Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = soil hydraulic behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3097 KiB  
Article
Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management
by Peter Uloho Osame and Taimoor Asim
Sensors 2025, 25(14), 4349; https://doi.org/10.3390/s25144349 - 11 Jul 2025
Viewed by 297
Abstract
Since farmers in the inland valley region of the Niger Delta mostly rely on experience rather than empirical evidence when it comes to irrigation, flood irrigation being the most popular technique, the region’s agricultural sector needs more efficient water management. In order to [...] Read more.
Since farmers in the inland valley region of the Niger Delta mostly rely on experience rather than empirical evidence when it comes to irrigation, flood irrigation being the most popular technique, the region’s agricultural sector needs more efficient water management. In order to better understand the intricate hydrodynamics of water flow through the soil subsurface, this study aimed to develop a soil column laboratory experimental setup for soil water infiltration. The objective was to measure the soil water content and soil matric potential at 10 cm intervals to study the soil water characteristic curve as a relationship between the two hydraulic parameters, mimicking drip soil subsurface micro-irrigation. A specially designed cylindrical vertical soil column rig was built, and an EQ3 equitensiometer of Delta-T Devices was used in the laboratory as a precision sensor to measure the soil matric potential Ψ (kPa), and the volumetric soil water content θ (%) was measured using a WET150 sensor of Delta-T Devices. The relationship between the volumetric soil water content and the soil matric potential resulted in the generation of the soil water characteristic curve. Two separate monoliths of undisturbed soil samples from Ivrogbo and Oleh in the Nigerian inland valley of the Niger Delta, as well as a uniformly packed sample of soil from Aberdeen, UK, for comparison, were used in gravity-driven flow experiments. In each case, tests were performed once on the monoliths of undisturbed soil samples. In contrast, the packed sample was subjected to an experiment before being further agitated to simulate ploughing and then subjected to an infiltration experiment, resulting in a total of four samples. The Van Genuchten model of the soil water characteristic curve was used for the verification of the experimental results. Comparing the four samples’ volumetric soil water contents and soil matric potentials at various depths revealed a significant variation in their behaviour. However, compared to the predicted curve, the range of values was narrower. Compared to n = 2 in the Van Genuchten curve, the value of n at 200 mm depth was found to be 15, with θr of 0.046 and θs of 0.23 for the packed soil sample, resulting in a percentage difference of 86.7%. Additionally, n = 10 for the ploughed sample resulted in an 80% difference, yet θr = 0.03 and θs = 0.23. For the Ivrogbo sample and the Oleh sample, the range of the matric potential was relatively too small for the comparison. The pre-experiment moisture content of the soil samples was part of the cause of this, in addition to differences in the soil types. Furthermore, the data revealed a remarkable agreement between the measured behaviour and the projected technique of the soil water characteristic curve. Full article
(This article belongs to the Special Issue Smart Sensors for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 583 KiB  
Article
An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines
by Carlos R. Payares Guevara, Alberto Patiño-Vanegas, Enrique Pereira-Batista, Oscar E. Coronado-Hernández and Vicente S. Fuertes-Miquel
Appl. Sci. 2025, 15(11), 6000; https://doi.org/10.3390/app15116000 - 26 May 2025
Viewed by 409
Abstract
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air [...] Read more.
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air pocket pressure, water column length, and water velocity during drainage operations in a pipeline with an entrapped air pocket and a closed upstream end. The existing system of three differential equations is reduced to two first-order nonlinear differential equations, enabling a rigorous analysis of the existence and uniqueness of solutions. The system is then further reduced to a single secondorder nonlinear ordinary differential equation (ODE), providing an intuitive framework for examining the physical behaviour of the hydraulic and thermodynamic variables. Furthermore, through a change of variables, the second-order ODE is transformed into a first-order linear ODE, facilitating the derivation of an analytical solution. The analytical solution is validated by comparing it with a numerical solution. Additionally, a practical application demonstrates the effectiveness of the developed tool in predicting the extreme pressure values in the air pocket during the water drainage process in a pipe, within a controlled environment. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

31 pages, 6399 KiB  
Article
Hydrological Modelling and Multisite Calibration of the Okavango River Basin: Addressing Catchment Heterogeneity and Climate Variability
by Milkessa Gebeyehu Homa, Gizaw Mengistu Tsidu and Esther Nelly Lofton
Water 2025, 17(10), 1442; https://doi.org/10.3390/w17101442 - 10 May 2025
Viewed by 782
Abstract
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused [...] Read more.
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused on the Delta, the river’s catchment area in the Angolan highlands—its main water source and critical for downstream flow—has been largely overlooked. The basin is under pressure from development, water abstraction, and population growth in the surrounding areas, which negatively affect the environment. These challenges are intensified by climate change, leading to increased water scarcity that necessitates improved management strategies. Currently, there is a lack of published research on the basin’s hydrology, leaving many hydrological parameters related to streamflow in the catchments inadequately understood. Most existing studies have employed single-site calibration methods, which fail to capture the diverse characteristics of the basin’s catchments. To address this, a SWAT model has been developed to simulate the hydrologic behaviour of the basin using sequential multisite calibration with data from five gauging stations, including the main river systems: Cubango and Cuito. The SUFI2 program was used for sensitivity analysis, calibration, and validation. The initial sensitivity analysis identified several key parameters: the Soil Evaporation Compensation Factor (ESCO), the SCS curve number under moisture condition II (CN2), Saturated Hydraulic Conductivity (SOL_K), and Moist Bulk Density (SOL_BD) as the most influential. The calibration and validation results were generally satisfactory, with a coefficient of determination ranging from 0.47 to 0.72. Analysis of the water balance and parameter sensitivities revealed the varied hydrologic responses of different sub-watersheds with distinct soil profiles. Average annual precipitation varies from 1116 mm upstream to 369 mm downstream, with an evapotranspiration-to-precipitation ratio ranging from 0.47 to 0.95 and a water yield ratio between 0.51 and 0.03, thereby revealing their spatial gradients, notably increasing evapotranspiration and decreasing water yield downstream. The SWAT model’s water balance components provided promising results, with soil moisture data aligned with the TerraClimate dataset, achieving a coefficient of determination of 0.63. Additionally, the model captured the influence of the El Niño–Southern Oscillation (ENSO) on local hydrology. However, limitations were noted in simulating peak and low flows due to sparse gauge coverage, data gaps (e.g., groundwater abstraction, point sources), and the use of coarse-resolution climate inputs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 3130 KiB  
Article
Mathematical Approach for Directly Solving Air–Water Interfaces in Water Emptying Processes
by Dalia M. Bonilla-Correa, Oscar E. Coronado-Hernández, Alfonso Arrieta-Pastrana, Vicente S. Fuertes-Miquel, Modesto Pérez-Sánchez and Helena M. Ramos
Water 2024, 16(22), 3203; https://doi.org/10.3390/w16223203 - 8 Nov 2024
Viewed by 1045
Abstract
Emptying processes are operations frequently required in hydraulic installations by water utilities. These processes can result in drops to sub-atmospheric pressure pulses, which may lead to pipeline collapse depending on soil characteristics and the stiffness of a pipe class. One-dimensional mathematical models and [...] Read more.
Emptying processes are operations frequently required in hydraulic installations by water utilities. These processes can result in drops to sub-atmospheric pressure pulses, which may lead to pipeline collapse depending on soil characteristics and the stiffness of a pipe class. One-dimensional mathematical models and 3D computational fluid dynamics (CFD) simulations have been employed to analyse the behaviour of the air–water interface during these events. The numerical resolution of these models is challenging, as 1D models necessitate solving a system of algebraic differential equations. At the same time, 3D CFD simulations can take months to complete depending on the characteristics of the pipeline. This presents a mathematical approach for directly solving air–water interactions in emptying processes involving entrapped air, providing a predictive tool for water utilities. The proposed mathematical approach enables water utilities to predict emptying operations in water pipelines without needing 2D/3D CFD simulations or the resolution of a differential algebraic equations system (1D model). A practical application is demonstrated in a case study of a 350 m long pipe with an internal diameter of 350 mm, investigating the influence of air pocket size, friction factor, polytropic coefficient, pipe diameter, resistance coefficient, and pipe slope. The mathematical approach is validated using an experimental facility that is 7.36 m long, comparing it with 1D mathematical models and 3D CFD simulations. The results confirm that the derived mathematical expression effectively predicts emptying operations in single water installations. Full article
(This article belongs to the Special Issue Hydrodynamics in Pressurized Pipe Systems)
Show Figures

Figure 1

29 pages, 7298 KiB  
Article
Behaviour and Peculiarities of Oil Hydrocarbon Removal from Rain Garden Structures
by Maryna Kravchenko, Yuliia Trach, Roman Trach, Tetiana Tkachenko and Viktor Mileikovskyi
Water 2024, 16(13), 1802; https://doi.org/10.3390/w16131802 - 26 Jun 2024
Cited by 5 | Viewed by 2243
Abstract
The expansion of impervious areas in the context of climate change leads to an increase in stormwater runoff. Runoff from roads, petrol stations, and service stations is the most common form of unintentional release of petroleum hydrocarbons (PHs). Rain gardens are an important [...] Read more.
The expansion of impervious areas in the context of climate change leads to an increase in stormwater runoff. Runoff from roads, petrol stations, and service stations is the most common form of unintentional release of petroleum hydrocarbons (PHs). Rain gardens are an important practice for removing PHs from stormwater runoff, but little data exist on the removal efficiency and behaviour of these substances within the system. The main objective of the study is to investigate the effectiveness of rain gardens in removing pollutants such as diesel fuel (DF) and used engine oil (UEO) in a laboratory setting, as well as to study the behaviours of these pollutants within the system. Eight experimental columns (7.164 dm3) were packed with soil (bulk density 1.48 kg/dm3), river sand (1.6 kg/dm3), and gravel. Plants of the Physocarpus opulifolia Diabolo species were planted in the topsoil to study their resistance to PHs. For 6 months, the columns were watered with model PHs followed by simulated rain events. The concentrations of PHs in the leachate and soil media of the columns were determined by reverse-phase high-performance liquid chromatography (RP-HPLC). The results of HPLC indicated the absence of UEO and DF components in the leachates of all experimental columns, which suggested 100% removal of these substances from stormwater. The chromatography results showed that 95% of the modelled PHs were retained in the surface layer of the soil medium due to the sorption process, which led to a change in hydraulic conductivity over time. Recommendations are proposed to increase the service life of rain gardens designed to filter PHs from stormwater. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

27 pages, 17664 KiB  
Article
Xylem Hydraulic Conductance Role in Kiwifruit Decline Syndrome Occurrence
by Claudio Mandalà, Stefano Monaco, Luca Nari, Chiara Morone, Francesco Palazzi, Grazia Federica Bencresciuto and Laura Bardi
Horticulturae 2024, 10(4), 392; https://doi.org/10.3390/horticulturae10040392 - 11 Apr 2024
Cited by 2 | Viewed by 2223
Abstract
Kiwifruit decline syndrome (KiDS) has affected kiwifruit orchards for more than ten years in the Mediterranean area, severely compromising productivity and causing extensive uprooting. The affected plants go through an irreversible and fast wilting process. The problem has not been solved yet, and [...] Read more.
Kiwifruit decline syndrome (KiDS) has affected kiwifruit orchards for more than ten years in the Mediterranean area, severely compromising productivity and causing extensive uprooting. The affected plants go through an irreversible and fast wilting process. The problem has not been solved yet, and a single cause has not been identified. In this work, we carried out a survey on ten five-year-old healthy kiwifruit cv. Hayward plants cultivated in an area strongly affected by KiDS and characterised by a rising temperature and vapor pressure deficit (VPD). Five plants were located in a KiDS-affected orchard. Our goal was to assess the hydraulic conductance of asymptomatic plants in a KiDS-affected area where rising climate change stress is underway. Our hypothesis was that a rising temperature and VPD could impair xylem functionality, leading the plants to develop strategies of tolerance, such as vessel narrowing, or stress symptoms, such as cavitation or implosion, inducing a higher risk of KiDS onset. Hydraulic conductance was investigated using a physiological and morphological approach to detect trunk sap flow, trunk growth and daily diameter variations, leaf gas exchanges and temperature, stem water potential, and the root xylem vessel diameter and vulnerability to cavitation. A strong xylem vessel narrowing was observed in all plants, with the highest frequency in the 30–45 µm diameter class, which is an indicator of long-term adaptation to a rising VPD. In some plants, cavitation and implosion were also observed, which are indicative of a short-term stress response; this behaviour was detected in the plants in the KiDS-affected orchard, where a high leaf temperature (>39 °C), low stomatal conductance (<0.20 mol H2O m−2 s−1) and transpiration (<3 mmol H2O m−2 s−1), low stem water potential (<−1 MPa), high vulnerability to cavitation (3.7 μm mm−2), low trunk sap flow and high daily stem diameter variation confirmed the water stress status. The concurrence of climate stress and agronomic management in predisposing conditions favourable to KiDS onset are discussed, evidencing the role of soil preparation, propagation material and previous crop. Full article
Show Figures

Figure 1

23 pages, 7815 KiB  
Article
Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia)
by Hatem Baccouche, Manon Lincker, Hanene Akrout, Thuraya Mellah, Yves Armando and Gerhard Schäfer
Water 2024, 16(4), 522; https://doi.org/10.3390/w16040522 - 6 Feb 2024
Cited by 2 | Viewed by 2511
Abstract
The Grombalia aquifer constitutes a complex aquifer system formed by shallow, unconfined, semi-deep, and deep aquifers at different exploitation levels. In this study, we focused on the upper aquifer, the Wadi El Bey coastal aquifer. To assess natural aquifer recharge, we used a [...] Read more.
The Grombalia aquifer constitutes a complex aquifer system formed by shallow, unconfined, semi-deep, and deep aquifers at different exploitation levels. In this study, we focused on the upper aquifer, the Wadi El Bey coastal aquifer. To assess natural aquifer recharge, we used a novel physiography-based method that uses soil texture-dependent potential infiltration coefficients and monthly rainfall data. The developed transient flow model was then applied to compute the temporal variation in the groundwater level in 34 observation wells from 1973 to 2020, taking into account the time series of spatially variable groundwater recharge, artificial groundwater recharge from 5 surface infiltration basins, pumping rates on 740 wells, and internal prescribed head cells to mimic water exchange between the wadis and aquifer. The quantified deviations in the computed hydraulic heads from measured water levels are acceptable because the database used to construct a scientifically sound and reliable groundwater model was limited. Further work is required to collect field data to quantitatively assess the local inflow and outflow rates between surface water and groundwater. The simulation of 12 climate scenarios highlighted a bi-structured north—south behaviour in the hydraulic heads: an increase in the north and a depletion in the south. A further increase in the pumping rate would, thus, be severe for the southern part of the Wadi El Bey aquifer. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

16 pages, 3288 KiB  
Article
Clayey Soil Improvement with Polyethylene Terephthalate (PET) Waste
by Ana-Maria Urian, Nicoleta-Maria Ilies, Ovidiu Nemes and Andor-Csongor Nagy
Appl. Sci. 2023, 13(21), 12081; https://doi.org/10.3390/app132112081 - 6 Nov 2023
Cited by 3 | Viewed by 2426
Abstract
Population expansion and the development of technology have led to an increase in construction activities. In many cases, foundation grounds do not have a high enough bearing capacity and are not capable of ensuring the safe exploitation of the construction. A soil with [...] Read more.
Population expansion and the development of technology have led to an increase in construction activities. In many cases, foundation grounds do not have a high enough bearing capacity and are not capable of ensuring the safe exploitation of the construction. A soil with poor mechanical characteristics must be improved using various methods, such as adding hydraulic binders (lime and cement), natural fibres, or more recently, plastic waste materials. This work aims to study the behaviour of plastic waste materials made from polyethylene terephthalate (PET) in soil improvement. Thus, the mechanical characteristics of a clay improved with shredded PET were studied. PET was added in relation to the dry mass of the clay, in percentages of 2%, 4% and 6%. The studied clay was collected from a construction site around Cluj-Napoca, Romania, from a depth of 1 ÷ 10 m. PET was provided by a local plastic waste repository. It comes from recycled water, beer and soda bottles and was cleaned using specific methods for cleaning and recycling plastic waste. PET was shredded into irregular shapes with sizes ranging from 3 mm to 12 mm and was randomly distributed in the test specimens. Compression and direct shear tests were carried out to study the compressibility and shear parameters of the improved soil (internal friction angle and cohesion). The experimental results showed an improvement in the mechanical characteristics of the clay even at a low PET addition of 2% and 4%. This method can contribute to solving two current problems of the modern world: reducing pollution by recycling plastic waste materials and using them to improve the mechanical characteristics of soil. Full article
Show Figures

Figure 1

18 pages, 2916 KiB  
Review
Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems
by Yang Cao, Hoang Bao Khoi Nguyen, Derrick Aikins, Md. Rajibul Karim and Md. Mizanur Rahman
Geotechnics 2023, 3(4), 1162-1179; https://doi.org/10.3390/geotechnics3040063 - 1 Nov 2023
Cited by 2 | Viewed by 3201
Abstract
In some cases, the water content in granular soil increases to the extent that it becomes saturated, which noticeably alters its responses. For example, the pore water pressure within saturated granular soil would increase rapidly under sudden external loading, which is equivalent to [...] Read more.
In some cases, the water content in granular soil increases to the extent that it becomes saturated, which noticeably alters its responses. For example, the pore water pressure within saturated granular soil would increase rapidly under sudden external loading, which is equivalent to undrained or constant volume conditions. This reduces the effective stress in soil dramatically and may result in catastrophic failure. There have been different numerical approaches to analyse such a failure mechanism of soil to provide a deeper understanding of soil behaviour at the microscopic level. One of the most common numerical tools for such analysis is the discrete element method (DEM) due to its advantage in obtaining microscopic properties (e.g., statistics on particle contacts and fabric), reproducibility and simple feedback control. However, most DEM studies ignore the fluid phase and merely consider the solid particles while the fluid pressure is indirectly calculated by mimicking undrained condition to a constant volume condition. Note that fluid’s influence does not limit to the change of pore water pressure. For example, the external loading would induce the movement of fluid, and the fluid-solid interaction could subsequently drag the solid particles to shift within the system. In addition, the state of soil could change from solid to suspension under an excess hydraulic gradient. Therefore, the study of the fluid-solid mixture is essential as it is a typical scenario in geotechnical practice, and the simulations of saturated sand should be conducted in numerical forms in which both the solid and fluid phases can be modelled. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering)
Show Figures

Figure 1

30 pages, 10100 KiB  
Article
Simultaneous Biocementation and Compaction of a Soil to Avoid the Breakage of Cementitious Structures during the Execution of Earthwork Constructions
by Laura Morales Hernández, Eduardo Garzón Garzón, Pedro J. Sánchez-Soto and Enrique Romero Morales
Geotechnics 2023, 3(2), 224-253; https://doi.org/10.3390/geotechnics3020014 - 23 Apr 2023
Cited by 3 | Viewed by 2509
Abstract
This research focuses on the potential for microbial treatment to stabilize compacted soils, which are often utilized in earthwork projects. A silt–clay sand was used to describe a particular kind of soil. The suggested remedy makes use of the soil’s naturally occurring urea [...] Read more.
This research focuses on the potential for microbial treatment to stabilize compacted soils, which are often utilized in earthwork projects. A silt–clay sand was used to describe a particular kind of soil. The suggested remedy makes use of the soil’s naturally occurring urea and Ca2+, as well as microorganisms introduced to the compaction water. Two alternative initial water-content types were examined: those on the dry side and those close to the ideal Proctor conditions. Bacillaceae microorganisms were used to induce microbial CaCO3 precipitation and improve the hydraulic and mechanical properties of the compacted soil. The samples were biotreated and immediately compacted, so that the precipitation of calcium carbonate during the curing process took place in the contact areas between the particles (biocementation) and in the pore space (bioclogging). A set of techniques were used to study the ageing effects, such as the water-retention curve by dew-points psychrometer, mercury porosimetry intrusion, permeability, ultrasonic pulse velocity, resonant column, and unconfined and tensile-compression tests. During the ageing, it was observed that the bacterial activity consumed water for the hydrolysis of urea and other intermediate reactions to precipitate CaCO3. This process resulted in a retraction of the microstructure and a change in the macrostructure. The bioclogging phenomenon was more evident in the soil microstructure, while the biocementation process was easier to observe in the macrostructure. The suction’s effects on the soil stiffness were studied in detail, and a significant increase was detected. Despite these water-content losses, which caused soil stiffening by increasing the suction, it was still feasible to identify the gradual rise in small-strain stiffness throughout incubation. The unconfined and tensile-compression tests showed a similar progressive increase in terms of peak compressive and peak splitting strength during the incubation. These results are of interest when microbiological treatments are applied in soils to produce cementitious materials, with the present investigation demonstrating a complete study of their geotechnical behaviour. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 6156 KiB  
Article
Combined Well Multi-Parameter Logs and Low-Flow Purging Data for Soil Permeability Assessment and Related Effects on Groundwater Sampling
by Francesco Maria De Filippi and Giuseppe Sappa
Hydrology 2023, 10(1), 12; https://doi.org/10.3390/hydrology10010012 - 2 Jan 2023
Cited by 2 | Viewed by 2895
Abstract
Cost-effective remediation is increasingly dependent on high-resolution site characterization (HRSC), which is supposed to be necessary prior to interventions. This paper aims to evaluate the use of low-flow purging and sampling water level data in estimating the horizontal hydraulic conductivity of soils. In [...] Read more.
Cost-effective remediation is increasingly dependent on high-resolution site characterization (HRSC), which is supposed to be necessary prior to interventions. This paper aims to evaluate the use of low-flow purging and sampling water level data in estimating the horizontal hydraulic conductivity of soils. In a new quali-quantitative view, this procedure can provide much more information and knowledge about the site, reducing time and costs. In case of high heterogeneity along the well screen, the whole procedure, as well as the estimation method, could be less effective and rigorous, with related issues in the purging time. The result showed significant permeability weighted sampling, which could provide different results as the pump position changes along the well screen. The proposed study confirms this phenomenon with field data, demonstrating that the use of multiparameter well logs might be helpful in detecting the behaviour of low-permeability layers and their effects on purging and sampling. A lower correlation between low-flow permeability estimations and LeFranc test results was associated with high heterogeneity along the screen, with a longer purging time. In wells P43, MW08 and MW36, due to the presence of clay layers, results obtained differ for almost one order of magnitude and the purging time increases (by more than 16 min). However, with some precautions prior to the field work, the low-flow purging and sampling procedure could become more representative in a shorter time and provide important hydrogeological parameters such as hydraulic conductivity with many tests and high-resolution related results. Full article
(This article belongs to the Special Issue Novel Approaches in Contaminant Hydrology and Groundwater Remediation)
Show Figures

Figure 1

25 pages, 6401 KiB  
Article
Insights into the Thermal Performance of Underground High Voltage Electricity Transmission Lines through Thermo-Hydraulic Modelling
by Kui Liu, Renato Zagorščak, Richard J. Sandford, Oliver N. Cwikowski, Alexander Yanushkevich and Hywel R. Thomas
Energies 2022, 15(23), 8897; https://doi.org/10.3390/en15238897 - 24 Nov 2022
Viewed by 2274
Abstract
In this paper, a flexible numerical framework to provide thermal performance assessment for the underground buried cables, considering different geological and meteorological conditions, has been presented. Underground cables tend to retain the heat produced in the conductor, so complex coupled thermo-hydraulic response of [...] Read more.
In this paper, a flexible numerical framework to provide thermal performance assessment for the underground buried cables, considering different geological and meteorological conditions, has been presented. Underground cables tend to retain the heat produced in the conductor, so complex coupled thermo-hydraulic response of the porous medium surrounding the cables needs to be assessed to prevent cable overheating and the associated reduction in cable capacity for carrying current. Applying a coupled thermo-hydraulic model within the developed numerical framework to conduct a health assessment on a subset of National Grid Electricity Transmission’s underground cables, this study provides novel insights into the thermal behaviour of buried circuits. The results indicate that backfill and surrounding native soil have the dominant effect on the thermal behaviour of cables, while the amount of precipitation and ambient temperature were found to have less impact on cable’s thermal behaviour. The findings strongly infer that the nature of the overloading which is undertaken in practice would have no ongoing negative impact, suggesting that more frequent or longer duration overloading regimes could be tolerated. Overall, this study demonstrates how the developed numerical framework could be harnessed to allow safe rating adjustments of buried transmission circuits. Full article
(This article belongs to the Special Issue New Challenges in the Utilization of Underground Energy and Space)
Show Figures

Figure 1

20 pages, 5467 KiB  
Article
Unsaturated Hydraulic Conductivity Estimation—A Case Study Modelling the Soil-Atmospheric Boundary Interaction
by Md Rajibul Karim, David Hughes and Md Mizanur Rahman
Processes 2022, 10(7), 1306; https://doi.org/10.3390/pr10071306 - 1 Jul 2022
Cited by 8 | Viewed by 2210
Abstract
Pore water pressure changes due to soil-atmospheric boundary interaction can significantly influence soil behaviour and can negatively affect the safety and stability of geotechnical structures. For example, prolonged rainfall events can lead to increased pore water pressure and lower strength; repeated cycles of [...] Read more.
Pore water pressure changes due to soil-atmospheric boundary interaction can significantly influence soil behaviour and can negatively affect the safety and stability of geotechnical structures. For example, prolonged rainfall events can lead to increased pore water pressure and lower strength; repeated cycles of pore water pressure changes can lead to degradation of strength. These effects are likely to become more severe in the future due to climate change in many parts of the world. To analyse the behaviour of soil subjected to atmospheric boundary interactions, several parameters are needed, and hydraulic conductivity is one of the more important and is difficult to determine. Hydraulic conductivity deduced from laboratory tests are often different from those from the field tests, sometimes by orders of magnitude. The problem becomes even more complicated when the soil state is unsaturated, where the hydraulic conductivity varies with the soil’s state of saturation. In this paper, a relatively simple alternative approach is presented for the estimation of the hydraulic conductivity of unsaturated soils. The method involved a systematic re-analysis of observed pore water pressure response in the field. Using a finite element software, the soil-atmospheric boundary interaction and related saturated/unsaturated seepage of an instrumented slope have been analysed, and results are compared with field measurements. The numerical model could capture the development of suction, positive pore water pressure and changes in water content with reasonable accuracy and demonstrated the usefulness of the hydraulic conductivity estimation method discussed in this paper. Full article
(This article belongs to the Special Issue Numerical Modeling in Civil and Mining Geotechnical Engineering)
Show Figures

Figure 1

23 pages, 16866 KiB  
Article
Methodological Approach for the Study of Historical Centres of High Architectural Value Affected by Geo-Hydrological Hazards: The Case of Lanciano (Abruzzo Region—Central Italy)
by Nicola Sciarra, Massimo Mangifesta, Luigi Carabba and Luigina Mischiatti
Geosciences 2022, 12(5), 193; https://doi.org/10.3390/geosciences12050193 - 28 Apr 2022
Cited by 6 | Viewed by 2735
Abstract
The study of geo-hydrological problems in urban contexts of considerable historical importance plays an extremely interesting role in the safeguarding of architectural and artistic assets of great value. The need to guarantee the conservation of monumental heritage is an ethical and moral requirement [...] Read more.
The study of geo-hydrological problems in urban contexts of considerable historical importance plays an extremely interesting role in the safeguarding of architectural and artistic assets of great value. The need to guarantee the conservation of monumental heritage is an ethical and moral requirement that new generations have a duty to support. Operating in urbanised contexts is extremely difficult, due to the presence of infrastructures and underground services that prevent the execution of classical surveys and prospecting. The technologies currently available, however, allow us to also investigate the subsoil in a non-destructive way and to control the evolution of active natural phenomena in a continuous and automated way with remote-sensing techniques. The methodological approach consists of the development of a series of cognitive investigations, aimed at identifying the elements of weakness of the soil system, so as to be able to subsequently undertake the most appropriate decisions for the reduction of geo-hydrological risks. The case here analysed concerns Lanciano city (Central Italy), famous for its pre-Roman origins, that was affected by a violent storm in the summer of 2018. This event devastated the inhabited Centre with flooding of all the neighbourhoods and the collapse of parts of buildings. For this reason, direct and indirect geognostic investigations were carried out within the Historical Centre, which is of considerable architectural value, and an important monitoring system was installed. The actual geo-hydrological hazard was planned using 3D numerical modelling to define the hydraulic and deformational behaviour of the subsoil. Comparison between the modelling performed and the monitoring data acquired has allowed us to understand the complex behaviour of the subsoil and the subsidence mechanisms of the Historic Centre. Full article
(This article belongs to the Special Issue Scientific Assessment of Recent Natural Hazard Events)
Show Figures

Figure 1

15 pages, 4906 KiB  
Communication
Guidelines for Analysing Coastal Flood Protection Systems after a Submersion
by Marc Igigabel, Yves Nédélec, Nathalie Bérenger, Nicolas Flouest, Alexis Bernard, Patrick Chassé and Anne-Laure Tiberi-Wadier
Water 2022, 14(1), 15; https://doi.org/10.3390/w14010015 - 22 Dec 2021
Cited by 3 | Viewed by 3452
Abstract
Storm Xynthia, which hit the French Atlantic coast on 28 February 2010, flooded vast territories despite coastal defences. This disaster highlighted the need to further study the behaviour of the coastal flood protection systems at an adapted geographical scale by considering the kinematics [...] Read more.
Storm Xynthia, which hit the French Atlantic coast on 28 February 2010, flooded vast territories despite coastal defences. This disaster highlighted the need to further study the behaviour of the coastal flood protection systems at an adapted geographical scale by considering the kinematics of the events. This objective has been achieved through a combination of conceptual input on the definition of protection systems, significant breakthroughs in the knowledge of the mechanisms governing the flooding, and via the improvement of strategies and methods dedicated to flood analysis and representation. The developed methodology was successfully tested on four sites submerged during Xynthia (Loix, Les Boucholeurs, and Boyardville, located in Charente-Maritime, and Batz-sur-Mer, located in Loire-Atlantique). This work is intended to guide the diagnosis of sites prone to marine flooding from the first investigations until the delivery of study reports. Beyond the usual focus on hydraulic structures, it provides guidelines to better analyse the interactions with the natural environment (sea, soil, dune, wetlands, etc.) and with the built environment (roads and urban networks, ponds used for fish farming, buildings, etc.). This systemic approach, which is applied to a territory considered as a complex adaptive system, is fundamental to understanding the reaction of a territory during a marine submersion event and subsequently developing adaptation or transformation strategies. Full article
Show Figures

Graphical abstract

Back to TopTop