Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems
Abstract
:1. Introduction
2. Traditional Discrete Element Method (DEM)
3. Computational Fluid Dynamics (CFD) in DEM
3.1. Background of Fluid in Soil
3.2. History of Coupling Methods
- -
- Direct Numerical Simulation (DNS): In this approach, the hydrodynamic forces acting on solid particles are determined by directly solving the Navier-Stokes (N-S) equations. One notable drawback of DNS is its demand for an exceedingly fine particle resolution, making it less practical for large-scale particle systems. Typically, empirical models are used to calculate hydrodynamic forces in this method [90,91].
- -
- Local Averaging Approach [92]: This method involves defining a smoothing operator like that used in Smoothed Particle Hydrodynamics (SPH). This operator is employed to calculate smoothing variables and local porosity fields. It does not define the interaction between DEM particles and SPH particles but relies on local averaging of liquid-to-solid particles and widely used.
3.2.1. Eulerian and Lagrangian Approach in Fluid Dynamics
3.2.2. Coupling Scheme
3.2.3. Particle/Mesh Size Ratio and Fluid Properties
3.2.4. Interaction Forces
3.2.5. Computing Interaction Force
4. Coupling Technique for CFD and DEM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouckovalas, G.D.; Andrianopoulos, K.I.; Papadimitriou, A.G. A critical state interpretation for the cyclic liquefaction resistance of silty sands. Soil Dyn. Earthq. Eng. 2003, 23, 115–125. [Google Scholar] [CrossRef]
- Huang, A.-B.; Chuang, S.-Y. Correlating cyclic strength with fines contents through state parameters. Soils Found. 2011, 51, 991–1001. [Google Scholar] [CrossRef]
- Baki, M.A.L.; Rahman, M.M.; Lo, S.R. Predicting onset of cyclic instability of loose sand with fines using instability curves. Soil Dyn. Earthq. Eng. 2014, 61–62, 140–151. [Google Scholar] [CrossRef]
- Jefferies, M.; Been, K. Soil Liquefaction: A Critical State Approach; Taylor & Francis: London, UK, 2006. [Google Scholar]
- Rahman, M.M.; Sitharam, T.G. Cyclic liquefaction screening of sand with non-plastic fines: Critical state approach. Geosci. Front. 2018, 11, 429–438. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M.G.; Hachey, J. The critical state of sands. Géotechnique 1991, 41, 365–381. [Google Scholar] [CrossRef]
- Oda, M. Initial fabrics and their relations to mechanical properties of granular material. Soils Found. 1972, 12, 17–36. [Google Scholar] [CrossRef]
- Arthur, J.R.F.; Dunstan, T. Radiography measurements of particle packing. Nature 1969, 223, 464–468. [Google Scholar] [CrossRef]
- Arthur, J.R.F.; Menzies, B.K. Inherent anisotropy in a sand. Géotechnique 1972, 22, 115–128. [Google Scholar] [CrossRef]
- Hu, X.; He, C.; Lai, X.; Walton, G.; Fu, W.; Fang, Y. A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunneling. Tunn. Undergr. Space Technol. 2020, 101, 103410. [Google Scholar] [CrossRef]
- Cao, Y.; Nguyen, H.B.K.; Rahman, M.M.; Karim, M.R.; Cheng, W.-C. The Effects of Fines on the Response of Granular Soil during Earth Pressure Balance (EPB) Shield Tunneling. In Proceedings of the Geo-Congress 2023, Los Angeles, CA, USA, 26–29 March 2023; pp. 249–257. [Google Scholar]
- Aikins, D.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K. Effect of Interparticle Friction and Particle Elasticity on Behavior of Granular Materials. In Proceedings of the Geo-Congress 2023, Los Angeles, CA, USA, 26–29 March 2023; pp. 258–268. [Google Scholar]
- Feng, Y. Thirty years of developments in contact modelling of non-spherical particles in DEM: A selective review. Acta Mech. Sin. 2023, 39, 1–41. [Google Scholar] [CrossRef]
- Zhao, T.; Ye, J. 3D DEM Simulation on the Reliquefaction Behavior of Sand Considering the Effect of Reconsolidation Degree. J. Earthq. Eng. 2022, 27, 2919–2941. [Google Scholar] [CrossRef]
- Nie, J.-Y.; Zhao, J.; Cui, Y.-F.; Li, D.-Q. Correlation between grain shape and critical state characteristics of uniformly graded sands: A 3D DEM study. Acta Geotech. 2022, 17, 2783–2798. [Google Scholar] [CrossRef]
- Qu, T.; Wang, S.; Hu, Q. Coupled discrete element-finite difference method for analysing effects of cohesionless soil conditioning on tunneling behaviour of EPB shield. KSCE J. Civ. Eng. 2019, 23, 4538–4552. [Google Scholar] [CrossRef]
- Gong, G. DEM Simulations of Drained and Undrained Behaviour; University of Birmingham: Birmingham, UK, 2008. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Fourie, A.B.; Luo, X.D.; Tang, X.; Yang, J. Discussion on How particle shape affects the critical state, triggering of instability and dilatancy of granular materials results from a DEM study. Géotechnique 2023. [Google Scholar] [CrossRef]
- Guo, N.; Yang, F.; Yang, Z.X.; Zhao, S. Deformation characteristics of inherently anisotropic granular media under repeated traffic loading: A DEM study. Acta Geotech. 2022, 17, 3377–3395. [Google Scholar] [CrossRef]
- Kuhn, M.R.; Daouadji, A. Simulation of undrained quasi-saturated soil with pore pressure measurements using a discrete element (DEM) algorithm. Soils Found. 2020, 60, 1097–1111. [Google Scholar] [CrossRef]
- Kuhn, M.R. The critical state of granular media: Convergence, stationarity and disorder. Géotechnique 2016, 66, 902–909. [Google Scholar] [CrossRef]
- Khosravi, A.; Martinez, A.; DeJong, J.T. Discrete element model (DEM) simulations of cone penetration test (CPT) measurements and soil classification. Can. Geotech. J. 2020, 57, 1369–1387. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, J.; Huang, X. DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework. Comput. Geotech. 2020, 128, 103787. [Google Scholar] [CrossRef]
- Foroutan, T.; Mirghasemi, A.A. CFD-DEM model to assess stress-induced anisotropy in undrained granular material. Comput. Geotech. 2020, 119, 103318. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Cameron, D. Undrained Behavior of Sand by DEM Study. In Geo-Congress 2015; Iskander, M., Suleiman, M.T., Anderson, J.B., Laefer, D.F., Eds.; Geotechnical Special Publication; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 182–191. [Google Scholar]
- Ng, T.-T.; Zhou, W.; Ma, G.; Chang, X.-L. Damping and Particle Mass in DEM Simulations under Gravity. J. Eng. Mech. 2015, 141, 04014167. [Google Scholar] [CrossRef]
- Liu, G.; Rong, G.; Peng, J.; Zhou, C. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model. Eng. Geol. 2015, 193, 256–266. [Google Scholar] [CrossRef]
- Huang, X.; Hanley, K.J.; O’Sullivan, C.; Kwok, C.Y. Exploring the influence of interparticle friction on critical state behaviour using DEM. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 1276–1297. [Google Scholar] [CrossRef]
- Kwok, C.Y.; Bolton, M.D. DEM simulations of soil creep due to particle crushing. Géotechnique 2013, 63, 1365–1376. [Google Scholar] [CrossRef]
- Bolton, M.D.; Nakata, Y.; Cheng, Y.P. Micro- and macro-mechanical behaviour of DEM crushable materials. Géotechnique 2008, 58, 471–480. [Google Scholar] [CrossRef]
- Zhao, S.; Evans, T.M.; Zhou, X. Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 2018, 150, 268–281. [Google Scholar] [CrossRef]
- Zhang, L.; Evans, T.M. Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests. Granul. Matter 2018, 20, 60. [Google Scholar] [CrossRef]
- Zhao, X.; Evans, T.M. Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granul. Matter 2011, 13, 751–764. [Google Scholar] [CrossRef]
- Cao, Y.; Nguyen, H.B.K.; Rahman, M.M.; Cheng, W.-C. Soil Behavior in the Earth Pressure Balance (EPB) Shield Tunnelling—A DEM Study. In Geo-Congress 2022; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 690–698. [Google Scholar]
- Wang, R.; Cao, W.; Xue, L.; Zhang, J.-M. An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotech. 2021, 16, 43–65. [Google Scholar] [CrossRef]
- Huang, X.; Kwok, C.-y.; Hanley, K.J.; Zhang, Z. DEM analysis of the onset of flow deformation of sands: Linking monotonic and cyclic undrained behaviours. Acta Geotech. 2018, 13, 1061–1074. [Google Scholar] [CrossRef]
- Kuhn, M.R.; Suzuki, K.; Daouadji, A. Linear-frictional contact model for 3D discrete element simulations of granular systems. Int. J. Numer. Methods Eng. 2020, 121, 560–569. [Google Scholar] [CrossRef]
- Kuhn, M. Smooth Convex Three-Dimensional Particle for the Discrete-Element Method. J. Eng. Mech. 2003, 129, 539–547. [Google Scholar] [CrossRef]
- Kuhn, M.R. A flexible boundary for three-dimensional DEM particle assemblies. Eng. Comput. 1995, 12, 175–183. [Google Scholar] [CrossRef]
- Dinesh, S.; Thallak, S.; Vinod, J.S. Dynamic properties and liquefaction behavior of granular materials using discrete element method. Curr. Sci. 2004, 87, 1379–1387. [Google Scholar]
- Sitharam, T.; Vinod, J.; Ravishankar, B. Post-liquefaction undrained monotonic behaviour of sands: Experiments and DEM simulations. Géotechnique 2009, 59, 739–749. [Google Scholar] [CrossRef]
- Kuhn, M.; Renken, H.; Mixsell, A.; Kramer, S. Investigation of Cyclic Liquefaction with Discrete Element Simulations. J. Geotech. Geoenviron. Eng. 2014, 140, 04014075. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Y.; Gu, X. Discrete element modeling of soil-structure interface behavior under cyclic loading. Comput. Geotech. 2019, 107, 14–24. [Google Scholar] [CrossRef]
- Sitharam, T.; Vinod, J.S.; Ravishankar, B. Evaluation of undrained response from drained triaxial shear tests: DEM simulations and experiments. Geotechnique 2008, 58, 605–608. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Cameron, D.A.; Fourie, A.B. The effect of consolidation path on undrained behaviour of sand—A DEM approach. In Computer Methods and Recent Advances in Geomechanics; CRC Press: Boca Raton, FL, USA, 2015; pp. 175–180. [Google Scholar]
- Nguyen, H.B.K.; Rahman, M.M. The role of micro-mechanics on the consolidation history of granular materials. Aust. Geomech. 2017, 52, 27–36. [Google Scholar]
- Shamy, U.E.; Zeghal, M. Coupled Continuum-Discrete Model for Saturated Granular Soils. J. Eng. Mech. 2005, 131, 413–426. [Google Scholar] [CrossRef]
- Shamy, U.E.; Zeghal, M.; Dobry, R.; Thevanayagam, S.; Elgamal, A.; Abdoun, T.; Medina, C.; Bethapudi, R.; Bennett, V. Micromechanical Aspects of Liquefaction-Induced Lateral Spreading. Int. J. Geomech. 2010, 10, 190–201. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Hong, Y.; Zhao, J.; Yin, Z.-Y. A coupled CFD-DEM investigation of suffusion of gap graded soil: Coupling effect of confining pressure and fines content. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 2473–2500. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Y.T.; Owen, D.R.J.; Qu, T.M. A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM. Comput. Methods Appl. Mech. Eng. 2019, 346, 109–125. [Google Scholar] [CrossRef]
- Norouzi, H.; Zarghami, R.; Sotudeh-Gharebagh, R.; Mostoufi, N. Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zhao, T.; Houlsby, G.T.; Utili, S. Investigation of granular batch sedimentation via DEM–CFD coupling. Granul. Matter 2014, 16, 921–932. [Google Scholar] [CrossRef]
- Stokes, G.G.; Larmor, J.; Rayleigh, J.W.S. Mathematical and Physical Papers; University Press: Cambridge, UK, 1880. [Google Scholar]
- DallaValle, J.M. Micromeritics: The Technology of Fine Particles; Pitman Publishing Limited: New York, NY, USA, 1948. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Wen, C.Y.; Yu, Y.H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100–111. [Google Scholar]
- Brown, P.P.; Lawler, D.F. Sphere drag and settling velocity revisited. J. Environ. Eng. 2003, 129, 222–231. [Google Scholar] [CrossRef]
- Sazzad, M.M.; Suzuki, K. Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. J. Geotech. Geoenviron. Eng. 2011, 137, 545–549. [Google Scholar] [CrossRef]
- Kwok, C.; Bolton, M. DEM simulations of thermally activated creep in soils. Geotechnique 2010, 60, 425–433. [Google Scholar] [CrossRef]
- Utili, S.; Nova, R. DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1997–2031. [Google Scholar] [CrossRef]
- Ferellec, J.-F.; McDowell, G. A simple method to create complex particle shapes for DEM. Geomech. Geoengin. Int. J. 2008, 3, 211–216. [Google Scholar] [CrossRef]
- Di Renzo, A.; Di Maio, F.P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 2004, 59, 525–541. [Google Scholar] [CrossRef]
- Itasca Particle Flow Code, 5.0; Itasca Consulting Group Incorporated: Minneapolis, MN, USA, 2014.
- Cundall, P.A.; Hart, R.D. Numerical modelling of discountinua. Eng. Comput. 1992, 9, 101–113. [Google Scholar] [CrossRef]
- Barnett, N.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K.; Carraro, J.A.H. Equivalent state theory for mixtures of sand with non-plastic fines: A DEM investigation. Géotechnique 2021, 71, 423–440. [Google Scholar] [CrossRef]
- Gu, X.; Huang, M.; Qian, J. DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 2014, 16, 91–106. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Fourie, A.B. Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach. Géotechnique 2017, 67, 153–167. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Fourie, A.B. How particle shape affects the critical state, triggering of instability and dilatancy of granular materials—Results from a DEM study. Géotechnique 2021, 71, 749–764. [Google Scholar] [CrossRef]
- Sitharam, T.G.; Vinod, J.S. Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations. Granul. Matter 2009, 11, 33–42. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.; Chang, X. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotech. 2017, 12, 527–540. [Google Scholar] [CrossRef]
- Dobry, R.; Ng, T.T. Discrete modelling of stress-strain behaviour of granular media at small and large strains. Eng. Comput. 1992, 9, 129–143. [Google Scholar] [CrossRef]
- Kolapalli, R.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K. A DEM investigation on the influence of cyclic and static stress ratios and state variables on the pore water pressure generation in granular materials. J. Geotech. Geoenviron. Eng. 2023, 149, 04023043. [Google Scholar] [CrossRef]
- Kolapalli, R.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K. The failure modes of granular material in undrained cyclic loading: A critical state approach using DEM. Acta Geotech. 2023, 18, 2945–2970. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.; Karim, R. An Investigation of Instability on Constant Shear Drained (CSD) Path under the CSSM Framework: A DEM Study. Geosciences 2022, 12, 449. [Google Scholar] [CrossRef]
- Butlanska, J.; Arroyo, M.; Gens, A. Homogeneity and symmetry in DEM models of cone penetration. AIP Conf. Proc. 2009, 1145, 425–428. [Google Scholar] [CrossRef]
- Jiang, M.; Dai, Y.; Cui, L.; Shen, Z.; Wang, X. Investigating mechanism of inclined CPT in granular ground using DEM. Granul. Matter 2014, 16, 785–796. [Google Scholar] [CrossRef]
- Arroyo, M.; Butlanska, J.; Gens, A.; Calvetti, F.; Jamiolkowski, M. Cone penetration tests in a virtual calibration chamber. Géotechnique 2011, 61, 525–531. [Google Scholar] [CrossRef]
- Ciantia, M.O.; Arroyo, M.; Butlanska, J.; Gens, A. DEM modelling of cone penetration tests in a double-porosity crushable granular material. Comput. Geotech. 2016, 73, 109–127. [Google Scholar] [CrossRef]
- Chen, F.; Drumm, E.C.; Guiochon, G. Coupled discrete element and finite volume solution of two classical soil mechanics problems. Comput. Geotech. 2011, 38, 638–647. [Google Scholar] [CrossRef]
- Zhao, J.; Shan, T. Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technol. 2013, 239, 248–258. [Google Scholar] [CrossRef]
- El Shamy, U.; Zeghal, M. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dyn. Earthq. Eng. 2007, 27, 712–729. [Google Scholar] [CrossRef]
- Ibrahim, A.; Meguid, M.A. Coupled flow modelling in geotechnical and ground engineering: An overview. Int. J. Geosynth. Ground Eng. 2020, 6, 39. [Google Scholar] [CrossRef]
- Mondal, S.; Wu, C.-H.; Sharma, M.M. Coupled CFD-DEM simulation of hydrodynamic bridging at constrictions. Int. J. Multiph. Flow. 2016, 84, 245–263. [Google Scholar] [CrossRef]
- Climent, N.; Arroyo, M.; O’Sullivan, C.; Gens, A. Sand production simulation coupling DEM with CFD. Eur. J. Environ. Civ. Eng. 2014, 18, 983–1008. [Google Scholar] [CrossRef]
- Shan, T.; Zhao, J. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech. 2014, 225, 2449–2470. [Google Scholar] [CrossRef]
- Zeghal, M.; El Shamy, U. Liquefaction of saturated loose and cemented granular soils. Powder Technol. 2008, 184, 254–265. [Google Scholar] [CrossRef]
- Monaghan, J.J. SPH and Riemann solvers. J. Comput. Phys. 1997, 136, 298–307. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Huppert, H.E.; Worster, M.G. Solidification using smoothed particle hydrodynamics. J. Comput. Phys. 2005, 206, 684–705. [Google Scholar] [CrossRef]
- Gotoh, H.; Sakai, T. Key issues in the particle method for computation of wave breaking. Coast. Eng. 2006, 53, 171–179. [Google Scholar] [CrossRef]
- Potapov, A.V.; Hunt, M.L.; Campbell, C.S. Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol. 2001, 116, 204–213. [Google Scholar] [CrossRef]
- Anderson, T.; Jackson, R. A Fluid Mechanical Description of Fluidized Beds. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Wang, X.; Ge, W.; Li, J. Lattice Boltzmann based discrete simulation for gas–solid fluidization. Chem. Eng. Sci. 2013, 101, 228–239. [Google Scholar] [CrossRef]
- Zhang, H.; Trias, F.X.; Oliva, A.; Yang, D.; Tan, Y.; Shu, S.; Sheng, Y. PIBM: Particulate immersed boundary method for fluid–particle interaction problems. Powder Technol. 2015, 272, 1–13. [Google Scholar] [CrossRef]
- Habte, M.A.; Wu, C. Particle sedimentation using hybrid Lattice Boltzmann-immersed boundary method scheme. Powder Technol. 2017, 315, 486–498. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 1994, 271, 285–309. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 1994, 271, 311–339. [Google Scholar] [CrossRef]
- van Deemter, J.J.; van der Laan, E.T. Momentum and energy balances for dispersed two-phase flow. Appl. Sci. Res. 1961, 10, 102–108. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Hirche, D.; Birkholz, F.; Hinrichsen, O. A hybrid Eulerian-Eulerian-Lagrangian model for gas-solid simulations. Chem. Eng. J. 2019, 377, 119743. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X. Comparison of the implementation of three common types of coupled CFD-DEM model for simulating soil surface erosion. Int. J. Multiph. Flow 2017, 91, 89–100. [Google Scholar] [CrossRef]
- Hager, A.; Kloss, C.; Pirker, S.; Goniva, C. Parallel resolved open source CFD-DEM: Method, validation and application. J. Comput. Multiph. Flows 2014, 6, 13–27. [Google Scholar] [CrossRef]
- Catalano, E.; Chareyre, B.; Barthélémy, E. Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 51–71. [Google Scholar] [CrossRef]
- Goniva, C.; Kloss, C.; Deen, N.G.; Kuipers, J.A.M.; Pirker, S. Influence of rolling friction on single spout fluidized bed simulation. Particuology 2012, 10, 582–591. [Google Scholar] [CrossRef]
- Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S. Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid. Dyn. Int. J. 2012, 12, 140–152. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, T. A coupled CFD–DEM simulation of slurry infiltration and filter cake formation during slurry shield tunneling. Infrastructures 2018, 3, 15. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Gao, C.-P.; Yin, Z.-Y. CFD-DEM modeling of seepage erosion around shield tunnels. Tunn. Undergr. Space Technol. 2019, 83, 60–72. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, M.; Thornton, C. A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils. Granul. Matter 2020, 22, 13. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, F.; Xu, N.-W. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides 2016, 14, 189–201. [Google Scholar] [CrossRef]
- O’Sullivan, C. Particle-based discrete element modeling: Geomechanics perspective. Int. J. Geomech. 2011, 11, 449–464. [Google Scholar] [CrossRef]
- Zhao, T. Coupled DEM-CFD Analyses of Landslide-Induced Debris Flows; Springer: Singapore, 2017. [Google Scholar]
- Kafui, K.D.; Thornton, C.; Adams, M.J. Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem. Eng. Sci. 2002, 57, 2395–2410. [Google Scholar] [CrossRef]
- Di Felice, R. The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 1994, 20, 153–159. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Ren, N.; Shi, W. A coupled CFD-DEM simulation of upward seepage flow in coarse sands. Mar. Georesour. Geotechnol. 2019, 37, 589–598. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Anderson, J.D. Computational Fluid Dynamics: The Basics with Applications; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Nguyen, H.B.K.; Aikins, D.; Karim, M.R.; Rahman, M.M. Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems. Geotechnics 2023, 3, 1162-1179. https://doi.org/10.3390/geotechnics3040063
Cao Y, Nguyen HBK, Aikins D, Karim MR, Rahman MM. Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems. Geotechnics. 2023; 3(4):1162-1179. https://doi.org/10.3390/geotechnics3040063
Chicago/Turabian StyleCao, Yang, Hoang Bao Khoi Nguyen, Derrick Aikins, Md. Rajibul Karim, and Md. Mizanur Rahman. 2023. "Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems" Geotechnics 3, no. 4: 1162-1179. https://doi.org/10.3390/geotechnics3040063
APA StyleCao, Y., Nguyen, H. B. K., Aikins, D., Karim, M. R., & Rahman, M. M. (2023). Advances in Coupling Computational Fluid Dynamics and Discrete Element Method in Geotechnical Problems. Geotechnics, 3(4), 1162-1179. https://doi.org/10.3390/geotechnics3040063