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Abstract: In some cases, the water content in granular soil increases to the extent that it becomes
saturated, which noticeably alters its responses. For example, the pore water pressure within saturated
granular soil would increase rapidly under sudden external loading, which is equivalent to undrained
or constant volume conditions. This reduces the effective stress in soil dramatically and may result
in catastrophic failure. There have been different numerical approaches to analyse such a failure
mechanism of soil to provide a deeper understanding of soil behaviour at the microscopic level. One
of the most common numerical tools for such analysis is the discrete element method (DEM) due
to its advantage in obtaining microscopic properties (e.g., statistics on particle contacts and fabric),
reproducibility and simple feedback control. However, most DEM studies ignore the fluid phase
and merely consider the solid particles while the fluid pressure is indirectly calculated by mimicking
undrained condition to a constant volume condition. Note that fluid’s influence does not limit to
the change of pore water pressure. For example, the external loading would induce the movement
of fluid, and the fluid-solid interaction could subsequently drag the solid particles to shift within
the system. In addition, the state of soil could change from solid to suspension under an excess
hydraulic gradient. Therefore, the study of the fluid-solid mixture is essential as it is a typical scenario
in geotechnical practice, and the simulations of saturated sand should be conducted in numerical
forms in which both the solid and fluid phases can be modelled.

Keywords: discrete element method; coupling; computational fluid dynamics; soil; liquefaction;
geotechnical

1. Introduction

Soil is composed of discrete particles, and the effective stress in the soil is governed by
the forces transferred internally through inter-particle contacts. The contact forces form
the contact force network or internal structure, i.e., soil fabric. Traditionally, soil failure
assessment has emerged in the literature including liquefaction analysis [1–5]. Been, et al. [6]
emphasised that soil fabric could considerably influence the observed soil behaviour.
However, the traditional applications of critical state theory do not capture the effect of
soil fabric and other micromechanical parameters properly. Some previous works used the
optical microscope to determine the orientation and distribution of grain particles on a small
portion of the testing specimens [7]. Arthur and Dunstan [8] proposed that the particle
packing (fabric) could be studied using radiography measurements to track the particle
packing. These approaches can be expensive and may not satisfy the requirements in both
quantity and quality because of difficulties with continuous measurement of the fabric.
Furthermore, Arthur and Menzies [9] stated that the differences between radiographs can
be hard to identify.

Microscopic information, including fabric, can be assessed using a numerical simula-
tion and it can be an effective and economical tool for investigating soil behaviour [10–15].
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The capability of eliminating additional variables and focusing on important factors makes
the numerical solution scheme ideal [16]. Gong [17] stated that compared to physical mod-
els, the boundary conditions in numerical models could be better controlled and boundary
effects could be almost eliminated. The modelling data could be assessed at any stage of
the test [18]. Due to such advantages, an increasing number of studies on soil behaviour
are undertaken by numerical simulations [18–22].

The Discrete Element Method (DEM) proposed by Cundall and Strack [18] is such a
numerical tool and has been widely used for simulating discontinuous materials and the
dynamic movement of particles for sands, sand with fines, etc. [10,21–40]. Dinesh, et al. [41]
stated DEM has the advantages of collecting micromechanical and statistical information
(e.g., internal stress, contact behaviour) in addition to the macroscopic properties, and the
simulation results are reproducible. Sitharam, et al. [42] used 3D DEM simulations for
spherical particles to investigate post-liquefaction undrained behaviour. Kuhn, et al. [43]
discovered the influence of Hertz-Mindlin contact model parameters during cyclic simple
shear simulation of an assembly of 3D angular particles and suggested that DEM is suitable
for cyclic liquefaction studies and offers certain advantages over laboratory experiments.
Huang, et al. [44] investigated the qualitative behaviour of 2D angular particles under
monotonic and cyclic direct shear.

One of the contributors to the failure of geomaterials is the development of excess
pore water pressure between the particles. However, the majority of conventional DEM
studies did not consider any physical fluid between the discrete particles and only used
mathematical relationships for effective stress calculations to estimate the excess pore
water pressure [42,45–47]. This may not always be ideal for capturing the representative
behaviour of geomaterials, as the interaction between fluid and solid at their interface is
more complicated. Since the conventional DEM lacks the capacity to simulate physical
fluids, achieving a more realistic representation of behavior requires coupling DEM with
another computational tool, such as Computational Fluid Dynamics (CFD), capable of
accounting for fluid effects.

Therefore, there have been some developments in the coupling methods for DEM and
CFD [21,28,48–51]. In CFD, an individual solid is divided into boundary nodes by the fluid
grids and the hydrodynamic force is calculated by the movements of the boundary nodes.
The coupling process of CFD and DEM depends on the interaction between fluids and
particles, and particles and particles. Norouzi, et al. [52] mentioned there are four different
methods of coupling, namely, one-way (effect of fluids on particles), two-way (effect of
fluids on particles and vice versa), three-way (effect of fluids on particles and vice versa,
and disturbance of fluids on particles) and four-way coupling (effect of fluids on particles
and vice versa, disturbance of fluids on particles, and interparticle reactions). The details of
these methods can be found in the following sections. However, CFD has the challenge
of finding the appropriate drag coefficient for the drag forces in the system, as there are
different variations of drag coefficients in the literature [53–58]. So, a comparative study
should be conducted to evaluate the efficiency of these methods, and it requires a new
calculation algorithm for this problem.

Due to some shortcomings of the current DEM studies in geotechnics and the chal-
lenges of implementing physical fluids into the DEM model, this literature review paper
would like to revisit some important studies in CFD and DEM to explore a new technique
to solve this problem.

2. Traditional Discrete Element Method (DEM)

The DEM approach was originally developed by Cundall and Strack [18] to use for
analysing rock. But later, this tool has been widely used in granular materials [40,45,59–63].
DEM can reproduce a grain size distribution, illustrate force chain networks, access mi-
cromechanical properties of particle contacts, and trace the evolution of the contacts. A
contact is defined as the interaction between two components that comply with Newton’s
laws of motion, and it is dynamically created and destroyed throughout the simulation [64].
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Cundall and Hart [65] pointed out that the representation of contacts and the determination
of contacts are significant when utilising the DEM program. The DEM model follows an ex-
plicit numerical scheme, particles and contacts are tracked individually at each timestep [18].
The particle movement follows Newton’s second law of motion, and contact is generated
when the particles overlap [41]. The magnitude of contact force is calculated using the
force-displacement law [18]. The contact model in DEM can be illustrated as shown in
Figure 1.
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Figure 1. A typical DEM contact model: (a) normal and (b) tangential contacts.

In DEM, there are two different methods to calculate the contact forces, linear and
non-linear [40,45,59–63]. Linear model considers linear relationship between contact over-
lap/deformation and contact force, whereas non-linear model adopts non-linear calcula-
tions for contact forces. It worths noting that neither linear nor non-linear contact models
can be able to perfectly capture the complexity of soil behaviour. Therefore, the selection of
contact model mostly depends on research interest and computational time.

There are extensive DEM studies on the behaviour of granular soils in the past
decades [17,18,66–75]. Dinesh, Thallak and Vinod [41] assessed the dynamic properties and
liquefaction behaviour of granular soils under undrained conditions. Their study showed
the shear modulus tends to reduce, and the damping ratio would increase under large
shear strain. In addition, they explained soil particles were reoriented under cyclic loading,
and the loss in average coordination number during that process caused the later lique-
faction. Gu, Huang and Qian [67] modified the initial densities and confining pressures
in the drained and undrained triaxial tests and captured the evolution of micromechan-
ical properties such as coordination number, contact force, and anisotropic behaviour of
contacts. Their model showed state-dependent behaviour of granular soil under shear
loading, including contractive and dilative behaviour and phase transformation, which
verify the representative of the DEM approach. Nguyen, Rahman and Fourie [68] analysed
the effect of isotropic and K0-consolidation paths on granular soil considering the constant
volume triaxial compression simulations. The authors considered a wide range of e and
p′ and found a unique critical state line for different consolidation conditions. Moreover,
they examined the normalised anisotropic fabric variable (A) and the trace of the joint
stress-fabric tensor (KF), and then stated the critical state value could be achieved for those
micromechanical parameters as shearing continues. Therefore, DEM can be a suitable
tool for the study of soil stress-strain behaviour and fabric evolution. An example of the
constant volume triaxial test of soil in DEM is represented in Figure 2. In such a test, the
incremental strain is applied in the vertical direction, and the strains in lateral directions
are adjusted to keep the volume constant. The arrows showed the directions of strains.
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Apart from simulating the element test, DEM has been also used to replicate the
field test such as CPT [23,76–78]. Jiang, Dai, Cui, Shen and Wang [77] applied various
friction coefficients between the cone and particles. Additionally, CPT penetrations were
performed under different insertion angles instead of the standard 90◦ downward direction.
The authors then explored the CPT responses such as the velocity and displacement of
particles and the evolution of principal stress orientation during the penetration process.
Ciantia, et al. [79] examined the effect of grain crushing on the cone tip resistance dur-
ing CPT by using crushable microporous granular material. The specimens were set to
different densities and various confining stresses were applied. The authors investigated
the micromechanical behaviour and found that the difference between the contact force
networks of the crushable and non-crushable loose specimens is unnoticeable; however, for
denser specimens, a significantly larger cluster of high-stress particles could be observed in
the non-crushable specimens. Furthermore, they pointed out that the buttressing effect on
the cone was influenced due to particle’s sudden breakdown. It should be noted the sand is
assumed as uncrushable in this project. Khosravi, Martinez and DeJong [23] examined the
effect of several modelling parameters by conducting CPT in a virtual calibration chamber
(VCC), and microscopic parameters including interparticle force, particle orientation, and
force chain were analysed. The authors emphasised the importance of interparticle contacts,
chamber boundary conditions and sample void ratio as these features would significantly
influence the CPT response. The above studies showed DEM could provide promising
results and interpretations at both macro and micro levels when applied to CPT. However,
none of the above research followed the CSSM framework to evaluate the liquefaction
protentional of tested soil, which remains the current research gap. In addition, the studies
above did not consider physical fluid inside the specimen, and the pore water pressure was
calculated based on the theoretical effective stress calculation. Therefore, this framework is
controversial as particles could be affected by forces such as drag force and buoyancy force
when they are immersed in the fluid field.

3. Computational Fluid Dynamics (CFD) in DEM
3.1. Background of Fluid in Soil

The solid-fluid interactions could alter soil behaviour. For example, in the upward
seepage flow problem, a critical flow velocity or hydraulic gradient could cause a quick con-
dition or liquefaction [80]. Liquefaction occurs when the pore water pressure significantly
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increases within a short period due to external loading and results in a sudden drop of soil
effective stress. Quicksand condition happens when the granular deposit is subjected to an
upward pore fluid flow. Both conditions could trigger ground failure. Additionally, the
pore fluid in a saturated granular will potentially fluctuate or flow under external loading
and convey the soil particles into movement [81]. El Shamy and Zeghal [82] pointed out
a considerable hydraulic gradient may transit the state of soil from solid to suspension,
which will lower the soil strength.

3.2. History of Coupling Methods

Continuum theories of porous media, which include the interactions between pore
fluids and particles, are commonly used. However, the interrelation at the microscopic level
remains unclear [81]. The traditional analysis frequently uses macroscopic constitutive
models and parameters, including soil weight and shear strength to address the microscopic
interactions without direct interpretations of microscopic behaviour [83]. It should be
noted this approach is limited to quasi-static cases in which the presence of the fluid is
stabilised. Other analytical investigations containing solving governing equations have
faced difficulties due to nonlinearities and complex boundary conditions. As for the cases
that involve high hydrodynamic forces, a more advanced scheme that considers the skeleton
deformation is needed [83]. It is widely accepted that the interparticle interactions along
with solid-fluid interactions dominate the macroscopic mechanism of the compound [84].
From a micro-scale point of view, the energy is mainly dissipated through interparticle and
particle-wall friction and collision in the ‘dry case’ (without the presence of fluid), on the
other hand, there is a significant kinetic energy or momentum transfer between particles
and fluid [85,86]. Moreover, for a partially drained saturated soil, pore water pressure
increases as granular porosity reduce while it could simultaneously decrease due to pore
drainage [87]. A numerical analysis scheme that allows access to microparameters and
solid-fluid interaction is much needed for analysing solid-fluid mixture. The following
sections will discuss some common approaches and formulations used in the solid-fluid
mixture model.

It is also worth noting that in some approaches, the fluid is modeled either by
smoothed-particle hydrodynamics (SPH) or Lattice Boltzmann method (LBM). SPH [88,89]
is a computational technique in fluid dynamics, astrophysics, geophysics, and engineering
simulations. SPH represents a continuous medium as discrete particle. SPH is a versatile
numerical method that handles large deformations, fluid-solid interactions, and free sur-
face flows. It is valuable for scientific and engineering applications because it can handle
irregular geometries and adapt to resolution requirements. SPH uses particles to represent
material properties like density, pressure, and velocity. Adaptive resolution improves accu-
racy and detail. Boundary modelling in SPH is challenging. Ghost or boundary particles
can be used to handle boundary conditions. SPH uses smoothing kernels to interpolate
particle properties from neighbouring particles. The choice of kernel affects accuracy and
stability [88,89]. The coupling in DEM-SPH primarily relies on two methods, namely:

- Direct Numerical Simulation (DNS): In this approach, the hydrodynamic forces acting
on solid particles are determined by directly solving the Navier-Stokes (N-S) equations.
One notable drawback of DNS is its demand for an exceedingly fine particle resolution,
making it less practical for large-scale particle systems. Typically, empirical models
are used to calculate hydrodynamic forces in this method [90,91].

- Local Averaging Approach [92]: This method involves defining a smoothing operator
like that used in Smoothed Particle Hydrodynamics (SPH). This operator is employed
to calculate smoothing variables and local porosity fields. It does not define the
interaction between DEM particles and SPH particles but relies on local averaging of
liquid-to-solid particles and widely used.

On the other hand, LBM is a particle-based computational technique for simulating
fluid dynamics. It simplifies Boltzmann’s kinetic theory of gases by discretising velocity
space into a lattice structure and modelling particle interactions using collision rules. This
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makes it an efficient and accurate alternative to traditional CFD methods. LBM simulates
both single-phase and multiphase flows, including interfaces and phase transitions. Various
methods have been proposed to model the fluid-solid interactions using DEM-LBM. They
included the drag force model [93], momentum exchange model [94], or Stokes drag force
model [95] and immerse boundary method (IBM). The IBM is commonly used [96,97].
The momentum exchange of fluid density distribution function near the boundary is
applied to calculate the coupling force and torque. It should be noted that this particle-
based method is at the mesoscale. So it may not be representative of element soil test in
geotechnical engineering.

3.2.1. Eulerian and Lagrangian Approach in Fluid Dynamics

The Eulerian-Eulerian and Eulerian-Lagrangian approaches are the two most com-
monly used methods for the solid-fluid mixture model. The representative of the solid-fluid
modelling is particularly dependent on the estimation of interaction forces and the momen-
tum transfer between solid and fluid phases. These two phases are considered as either
continuous or discrete in the coupling scheme.

The purely Eulerian approach (Eulerian-Eulerian) considers both solid and fluid as
continuous flow phases. To average the flow variables of the solid phase and fluid phase,
the volume averaging method is commonly used. van Deemter and van der Laan [98]
proposed the following relationship for fluid momentum using flow averaging:

(1− αd)ρ f
Dui
Dt

= (1− αd)ρ f gi −
∂

∂xj

(
pδij − τij

)
+ fi (1)

where αd is the volume fraction of the solid particles, ρ f is the fluid density, ui is the velocity
of the fluid, gi is the gravitational acceleration, p f is the pressure acting on the fluid, δij
is the Kronecker delta, τij is the shear stress tensor, and fi is the force per unit volume
acting on the fluid from the solid phase. Ibrahim and Meguid [83] pointed out the flow
volume size could significantly affect the fluid velocity, ui, and the force acting on the fluid,
fi, which could lead to unstable and unreliable results. Furthermore, they emphasised that
for the cases involving turbulent flow, a single fluid velocity is not representative of the
overall fluid flow.

As previously discussed, the micromechanical behaviour governs the overall soil be-
haviour. Tsuji, et al. [99] pointed out that despite the Eulerian-Eulerian approach requiring
less computational time, the solid phase is oversimplified and has lost its discrete nature.
On the other hand, the Eulerian-Lagrangian approach treats the solid phase as discrete
particles and the fluid phase as a continuous flow. This feature increases the accuracy of the
modelling due to the consideration of interparticle and particle-wall collisions [100]. The
governing equations for the Eulerian-Lagrangian approach are different from the purely
Eulerian approach as the solid particles are represented by discrete grains. The equation of
continuity proposed by Anderson and Jackson [92] is given below:

∂
(

npρ f

)
∂t

+∇·
(

npρ f U f
)
= 0 (2)

where np is the porosity of the granular packing, ρ f is the fluid density, t is the time, and U f

is the average velocity of a fluid cell. Navier-Stokes momentum equation is solved along
with the continuity equation and is shown below [101]:

∂
(

npρ f U f
)

∂t
+∇·

(
npρ f U f U f

)
= −np∇p + np∇K + npρ f gi + fp (3)
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where K is the stress tensor of the fluid field, gi is the gravitational acceleration, and fp

is the volumetric fluid-particle interaction force. For laminar flow [101], the K could be
calculated as:

K = µ f (∇U f (∇U f )
T
) (4)

where µ f is the fluid dynamic viscosity.

3.2.2. Coupling Scheme

One of the following numerical schemes can be applied in performing coupling
depending on the different conditions of the solid-fluid mixture [52]. Figure 3 also demon-
strated these coupling methods.
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Figure 3. Coupling methods in CFD-DEM: (a) One-way, (b) Two-way, (c) Three-way and (d) Four-
way. Note: Interaction 1 is fluid affecting particle’s motion. Interaction 2 is particle motion affecting
fluid’s motion. Interaction 3 is particle disturbance of the fluid affects another particle’s motion.
Interaction 4 is interaction between particles.

One-way coupling: For a solid-fluid mixture with an insignificant portion of solid
particles, the solid phase could be easily governed by the fluid phase while the inverse
influence is negligible. This is referred to as one-way coupling in literature. In practice,
the volume fraction of the solid particles in each fluid computational cell is first calculated
based on their locations. The fluid flow is then resolved using the averaged Navier-Stokes
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equations and the continuity equations to compute the fluid forces acting on the solid
particles. Afterward, the motion of the solid particle is computed under the Newtonian
laws of motion. Lastly, the positions of the particles are updated, and a new iteration of
the volume fraction is initiated. This loop continues until the predefined simulation time
is achieved.

Two-way coupling: For a solid-fluid mixture with a denser solid concentration, the
solid particles could alter flow behaviour and must be included in the coupling system.
This is known as the two-way coupling. To execute the effect of particle motion on the fluid
phase, the fluid flow is resolved once more before moving to the next iteration.

Three-way coupling: This method is similar to two-way coupling, but it considers the
particle disturbance of the fluid locally affecting another particle’s movement.

Four-way coupling: For a solid-fluid mixture that contains a considerably high concen-
tration of solid particles, the particle-particle interactions are required to be computed in
addition to the correlative effects between solid and fluid phases. This is named four-way
coupling and is one of the most common approaches to solving geotechnical problems
given the typical high proportion of solid particles.

3.2.3. Particle/Mesh Size Ratio and Fluid Properties

The ‘resolved method’ and ‘unresolved method’ are the two standard techniques to
solve solid-fluid coupling problems when using the Eulerian-Lagrangian approach. The
resolved method assumes the particle size is significantly larger than the fluid mesh size,
while the unresolved method represents the system containing a large number of particles
inside each fluid element in the FEM mesh [102]. A graphic illustration is shown in Figure 4.
In the resolved models, the solid-fluid interactions are evaluated by integrating the shear
stresses over the surface of the solid [103]. Ibrahim and Meguid [83] pointed out that the
resolved method could improve the model accuracy and determine the precise interaction
force since the volume averaging method would not be utilized. However, the excessive
computational demand would weaken its applicability in a denser particulate system.
On the other hand, the fluid phase forces are averaged over the particles in unresolved
cases. In addition, a critical ratio is required to reduce data fluctuation from determining
solid volume fraction, as a single particle could be located across more than one fluid cell
instead of fully immersed in one [104]. The volume fraction estimation is critical in the
solid-fluid coupling as it determines the force impact from each phase. Kloss, et al. [105]
recommended the size ratio of fluid mesh over particle should be over 10. A later study
conducted by Zhao, Houlsby and Utili [53] suggested that the ratio could be reduced
to 5 while obtaining a realistic particle settling velocity. For geotechnical problems, the
unresolved method is commonly used as they often contain a high number of grains i.e.,
18,000 particles [25,106–108].
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El Shamy and Zeghal [82] addressed that the pore fluid in the granular soils could
be viewed as incompressible because the volumetric change of fluid is extremely small in
comparison to soil. Furthermore, the fluid viscous shear stress could be ignored since the
energy dissipation mainly occurs at fluid-particle interfaces [87].

3.2.4. Interaction Forces

The interaction forces between the solid phase and fluid phase could be categorised
into two groups, namely hydrostatic force, and hydrodynamic force. The hydrostatic force
includes the pressure gradient force, which is caused by the difference in pressure across
a solid particle and implemented over the volume of the particle. According to Zhao,
et al. [109], it can be calculated using the following equation

F∇p = −Vp∇p f (5)

where Vp is the volume of the particle, and p f is the pressure of the fluid flow. The buoyancy
force is one of the primary forces of pressure gradient force, it can be calculated using [110]:

Fb =
1
6

πρ f d3
p gi (6)

where dp is the diameter of the particle. It should be noted for an engineering-scale study,
such as dam erosion or landslide, the gravitational force exists hence the consideration of
buoyancy force, however, for simulations of laboratory studies such as triaxial tests, a zero-
gravity environment is often implemented in the numerical study. As for the hydrodynamic
force, the drag force is generally considered. This force is a result of viscous shearing and
it is caused by the velocity differences between solid particles and the fluid field [83].
Theoretically, the drag force should be applied to the surface of the particle, however, it
is a general practice that this force is assumed to act at the centre of the particle. Zhao,
Houlsby and Utili [53] stated the orientation of the drag force is the same as the flow motion
direction. The drag force could be expressed as [111]:

Fd = β
(

u f − up

)
(7)

where u f and up are the velocities of fluid and particle, respectively, and β is the solid-fluid
moment transfer coefficient. This parameter is derived from the experimental correlations
by Ergun [56] and Wen and Yu [57], and could be expressed as:

β =
3
4

Cdnp
(
1− np

)
ρ f

∣∣∣u f − up

∣∣∣
dp

(8)

Multiple expressions of drag force coefficient (Cd) have been proposed in the literature,
and they are summarised in Table 1.

Table 1. Summary of drag force coefficient in the literature.

Drag Force Coefficient ( Cd) Past Studies
24

Rep
Stokes, Larmor and Rayleigh [54][

0.63 + 4.8√
Rep

]2
DallaValle [56]

200(1−np)
np Rep

+ 7
3np

Ergun [56]{
24

Rep

(
1 + 0.15Rep

0.687
)

np
−2.65 f or Rep < 1000

0.44np
−2.65 f or Rep ≥ 1000

Wen and Yu [57]

24
Rep

(
1 + 0.15Rep

0.681
)
+ 0.407

1+ 8710
Rep

Brown and Lawler [58]



Geotechnics 2023, 3 1171

Rep is the Reynolds number which is used to predict the flow patterns in the fluid. It
could be expressed as:

Rep =
ρ f dpnp

∣∣∣u f − up

∣∣∣
µ f

(9)

Kafui, et al. [112] stated the formulations proposed by Ergun [56] and Wen and
Yu [57] are commonly followed depending on the solid concentration of the fluidised
bed, and a void fraction of 0.8 is the border to determine whether the regime should be
categorised as dense or dilute. The authors examined the superficial slip velocities of a
sphere particle using the above two formulations and stated the step change inherent was
not properly computed. They then claimed the formulation provided by Di Felice [113]
could offer continuous results and therefore is suitable when applied to numerical analysis.
Many recent CFD-DEM coupling studies have adopted this correlation in the geotechnical
field [53,81,114], and the formulation is expressed:

Fd,di =
1
2

Cdρ f
πdp

2

4

∣∣∣u f − up

∣∣∣(u f − up

)
np
−χ+1 (10)

The porosity correction function np
−χ+1 considers the presence of other particles. The

expression of the term χ is:

χ = 3.7− 0.65 exp

[
−
(
1.5− log10 Rep

)2

2

]
(11)

Other hydrodynamic forces such as virtual mass force, Basset history force, and lift
force are considerably neglectable compared to the drag force when the flow is relatively
steady [115]. The illustration for hydrostatic (Buoyancy) and hydrodynamic (drag) forces
are shown in Figure 5.
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3.2.5. Computing Interaction Force

The assigning of solid-fluid interaction forces is particularly dependent on the esti-
mation of particle volume fraction and the location of the particles within a fluid cell. For
the unresolved method which is applied to the majority of the geotechnical studies, the
fluid cell is considerably larger than the solid particles and, commonly, the particles are
located at the mesh boundary. To address this effect, the Centre Void Fraction method and
the Divided Void Fraction method are the two most widely used methods [81]. For the
Centre Void Fraction method, when the centre of one particle is in a fluid cell region, the
whole volume of that particle will be considered within that specific cell. Although this
method is straightforward and requires less computational effort, such an assumption will
either overestimate or underestimate the void fraction within one cell and the variation
could be severe depending on the cases. As for the Divided Void Fraction method, the
precise volume of one particle immersed in the fluid cell would be calculated. Zhao and
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Shan [81] stated this method could provide more accurate results compared to the Centre
Void Fraction method. However, the simulation efficiency would be dramatically reduced
because of the extra calculation on immersed volume within each cell especially if it is a
solid-fluid mixture with high solid concentration.

4. Coupling Technique for CFD and DEM

Anderson [116] stated the Computational Fluid Dynamic (CFD) could provide insights
into the behaviour of the fluid flow and easily solve the flow problem if it is combined
with appropriate governing flow equations. In addition, the author emphasised CFD is a
computer program that is transportable and can be easily accessed remotely compared to
the physical models. The CFD approach discretises the fluid domain into individual meshes
and a locally average method is applied to determine the fluid properties including density,
velocity, and pressure within a single cell [81]. It should be noted the fluid is assumed to
be identical across all places within each mesh [53]. Zhu, Zhou, Yang and Yu [115] stated
the CFD approach combined with DEM requires less computational resource and effort
numerical-wise compared to its counterparts (e.g., Lattice-Boltzmann (LB) coupled DEM,
Direct Numerical Simulation (DNS) coupled DEM). The CFD-DEM approach could fulfil
the requirements of this project, which is to analyse the solid-fluid mixture following the
Eulerian-Lagrangian approach, applying four-way coupling, and using the unresolved
method. Furthermore, the microscopic parameters of both solid and fluid phases could be
examined. The coupling CFD-DEM was first proposed by Tsuji, Kawaguchi and Tanaka [99]
to solve a two-dimensional gas-fluidized bed problem. The interactions between gas and
particle were considered and both the fluid phase and solid phase were analysed. Hager,
Kloss, Pirker and Goniva [102] explained when applying CFD-DEM, the fluid movement
is evaluated by the CFD solver and the motion of the immersed particle is determined
by the DEM solver, respectively. Zhao and Shan [81] added that particle movement
follows Newton’s equation, and the fluid flow complies with the Navier-Stokes equation.
Furthermore, the interactions between the fluid phase and solid phase are tracked.

The CFD-DEM approach has been widely applied in the geotechnical field. Zeghal
and El Shamy [87] investigated the liquefaction response of loose and cemented granular
soils induced by dynamic base excitation in a saturated condition. The authors stated the
numerical results were representative and showed qualitative mechanisms that are in line
with the experimental data. The microscopic coordination numbers were examined and
it was concluded the liquefaction started from the surface and then spread to the deeper
ground. Zhao and Shan [81] used coupled CFD-DEM to investigate the formation of the
sand heap in water that poured from a hopper and the effect of rolling resistance and
polydispersity. The microscopic behaviour including contact force and fabric anisotropy
were analysed in their study. It was found that the presence of water has led to differ-
ent behaviour compared to the cases without water, that the pressure dip was reduced,
the contact force chains were more vertically aligned, and the critical contact force was
lower in magnitude. A similar study was conducted by Zhao, Houlsby and Utili [53]
to investigate the batch sedimentation of granular particles in water. It was found the
coarse grains tend to settle first and form the bottom part of the deposit. Zhang, Jiang and
Thornton [108] considered the pore fluid as compressible and conducted undrained triaxial
tests on granular soil using both the constant volume method and CFD-DEM coupling. In
their study, the pore water pressure was calculated as the difference between the current
effective confining stress and the initial effective confining stress at the start of triaxial
shearing. The results from the same sample were compared between two approaches
and it was found the novel CFD-DEM coupling method showed comparable qualitative
behaviours. The authors also stated that under the assumption of constant fluid compress-
ibility, the undrained behaviour of granular soil remained the same despite various initial
pore pressures. Moreover, a unique relationship between the microscopic coordination
numbers and excess pore pressure was identified. The undrained triaxial tests were also
performed by Foroutan and Mirghasemi [25] on granular soil using the CFDEM program,
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which is a CFD-DEM solver introduced by Goniva, Kloss, Deen, Kuipers and Pirker [104].
Based on the CFDEM framework, they developed a new solver that incorporates fluid
compressibility and mesh movement and then explored the effect of the intermediate stress
ratio, b = (σ2 − σ3)/(σ1 − σ3) at both macroscopic (e.g., excess pore water pressure) and
microscopic (e.g., fabric anisotropy, contact force anisotropy tensor) levels. The numerical
results were compared to the experimental data. With the support of numerical modelling,
three-dimensional histograms were used to illustrate the contact forces in the granular
assembly at the initial state, peak state, and residual state. In addition, the authors stated
as b increases from 0 to 1, the deviatoric coefficient of fabric anisotropy increases yet the
same parameter for contact force anisotropy shows opposite behaviour. To conclude, it
could be agreed that the CFD-DEM approach is a powerful tool to investigate solid-fluid
mixtures and researchers are able to access valuable microscopic parameters. However,
all the reviewed studies above do not analyse the liquefaction potential of granular soil
under the CSSM framework. Additionally, limited literature was found on applying CFD-
DEM in CPT. This remains the research gap in the current study hence the topic of this
research project.

Ibrahim and Meguid [83] conducted an extensive literature review on the different
approaches to reproducing solid-fluid mixtures in the geotechnical engineering field. They
pointed out that the CFD-DEM approach is outstanding in providing microscopic informa-
tion on solids, fluids, and their interactions; however, this merit requires the simulation
of numerous individual elements, and the number could sometimes go up to billions in
an engineering-scale application. It is hence unachievable or infeasible to comply with
the excess computational demands of common researchers or engineers, and it remains
one of the disadvantages of applying CFD-DEM in geotechnical problems. Nevertheless,
this limitation primarily comes from the DEM part, and it has been frequently identified
in the previous DEM studies. The widely utilised solutions are adopting particle size
upscaling and increasing gravitational acceleration. It is worth noting unlike the purely
DEM models, the CFD-DEM modelling contains the solid-fluid interaction forces which
could be significantly affected by the particle dimensions. Therefore, sensitivity analysis
is required when applying the size-upscale method. Moreover, Zeghal and El Shamy [87]
specified a relationship between the pore fluid viscosity (µ f ) and particle diameter (dp)
under an amplified gravitational field as shown in the following equation:

µ
(p)
f

µ
(m)
f

=
dp

(p)

dp
(m)

= N (12)

where N is the level of the applied gravitational field, superscript p denotes the prototype,
and superscript m denotes the model. Hence, the viscosity is also upscaled when the
gravitational field is increased, and sensitivity checks should be performed to ensure
numerical stability.

Hirche, Birkholz and Hinrichsen [100] applied a hybrid Eulerian-Eulerian-Lagrangian
model for gas-solid mixtures where the gas phase was treated as the usual continuous
media, while the solid phase was simulated by both continuous and discrete media. The
authors emphasized the difficulties in assigning the fluid-particle interaction forces because
the discrete particles are not always perfectly located inside the fluid cell. Furthermore,
Hager, Kloss, Pirker and Goniva [102] stated the positions of the solids need to be correctly
determined before calculating the fluid field. Details of the computing and the two com-
monly used methods in unresolved cases, the Centre Void Fraction method and the Divided
Void Fraction method. It is important to note both methods sacrifice either accuracy or
efficiency, therefore, a more advanced approach is required. Hager, Kloss, Pirker and
Goniva [102] adopted a stair step method that falls under the resolved method category,
where the particle is represented by individual cells as shown in Figure 2. This method
provides a quicker distinction between fluid cells and solid cells and could count the parti-
cle volume more precisely. The mesh dimension needs to be at least eight times smaller
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than the particle diameter to obtain accurate outcomes, which could be easily achieved
by dividing the domain into smaller meshes. Another issue was raised that some cells
between the two contacted particles were considered solid cells where it was a fluid region.
This error connected two solid particles and led to numerical instabilities. The authors
explained, unlike the original smooth circular particle, the new mesh-represented solid has
sharp edges and hence causes the misrepresentative of the cells at the solid-fluid interface.
Therefore, this method requires further improvement to accurately represent the solids and
fluids. Further analysis could also be performed to examine the possibility of combining
this stair step method and the general unresolved method, in which the solid particles are
refined into smaller meshes, and the fluid meshes are still considerably larger than the solid
particles. As for the largely increased cell number from refinement, Hager, Kloss, Pirker
and Goniva [102] applied dynamic meshing to eliminate unnecessary refinement and an
example is displayed in Figure 6. The dynamic meshing approach was also implemented
by Mondal, Wu and Sharma [84] and they specified the Courant-Friedrichs-Lewy (CFL)
condition, which restrains the ratio of fluid velocity and mesh length over timestep, needs
to be met to maintain numerical stability. This means the refinement should be over a
critical value, however, the authors stated for solid-fluid mixtures with a high particle
concentration, this condition is often violated because a large number of small meshes are
regularly generated at the interface between two particles. Thus, studies are required when
applying the dynamic meshing approach to the geotechnical applications which usually
contain dense particle concentrations.
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It is important to highlight that one of the most prominent computational fluid dy-
namics (CFD) tools at present is OpenFOAM. This CFD software is noteworthy for being
open-source and has been primarily developed by OpenCFD Ltd, Bracknell, UK. Within
this software, researchers have the capability to utilize a range of pre-defined solvers to sim-
ulate diverse scenarios. In specific instances, such as when conducting elemental tests on
soil, certain solvers tailored to those scenarios might not be readily available, which need to
be developed. Additionally, there are some available open-source discrete element method
(DEM) packages that can be coupled with CFD, such as PFC3D from Itasca, LIGGGHTS,
and YADE. As mentioned earlier, these software packages can be integrated using one-way,
two-way, three-way, or four-way coupling methods. The four-way coupling method offers
a more comprehensive representation, yet it comes with higher computational demands.
Consequently, researchers should wisely select the coupling method that aligns most effec-
tively with their research purposes. The flow chart for the coupling scheme can be found
in Figure 7. However, for specific problems, the contact model and controlling feedback
within DEM and CFD will be different. Some potential applications of coupling CFD and
DEM in geotechnical problems in which fluids play an important role are landslides, in-situ
tests (CPT or SPT), laboratory testing (permeability, triaxial, etc.), etc.
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5. Conclusions

The CFD-DEM approach has been adopted in many geotechnical problems to explore
interactions between physical fluids and solid materials. Early studies using CFD-DEM fo-
cused on analyzing stress-strain relationships and pore water pressure in saturated granular
materials. However, these studies merely compared numerical models to experimental data
without delving into the influence of the fluid phase. Specifically, they failed to compare
CFD-DEM determined pore water pressure to the theoretically derived pore water pressure
from purely DEM models employing the constant volume method.

More recent research has addressed this gap by comparing pore water pressure ob-
tained through the constant volume method and CFD-DEM in undrained triaxial tests.
The determination of fluid pressures in these studies was based on the current effective
confining stress and the initial effective confining stress. It is important to note that the con-
stant volume method assumes the pore water pressure can be calculated by the difference
between stress paths under drained and undrained conditions, with total stress considered
equivalent to effective stress in drained conditions. Nevertheless, a missing link between
effective stress and axial strain in their research calls for further investigation. Therefore,
more comprehensive studies are still needed to explore the impact of the fluid phase and
assess soil response when conducting triaxial tests using CFD-DEM modelling.

One of the main problems when coupling CFD with DEM is to define the appropriate
drag force formula. As mentioned, there have been various calculations for drag force.
However, there is limited research on evaluating the efficiency of each calculation method
for a specific problem, especially for element tests in geotechnical engineering. Therefore,
further study on this drag force calculation is required in the future.
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