibration, are a major source of LST data. However, frequent data gaps caused by cloud contamination and atmospheric interference severely limit their applicability in analyses requiring high spatiotemporal continuity. This study presents a seamless MODIS LST reconstruction framework that integrates multi-source data fusion and a multi-stage optimization strategy. The method consists of three key components: (1) topography- and land cover-constrained spatial interpolation, which preliminarily fills orbit-induced gaps using elevation and land cover similarity criteria; (2) pixel-level LST reconstruction via random forest (RF) modeling with multi-source predictors (e.g., NDVI, NDWI, surface reflectance, DEM, land cover), coupled with HANTS-based temporal smoothing to enhance temporal consistency and seasonal fidelity; and (3) Poisson-based image fusion, which ensures spatial continuity and smooth transitions without compromising temperature gradients. Experiments conducted over two representative regions—Huainan and Jining—demonstrate the superior performance of the proposed method under both daytime and nighttime scenarios. The integrated approach (Step 3) achieves high accuracy, with correlation coefficients (CCs) exceeding 0.95 and root mean square errors (RMSEs) below 2K, outperforming conventional HANTS and standalone interpolation methods. Cross-validation with high-resolution Landsat LST further confirms the method’s ability to retain spatial detail and cross-scale consistency. Overall, this study offers a robust and generalizable solution for reconstructing MODIS LST with high spatial and temporal fidelity. The framework holds strong potential for broad applications in land surface process modeling, regional climate studies, and urban thermal environment analysis. Full article
Show Figures

Graphical abstract

20 pages, 33056 KB  
Article
Spatiotemporal Analysis of Vineyard Dynamics: UAS-Based Monitoring at the Individual Vine Scale
by Stefan Ruess, Gernot Paulus and Stefan Lang
Remote Sens. 2025, 17(19), 3354; https://doi.org/10.3390/rs17193354 - 2 Oct 2025
Viewed by 358
Abstract
The rapid and reliable acquisition of canopy-related metrics is essential for improving decision support in viticultural management, particularly when monitoring individual vines for targeted interventions. This study presents a spatially explicit workflow that integrates Uncrewed Aerial System (UAS) imagery, 3D point-cloud analysis, and [...] Read more.
The rapid and reliable acquisition of canopy-related metrics is essential for improving decision support in viticultural management, particularly when monitoring individual vines for targeted interventions. This study presents a spatially explicit workflow that integrates Uncrewed Aerial System (UAS) imagery, 3D point-cloud analysis, and Object-Based Image Analysis (OBIA) to detect and monitor individual grapevines throughout the growing season. Vines are identified directly from 3D point clouds without the need for prior training data or predefined row structures, achieving a mean Euclidean distance of 10.7 cm to the reference points. The OBIA framework segments vine vegetation based on spectral and geometric features without requiring pre-clipping or manual masking. All non-vine elements—including soil, grass, and infrastructure—are automatically excluded, and detailed canopy masks are created for each plant. Vegetation indices are computed exclusively from vine canopy objects, ensuring that soil signals and internal canopy gaps do not bias the results. This enables accurate per-vine assessment of vigour. NDRE values were calculated at three phenological stages—flowering, veraison, and harvest—and analyzed using Local Indicators of Spatial Association (LISA) to detect spatial clusters and outliers. In contrast to value-based clustering methods, LISA accounts for spatial continuity and neighborhood effects, allowing the detection of stable low-vigour zones, expanding high-vigour clusters, and early identification of isolated stressed vines. A strong correlation (R2 = 0.73) between per-vine NDRE values and actual yield demonstrates that NDRE-derived vigour reliably reflects vine productivity. The method provides a transferable, data-driven framework for site-specific vineyard management, enabling timely interventions at the individual plant level before stress propagates spatially. Full article
Show Figures

Figure 1

18 pages, 4675 KB  
Article
Advancing Soil Assessment: Vision-Based Monitoring for Subgrade Quality and Dynamic Modulus
by Koohyar Faizi, Robert Evans and Rolands Kromanis
Geotechnics 2025, 5(4), 67; https://doi.org/10.3390/geotechnics5040067 - 1 Oct 2025
Viewed by 233
Abstract
Accurate evaluation of subgrade behaviour under dynamic loading is essential for the long-term performance of transport infrastructure. While the Light Weight Deflectometer (LWD) is commonly used to assess subgrade stiffness, it provides only a single stiffness value and may not fully capture the [...] Read more.
Accurate evaluation of subgrade behaviour under dynamic loading is essential for the long-term performance of transport infrastructure. While the Light Weight Deflectometer (LWD) is commonly used to assess subgrade stiffness, it provides only a single stiffness value and may not fully capture the time-dependent response of soil. This study presents an image-based vision system developed to monitor soil surface displacements during loading, enabling more detailed analysis of dynamic behaviour. The system incorporates high-speed cameras and MATLAB-based computer vision algorithms to track vertical movement of the plate during impact. Laboratory and field experiments were conducted to evaluate the system’s performance, with results compared directly to those from the LWD. A strong correlation was observed (R2 = 0.9901), with differences between the two methods ranging from 0.8% to 13%, confirming the accuracy of the vision-based measurements despite the limited dataset. The findings highlight the system’s potential as a practical and cost-effective tool for enhancing subgrade assessment, particularly in applications requiring improved understanding of ground response under repeated or transient loading. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

19 pages, 3880 KB  
Article
Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact
by Chengliang Ji, Wanli Xie, Qingyi Yang, Chenfei Qu, Peijun Fan, Zhiyi Wu and Kangze Yuan
Buildings 2025, 15(19), 3512; https://doi.org/10.3390/buildings15193512 - 29 Sep 2025
Viewed by 324
Abstract
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted [...] Read more.
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted on undisturbed loess samples under stress conditions simulating in situ confinement. High-resolution SEM images were analyzed via Avizo to quantify pore area ratios at multiple scales, fractal dimensions, and directional probability entropy. Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) were employed to statistically interpret the microstructure–mechanics relationship. Results show that interface shear strength increases significantly with depth (35.2–258.4 kPa), primarily due to reduced total porosity and macropore content, increased small and micropore fractions, and enhanced isotropy of pore orientation. Fractal dimension negatively correlates with strength, indicating that compaction-induced boundary regularization enhances particle contact and shear resistance, while entropy positively correlates with strength, reflecting structural homogenization and isotropic pore orientation. PCA and HCA further confirm that small and micropores are the dominant contributors to interface resistance. This study provides a quantitative framework linking microstructural evolution to mechanical performance, offering new insights for optimizing pile–soil interface design in loess areas. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

38 pages, 6865 KB  
Article
Land Use and Land Cover Change Patterns from Orbital Remote Sensing Products: Spatial Dynamics and Trend Analysis in Northeastern Brazil
by Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Pabrício Marcos Oliveira Lopes, Rodrigo Couto Santos, Ailton Alves de Carvalho, Geber Barbosa de Albuquerque Moura, Thieres George Freire da Silva, Alan Cézar Bezerra, Alexandre Maniçoba da Rosa Ferraz Jardim, Maria Beatriz Ferreira, Patrícia Costa Silva, Josef Augusto Oberdan Souza Silva, Marcio Mesquita, Pedro Henrique Dias Batista, Rodrigo Aparecido Jordan and Henrique Fonseca Elias de Oliveira
Land 2025, 14(10), 1954; https://doi.org/10.3390/land14101954 - 26 Sep 2025
Viewed by 722
Abstract
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that [...] Read more.
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that exhibit high climatic variability and are extremely vulnerable to environmental changes and pressures from human activities. The application of geotechnologies and geographic information system (GIS) modeling is essential to mitigate the impacts and pressures on the various ecosystems of Northeastern Brazil (NEB), where the Caatinga biome is predominant and critically threatened by these factors. In this context, the objective was to map and assess the spatiotemporal patterns of land use and land cover (LULC), detecting significant trends of loss and gain, based on surface reflectance data and precipitation data over two decades (2000–2019). Remote sensing datasets were utilized, including Landsat satellite data (LULC data), MODIS sensor data (surface reflectance product) and TRMM data (precipitation data). The Google Earth Engine (GEE) software was used to process orbital images and determine surface albedo and acquisition of the LULC dataset. Satellite data were subjected to multivariate analysis, descriptive statistics, dispersion and variability assessments. The results indicated a significant loss trend over the time series (2000–2019) for forest areas (ZMK = −5.872; Tau = −0.958; p < 0.01) with an annual loss of −3705.853 km2 and a total loss of −74,117.06 km2. Conversely, farming areas (agriculture and pasture) exhibited a significant gain trend (ZMK = 5.807; Tau = 0.947; p < 0.01), with an annual gain of +3978.898 km2 and a total gain of +79,577.96 km2, indicating a substantial expansion of these areas over time. However, it is important to emphasize that deforestation of the region’s native vegetation contributes to reduced water production and availability. The trend analysis identified an increase in environmental degradation due to the rapid expansion of land use. LULC and albedo data confirmed the intensification of deforestation in the Northern, Northwestern, Southern and Southeastern regions of NEB. The Northwestern region was the most directly impacted by this increase due to anthropogenic pressures. Over two decades (2000–2019), forested areas in the NEB lost approximately 80.000 km2. Principal component analysis (PCA) identified a significant cumulative variance of 87.15%. It is concluded, then, that the spatiotemporal relationship between biophysical conditions and regional climate helps us to understand and evaluate the impacts and environmental dynamics, especially of the vegetation cover of the NEB. Full article
Show Figures

Figure 1

31 pages, 14210 KB  
Article
Evaluation of Geogenic Enrichment Using Satellite, Geochemical, and Aeromagnetic Data in the Central Anti-Atlas (Morocco): Implications for Soil Enrichment
by Mouna Id-Belqas, Said Boutaleb, Fatima Zahra Echogdali, Mustapha Ikirri, Hasna El Ayady and Mohamed Abioui
Earth 2025, 6(4), 113; https://doi.org/10.3390/earth6040113 - 25 Sep 2025
Viewed by 503
Abstract
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these [...] Read more.
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these anomalies. Processing of ASTER images delineated alteration zones coinciding with areas of high heavy metal anomalies by detecting hydrothermal alteration minerals, including muscovite, montmorillonite, illite, hematite, jarosite, chlorite, and epidote. Principal Component Analysis (PCA) of geochemical data distribution in soils enabled the characterization of variations in trace-element concentrations, the extraction of geochemical anomalies, and the identification of potential sources of contamination. Comparing satellite image processing results with geochemical analyses facilitated the production of a geogenic enrichment map. The study results indicate high enrichment levels of zinc, Molybdenum, and bismuth in the western basin, of purely lithological origin. Hydrothermal alteration surfaces intersect geochemical anomaly zones in the north and northeast, primarily showing the impact of fault rooting on the surface deposition of Cu, Ba, Hg, and Pb-rich deposits. This study developed a geogenic enrichment map indicating naturally affected areas, identifying potential risks to eco-environmental systems, and better preventing the effects of geogenic enrichment. Full article
Show Figures

Figure 1

23 pages, 3474 KB  
Article
Remote Sensing Meets Agronomy: A Three-Year Field Study of Tritordeum’s Response to Enhanced Efficiency Fertilisers
by George Papadopoulos, Ioannis Zafeiriou, Evgenia Georgiou, Antonia Oikonomou, Antonios Mavroeidis, Panteleimon Stavropoulos, Ioanna Kakabouki, Spyros Fountas and Dimitrios Bilalis
Agronomy 2025, 15(9), 2244; https://doi.org/10.3390/agronomy15092244 - 22 Sep 2025
Viewed by 592
Abstract
This three-year field study evaluated the agronomic and physiological responses of Tritordeum to nitrogen fertilisation strategies under Mediterranean conditions using an integrated approach combining GDD-aligned phenological monitoring, UAV-based multispectral imaging, and soil analysis. Treatments included conventional urea, urea with a nitrification inhibitor (U+NI; [...] Read more.
This three-year field study evaluated the agronomic and physiological responses of Tritordeum to nitrogen fertilisation strategies under Mediterranean conditions using an integrated approach combining GDD-aligned phenological monitoring, UAV-based multispectral imaging, and soil analysis. Treatments included conventional urea, urea with a nitrification inhibitor (U+NI; DMPP-based), and urea with a urease inhibitor (U+UI; NBPT-based), compared to an unfertilised control. All nitrogen treatments significantly increased grain yield, reaching up to 2319 kg ha−1 under the nitrification inhibitor treatment (26% higher than the control), and protein content, which peaked at 16.04% under urea. Temporal analysis revealed that urea with nitrification inhibitors consistently enhanced plant height, canopy greenness, and pigment retention during flowering to ripening stages, with NDVI and MCARI peaking under U+NI in 2025. In contrast, urea with urease inhibitor promoted greater early-season biomass and height. Soil nitrogen retention was slightly improved under both EEF treatments, with no adverse effects on pH or salinity. The strong alignment between UAV-derived indices and agronomic traits supports their use for monitoring nitrogen response. These findings demonstrate the benefits of a stage-specific fertilisation strategy, deploying urea with nitrification inhibitor early and urea with urease inhibitor during peak vegetative growth, to improve nitrogen synchrony with crop demand and support sustainable crop management in Tritordeum. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 3795 KB  
Article
Grading and Detecting of Organic Matter in Phaeozem Based on LSVM-Stacking Model Using Hyperspectral Reflectance Data
by Zifang Zhang, Zhihua Liu, Qinghe Zhao, Kezhu Tan and Junlong Fang
Agriculture 2025, 15(18), 1979; https://doi.org/10.3390/agriculture15181979 - 19 Sep 2025
Viewed by 271
Abstract
Phaeozem, which is recognized as one of the world’s most fertile soils, derives much of its productivity from soil organic matter (SOM). Because SOM strongly influences fertility, soil structure, and ecological functions, it is the SOM content that must be rapidly and accurately [...] Read more.
Phaeozem, which is recognized as one of the world’s most fertile soils, derives much of its productivity from soil organic matter (SOM). Because SOM strongly influences fertility, soil structure, and ecological functions, it is the SOM content that must be rapidly and accurately determined to ensure sustainable soil management. Traditional chemical methods are reliable but time-consuming and labor-intensive, which makes them inadequate for large-scale applications. Hyperspectral reflectance, which is highly sensitive to SOM variations, provides a non-destructive alternative for rapid SOM grading. This study proposes an ensemble learning strategy model based on phaeozem hyperspectral reference data for the rapid grading and detection of SOM content. First, the SOM content of the collected phaeozem samples was determined using the potassium dichromate volumetric method. Next, hyperspectral reflectance data of the phaeozem were collected using a hyperspectral imaging sensor, with a wavelength range of 400–1000 nm. Furthermore, stacking models were constructed by modifying the internal structure, with five classifiers (MLP, SVC, DTree, XGBoost, kNN) as the L1 layer. Then, global optimization was performed using the simulated annealing algorithm. Through comparative analysis, the LSVM-stacking model demonstrated the highest accuracy and generalization capabilities. The results demonstrated that the LSVM-stacking model not only achieved the highest overall accuracy (0.9488 on the independent test set) but also improved the classification accuracy of “Category 1” samples to 1.0. Compared with other models, this framework significantly improved generalization ability and robustness. It is therefore evident that combining hyperspectral reflectance with improved stacking strategies provides a novel and effective approach for the rapid grading and detection of SOM in phaeozem. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

17 pages, 2527 KB  
Article
Monocular Depth Estimation Driven Canopy Segmentation for Enhanced Determination of Vegetation Indices in Olive Grove Monitoring
by Vladan Papić, Nediljko Bugarin, Ivana Marin, Sven Gotovac and Josip Gugić
Remote Sens. 2025, 17(18), 3245; https://doi.org/10.3390/rs17183245 - 19 Sep 2025
Viewed by 350
Abstract
This study investigates the application of unmanned aerial vehicles with multispectral cameras for monitoring the condition of olive groves with high accuracy. Multispectral images of olive groves provided detailed insight into the spectral data required for the analysis of vegetation indices. Using deep [...] Read more.
This study investigates the application of unmanned aerial vehicles with multispectral cameras for monitoring the condition of olive groves with high accuracy. Multispectral images of olive groves provided detailed insight into the spectral data required for the analysis of vegetation indices. Using deep learning-based object detection, individual olive trees were identified within the images, which allowed the extraction of parts corresponding to each tree. To separate the background from the canopy, segmentation based on the monocular depth estimation algorithm, Depth Anything, was applied. In this way, elements that are not part of the tree’s crown were removed for more accurate analysis and calculation of the NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge Index) indices. The obtained results were compared with the results obtained for unsegmented patches, threshold-based patches, and manually segmented patches. The comparison and analysis carried out shows that the proposed segmentation approach improved the accuracy of NDVI and NDRE by focusing exclusively on the crowns of the observed trees, excluding the noise of the surrounding vegetation and soil. In addition, measurements were carried out on three observed olive groves at different parts of the vegetation cycle, and the values of the vegetation indices were compared. This integrated method combining drone-based multispectral imaging, deep learning object detection, and advanced segmentation techniques highlights a robust approach to olive tree health monitoring and provides insight into seasonal vegetation dynamics, for winter and spring, to capture differences in vegetative activity. Full article
Show Figures

Figure 1

27 pages, 8010 KB  
Article
Deep Learning-Based Short- and Mid-Term Surface and Subsurface Soil Moisture Projections from Remote Sensing and Digital Soil Maps
by Saman Rabiei, Ebrahim Babaeian and Sabine Grunwald
Remote Sens. 2025, 17(18), 3219; https://doi.org/10.3390/rs17183219 - 18 Sep 2025
Viewed by 668
Abstract
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and [...] Read more.
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and 7 days ahead) and mid-term (14 and 30 days ahead) forecasts of SM at surface (0–10 cm) and subsurface (10–40 and 40–100 cm) soil layers across the contiguous U.S. The model was trained with five-year period (2018–2022) datasets including Soil Moisture Active Passive (SMAP) level 3 ancillary covariables, North American Land Data Assimilation System phase 2 (NLDAS-2) SM product, shortwave infrared reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS), and terrain features (e.g., elevation, slope, curvature), as well as soil texture and bulk density maps from the Soil Landscape of the United States (SOLUS100) database. To develop and evaluate the model, the dataset was divided into three subsets: training (January 2018–January 2021), validation (2021), and testing (2022). The outputs were validated with observed in situ data from the Soil Climate Analysis Network (SCAN) and the United States Climate Reference Network (USCRN) soil moisture networks. The results indicated that the accuracy of SM forecasts decreased with increasing lead time, particularly in the surface (0–10 cm) and subsurface (10–40 cm) layers, where strong fluctuations driven by rainfall variability and evapotranspiration fluxes introduced greater uncertainty. Across all soil layers and lead times, the model achieved a median unbiased root mean square error (ubRMSE) of 0.04 cm3 cm−3 with a Pearson correlation coefficient of 0.61. Further, the performance of the model was evaluated with respect to both land cover and soil texture databases. Forecast accuracy was highest in coarse-textured soils, followed by medium- and fine-textured soils, likely because the greater penetration depth of microwave observations improves SM retrieval in sandy soils. Among land cover types, performance was strongest in grasslands and savannas and weakest in dense forests and shrublands, where dense vegetation attenuates the microwave signal and reduces SM estimation accuracy. These results demonstrate that the ConvLSTM framework provides skillful short- and mid-term forecasts of surface and subsurface soil moisture, offering valuable support for large-scale drought and flood monitoring. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Graphical abstract

Back to TopTop