Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia)
Abstract
:1. Introduction
2. Study Area
2.1. Characteristics
2.2. Hydrogeology
3. Materials and Methods
3.1. Numerical Flow Model FEFLOW
3.2. Boundary Conditions and Input Parameters of the Numerical Groundwater Model
- Along the northern model boundary that corresponds to the Mediterranean Sea, the nodes of all four slices were implemented in the model with a constant hydraulic head equal to 0 m.
- Along the main wadis, 36 internal nodes (called wadi points) with fixed hydraulic heads were implemented to simulate water exchange between surface water and groundwater. The working hypothesis of introducing local nodes where the groundwater head is supposed to be equal to the water level in the wadi was motivated by the fact that no data regarding the monitored water levels in the wadis were available. In the steady-state flow model, the prescribed hydraulic heads of the chosen wadi points were extracted from the study of Gaaloul et al. [14] by digitizing these 36 wadi points located on their computed isolines of water heads. In the transient flow model, a time-dependent hydraulic head was introduced at each of the 36 wadi points. To do this, we applied the open-source geographic information system QGIS. In a first step, groundwater level maps were created for the months of April and October, from 1972 to 2019, based on the groundwater levels measured at the 34 observation wells using a triangular interpolation method. The groundwater level maps determined then formed the basis for extracting the time-dependent hydraulic heads of the wadi points [26]. Figure 2 shows the time-dependent hydraulic heads quantified for April and October at all the wadi points. The starting values in 1972 correspond to those extracted from Gaaloul et al. [14]. A strong temporal variation in the hydraulic head of up to 30 m was recorded for wadi points in Groups 1, 2, and 3 (Figure 2a–c), whereas a moderate variation of approximately 10 m was observed for the other wadi points. Furthermore, at two wadi points, WP 1 and WP 5, temporarily negative hydraulic heads were observed, which correspond to a groundwater level below sea level. This can be attributed to either the fact that both wadi points are close to the seashore or to a local artefact of the interpolation method in QGIS due to the sparsely distributed data.
3.3. Climate Change Scenario Analysis
4. Results and Discussion
4.1. Steady-State Flow Model (1972)
4.2. Transient Flow Model (1973–2020)
4.3. Modelling of Climate Change Scenarios: Groundwater Levels in the Near Future, Midterm, and Long Term
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MED Groundwater Working Group. Mediterranean Groundwater Report. 2007. Available online: https://circabc.europa.eu/sd/a/50c3b2a9-4816-4ab1-9a33-d41c327759e3/Mediterranean%20Groundwater%20Report_final_150207_clear.pdf (accessed on 26 January 2023).
- UNEP-MAP; UNESCO-IHP. Final Report on Mediterranean Coastal Aquifers and Groundwater Including the Coastal Aquifer Supplement to the TDA-MED and the Sub-Regional Action Plans. Paris: Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem (MedPartnership). 2015. Available online: https://unesdoc.unesco.org/images/0023/002353/235306e.pdf (accessed on 26 January 2023).
- Rasmussen, P.; Sonnenborg, T.O.; Goncear, G.; Hinsby, K. Assessing impacts of climate change. sea level rise. and drainage canals on saltwater intrusion to coastal aquifer. Hydrol. Earth Syst. Sci. 2013, 17, 421–443. [Google Scholar] [CrossRef]
- Lejeusne, C.; Chevaldonné, P.; Pergent-Martini, C.; Boudouresque, C.F.; Pérez, T. Climate change effects on a miniature ocean: The highly diverse. highly impacted Mediterranean Sea. Trends Ecol. Evol. 2010, 25, 250–260. [Google Scholar] [CrossRef] [PubMed]
- DGRE (Direction Générale des Ressouces en Eaux). Annuaire des Nappes Phréatiques de la Tunisie. 2015. Available online: https://www.agridata.tn/organization/dgre (accessed on 10 January 2022).
- Tunisian Institute for Strategic Studies (Institut Tunisien des Études Stratégiques). Etude Stratégique: Système Hydraulique de la Tunisie à L’horizon 2030; Report; Tunisian Institute for Strategic Studies (Institut Tunisien des Études Stratégiques): Carthage, Tunisia, 2014; 222p. [Google Scholar]
- SWIM and Horizon 2020 SM. Final Report, Facilité Experts—Activité nº: EFS-TN-3. Renforcer la Gestion des Eaux Souterraines Pour Réduire la Surexploitation et la Pollution des Ressources Souterraines en eau, en Lien Également Avec la Gestion des Risques de Sécheresse. Available online: http://www.swim-h2020.eu (accessed on 10 January 2022).
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.; Academic Press: London, UK, 2015; pp. 3–25. [Google Scholar]
- Spitz, K.; Moreno, J. A Practical Guide to Groundwater and Solute Transport Modeling; John Wiley and Sons: New York, NY, USA, 1996; pp. 120–148. [Google Scholar]
- Gaiolini, M.; Colombani, N.; Busico, G.; Rama, F.; Mastrocicco, M. Impact of Boundary Conditions Dynamics on Groundwater Budget in the Campania Region (Italy). Water 2022, 14, 2462. [Google Scholar] [CrossRef]
- Ebraheem, A.M.; Riadn, R.; Wycisk, P.; Sefelnasr, A.M. A local-scale groundwater flow model for groundwater resources management in Dakhla Oasis, SW Egypt. Hydrogeol. J. 2004, 12, 714–722. [Google Scholar] [CrossRef]
- Psarropoulou, E.; Karatzas, G. Transient groundwater modelling with spatio-temporally variable fluxes in a complex aquifer system: New approach in defining boundary conditions for a transient flow model. Civ. Eng. Environ. Syst. 2012, 29, 1–21. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill Book: New York, NY, USA, 1979; pp. 34–59. [Google Scholar]
- Gaaloul, N.; Candela, L.; Chebil, A.; Soussi, A.; Tamoh, K. Groundwater flow simulation at the Grombalia phreatic aquifer (Cap Bon. Northeastern Tunisia). Desalin. Water Treat. 2014, 52, 1997–2008. [Google Scholar] [CrossRef]
- Charfi, S.; Trabelsi, R.; Zouari, K.; Chkir, N.; Charfi, H.; Rekaia, M. Isotopic and hydrochemical investigation of the Grombalia deep aquifer system, northeastern Tunisia. Carbonates Evaporites 2012, 28, 281–295. [Google Scholar] [CrossRef]
- Slama, T.; Abdelaziz, S. Spatial and temporal analysis of shallow groundwater quality using GIS, Grombalia aquifer, Northern Tunisia. J. Afr. Earth Sci. 2020, 170, 103915. [Google Scholar] [CrossRef]
- Re, V.; Sacchi, E.; Kammoun, S.; Tringali, C.; Trabelsi, R.; Zouari, K.; Daniele, S. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci. Total Environ. 2017, 593–594, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K. Coastal Aquifer Salinization in Semi-Arid Regions: The Case of Grombalia (Tunisia). Water 2021, 13, 129. [Google Scholar] [CrossRef]
- INM (Institut National de la Métérologie). Tableaux Climatiques Mensuels de la Tunisie. 2014. Available online: https://www.meteo.tn/ (accessed on 10 January 2022).
- Ennabli, M. Etat de L’évolution de la Nappe de Grombalia-Tunis; Report; Division des Ressources en Eaux, Travaux Publics de Tunisie: Tunis, Tunisia, 1970; 18p. [Google Scholar]
- Ben Moussa, A.; Bel Haj Salem, S.; Zouari, K.; Jlassi, F. Hydrochemical and isotopic investigation of the groundwater composition of an alluvial aquifer, Cap Bon Peninsula, Tunisia. Carbonates Evaporites 2010, 25, 161–176. [Google Scholar] [CrossRef]
- Kammoun, S.; Re, V.; Rim, T.; Kamel, Z.; Daniele, S. Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: The case of Grombalia (Tunisia). Hydrogeol. J. 2018, 26, 2575–2594. [Google Scholar] [CrossRef]
- Gaaloul, N. Gestion intégrée des ressources en eaux souterraines: Cas de la plaine du Cap Bon [Integrated management of the groundwater resources: A case study in the Cap-Bon plain in Tunisia. La Houille Blanche]. Rev. Int. De L’eau 2008, 5, 38–44. [Google Scholar]
- Diersch, H.J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2013; pp. 405–444. ISBN 9783642387395. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; Elsevier: New York, NY, USA, 1972; pp. 119–189. [Google Scholar]
- Biais, Z. Suivi Temporel du Niveau Piézométrique de la Nappe Phréatique de Grombalia, Tunisie; Internship Report; University of Strasbourg: Strasbourg, France, 2023; 31p. [Google Scholar]
- Hammami, N. Updating of the Hydrodynamic Modeling of the Water Table of Grombalia Plain. Master’s Thesis, National Agronomic Institute of Tunis (INAT), Tunis, Tunisia, 2012. [Google Scholar]
- Civita, M. Idrogeologia Applicata e Ambientale; Technical Report; Casa Editrice Ambrosiana: Milan, Italy, 2005; 794p, ISBN 8840812970. [Google Scholar]
- Ennabli, M. Etude Hydrogéologique des Aquifères du Nord-Est de la Tunisie pour une Gestion Intégrée des Ressources en Eaux. Ph.D. Thesis, University of Nice, Nice, France, 1980; 650p. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Osterle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. The WATCH Forcing Data 1958–2001: A Meterological Forcing Dataset for Land Surface- and Hydrological-Models; WATCH Technical Report No. 22; WATCH Water and Global Change: Swidon, UK, 2010. [Google Scholar]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- D’Oria, M.; Ferraresi, M.; Tanda, M.G. Historical trends and high-resolution future climate projections in northern Tuscany (Italy). J. Hydrol. 2017, 555, 708–723. [Google Scholar] [CrossRef]
- D’Oria, M.; Cozzi, C.; Tanda, M.G. Future precipitation and temperature changes over the Taro. Parma and Enza River basins in Northern Italy. Ital. J. Eng. Geol. Environ. 2018, 49–63. [Google Scholar] [CrossRef]
- D’Oria, M.; Tanda, M.G.; Todaro, V. Assessment of local climate change: Historical trends and RCM multi-model projections over the Salento Area (Italy). Water 2018, 10, 978. [Google Scholar] [CrossRef]
- D’Oria, M.; Ferraresi, M.; Tanda, M.G. Quantifying the impacts of climate change on water resources in northern Tuscany. Italy. using high-resolution regional projections. Hydrol. Process. 2019, 33, 978–993. [Google Scholar] [CrossRef]
- Secci, D.; Tanda, M.G.; D’Oria, M.; Todaro, V.; Fagandini, C. Impacts of climate change on groundwater droughts by means of standardized indices and regional climate models. J. Hydrol. 2021, 603, 127154. [Google Scholar] [CrossRef]
Climate Scenario | Regional Climate Model (RCM) |
---|---|
1 | ‘CNRM_CERFACS_CNRM_CM5_CCLM4_8_17’ |
4 | ‘DMI_HIRHAM5_NorESM1-M’ |
8 | ‘ICHEC_EC_EARTH_HIRHAM5’ |
9 | ‘IPSL-INERIS_WRF381P_IPSL-CM5A-MR’ |
12 | ‘KNMI_CNRM-CM5’ |
17 | ‘MPI_M_MPI_ESM_LR_RCA4’ |
Cumulative Water Volume (1973–2020) | Flow Rates Averaged over 1973–2020 | Flow Rates of the Steady-State Flow Model (1972) | ||
---|---|---|---|---|
(×109 m3) | (×105 m3d−1) | (×105 m3d−1) | ||
Fixed head boundary | inflow (+) | 2.65 | 1.51 | 0.85 |
outflow (−) | 4.21 | 2.40 | 2.96 | |
Wells | inflow (+) | 0.02 | 0.01 | - |
outflow (−) | 4.02 | 2.30 | 1.14 | |
Groundwater recharge (+) | 4.24 | 2.42 | 3.24 | |
Storage | release (+) | 5.44 | 3.10 | - |
capture (−) | 4.15 | 2.37 | - | |
Imbalance | out (−) | 0.015 | 0.0085 | 0.0005 |
Weather Station | Representative Concentration Pathway (RCP) | Mean Annual Rainfall (mm) | ||
---|---|---|---|---|
Near Future (2021–2040) | Midterm (2041–2060) | Long Term (2081–2098) | ||
Bezirk Dam | RCP 4.5 | 469 | 460 | 481 |
RCP 8.5 | 507 | 485 | 465 | |
Beni Khalled Ferme Latifa | RCP 4.5 | 508 | 492 | 398 |
RCP 8.5 | 480 | 457 | 433 | |
CTV Bou Argoub | RCP 4.5 | 495 | 448 | 315 |
RCP 8.5 | 512 | 458 | 379 | |
Grombalia DRE | RCP 4.5 | 598 | 560 | 464 |
RCP 8.5 | 493 | 478 | 416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baccouche, H.; Lincker, M.; Akrout, H.; Mellah, T.; Armando, Y.; Schäfer, G. Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia). Water 2024, 16, 522. https://doi.org/10.3390/w16040522
Baccouche H, Lincker M, Akrout H, Mellah T, Armando Y, Schäfer G. Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia). Water. 2024; 16(4):522. https://doi.org/10.3390/w16040522
Chicago/Turabian StyleBaccouche, Hatem, Manon Lincker, Hanene Akrout, Thuraya Mellah, Yves Armando, and Gerhard Schäfer. 2024. "Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia)" Water 16, no. 4: 522. https://doi.org/10.3390/w16040522
APA StyleBaccouche, H., Lincker, M., Akrout, H., Mellah, T., Armando, Y., & Schäfer, G. (2024). Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia). Water, 16(4), 522. https://doi.org/10.3390/w16040522