Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = soil and water conservation measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 369
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 2388 KiB  
Article
Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
by Urška Lisec, Maja Prevolnik Povše, Miran Podvršnik and Branko Kramberger
Plants 2025, 14(15), 2274; https://doi.org/10.3390/plants14152274 - 24 Jul 2025
Viewed by 294
Abstract
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil [...] Read more.
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil chemical properties. Five grassland management systems were analyzed: Cut3—three cuts per year; LGI—low grazing intensity; CG—combined cutting and grazing; Cut4—four cuts per year; and HGI—high grazing intensity. The functional groups assessed were grasses, legumes and forbs, while soil samples from three depths (0–10, 10–20 and 20–30 cm) were analyzed for their chemical properties (soil organic carbon—SOC; soil total nitrogen—STN; inorganic soil carbon—SIC; soil organic matter—SOM; potassium oxide—K2O; phosphorus pentoxide—P2O5; C/N ratio; and pH) and physical properties (volumetric soil water content—VWC; bulk density—BD; and porosity—POR). The results showed that less intensive systems had a higher proportion of legumes, while species diversity, as measured via the Shannon index, was the highest in the Cut4 system. The CG system tended to have the highest SOC and STN at a 0–10 cm depth, with a similar trend observed for SOCstock at a 0–30 cm depth. The Cut4, HGI and CG systems also had an increased STNstock. Both grazing systems had the highest P2O5 content. A tendency towards a higher BD was observed in the top 10 cm of soil in the more intensive systems. Choosing a management strategy that is tailored to local climate and site conditions is crucial for maintaining grassland stability, enhancing carbon sequestration and promoting long-term sustainability in the context of climate change. Full article
Show Figures

Figure 1

22 pages, 4019 KiB  
Article
Quantitative Assessment of Climate Change, Land Conversion, and Management Measures on Key Ecosystem Services in Arid and Semi-Arid Regions: A Case Study of Inner Mongolia, China
by Jiayu Geng, Honglan Ji and Lei Hao
Sustainability 2025, 17(14), 6348; https://doi.org/10.3390/su17146348 - 10 Jul 2025
Viewed by 286
Abstract
Inner Mongolia, a typical arid and semi-arid region in northern China, has undergone significant ecological transformation over the past two decades through climate shifts and large-scale ecological restoration projects. However, the relative contributions of climate and anthropogenic drivers to these ecological changes have [...] Read more.
Inner Mongolia, a typical arid and semi-arid region in northern China, has undergone significant ecological transformation over the past two decades through climate shifts and large-scale ecological restoration projects. However, the relative contributions of climate and anthropogenic drivers to these ecological changes have not been sufficiently quantified. This study presents a comprehensive quantitative evaluation of the relative contributions of climate change, land conversion, and ecological management to changes in four critical ecosystem services—carbon sequestration, hydrological regulation, soil and water conservation, and windbreak and sand fixation—between 2001 and 2020. Using the residual trend method—a technique to separate climate-driven from human-induced effects—we further decomposed human influence into land conversion and management components. The results show that climate change was the primary driver, enhancing carbon sequestration and hydrological regulation but negatively impacting erosion control, with contributions often over 90%. In contrast, human activities had more spatially variable effects; while land conversion improved several services, it also heightened the vulnerability of sand fixation functions. The analysis further revealed ecosystem-type-specific responses, where grasslands and deserts responded better to management measures and forests and croplands showed greater improvements from land conversion. These findings offer crucial insights into the differentiated mechanisms and outcomes of ecological interventions, providing a scientific basis for optimizing restoration strategies and achieving sustainable ecosystem governance in climate-sensitive regions. Full article
Show Figures

Figure 1

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 378
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 633
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Cited by 1 | Viewed by 599
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 4115 KiB  
Article
Status Identification and Restoration Zoning of Ecological Space in Maowusu Sandy Land Based on Temporal and Spatial Characteristics of Land Use
by Tiejun Zhang, Peng Xiao, Zhenqi Yang and Jianying Guo
Agronomy 2025, 15(6), 1445; https://doi.org/10.3390/agronomy15061445 - 13 Jun 2025
Viewed by 380
Abstract
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With [...] Read more.
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With Maowusu sandy land as the study object, the temporal and spatial characteristics of land use and the driving forces were explored via spatial analysis technology—the geographic information system. Then, a 2D relation judgment matrix was constructed by evaluating the importance of ecosystem service functions and ecological sensitivity. Next, restoration zoning of natural ecological space was performed, and relevant restoration suggestions were put forward accordingly. Results show that the land use in Maowusu sandy land has significantly changed in the past 30 years, with construction land and forest continuously expanding, cropland and grassland being squeezed, and some areas of unutilized land being transformed into other land use types. Ecosystem service functions tend to weaken from southwest to northeast, whereas the ecologically sensitive zones are mainly distributed in the middle of Maowusu sandy land. The high-importance and high-sensitivity zones of natural ecological space account for 3.60% of the total area of natural ecological space, mainly distributed near Ejin Horo Banner. A comprehensive restoration project of soil and water conservation should be conducted in this zone to alleviate soil erosion and maintain the management and restoration of ecological protection red lines. Moderately important sensitive zones account for the largest proportion (80.42%) of the total area of natural ecological space, being widely distributed. In such zones, water resources should be taken as constraints, with emphasis on ecological protection and improvement measures. Low-importance and low-sensitivity zones account for the smallest proportion, in which ecosystem protection, near-natural restoration, and moderate development and utilization should be carried out. This study aims to provide a scientific basis for reasonably protecting natural ecological resources and promoting the healthy and ordered development of natural ecosystems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 1966 KiB  
Article
Evaluation of Water Security in a Water Source Area from the Perspective of Nonpoint Source Pollution
by Jun Yang, Ruijun Su, Yanbo Wang and Yongzhong Feng
Sustainability 2025, 17(11), 4998; https://doi.org/10.3390/su17114998 - 29 May 2025
Viewed by 545
Abstract
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource [...] Read more.
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource for the Beijing–Tianjin–Hebei region, and its security is of great significance. In this study, 28 indicators including society, nature, and economy were selected from the water sources of the MR-SNWDP from 2000 to 2017. According to the Drivers-Pressures-States-Impact-Response (DPSIR) framework principle, the entropy weight method was used for weight calculation, and the comprehensive evaluation method was used for evaluating the water security of the water sources of the MR-SNWDP. This study showed that the total loss of nonpoint source pollution (NPSP) in the water source showed a trend of slow growth, except in 2007. Over the past 18 years, the proportion of pollution from three NPSP sources, livestock, and poultry (LP) breeding industry, planting industry, and living sources, were 44.56%, 40.33%, and 15.11%, respectively. The main driving force of water security in all the areas of the water source was the total net income per capita of farmers. The main pressure was the amount of LP breeding and the amount of fertilizer application. The largest impact indicators were NPSP gray water footprint and soil erosion area, and water conservancy investment was the most effective response measure. Overall, the state of the water source safety was relatively stable, showing an overall upward trend, and it had remained at Grade III except for in 2005, 2006, and 2011. The state of water safety in all areas except Shiyan City was relatively stable, where the state of water safety had fluctuated greatly. Based on the assessment findings, implications for policy and decision-making suggestions for sustainable management of the water sources of the MR-SNWDP resources are put forward. Agricultural cultivation in water source areas should reduce the application of chemical fertilizers and accelerate the promotion of agricultural intensification. Water source areas should minimize retail livestock and poultry farming and promote ecological agriculture. The government should increase investment in water conservancy and return farmland to forests and grasslands, and at the same time strengthen the education of farmers’ awareness of environmental protection. The evaluation system of this study combined indicators such as the impact of agricultural nonpoint source pollution on water bodies, which is innovative and provides a reference for the water safety evaluation system. Full article
(This article belongs to the Special Issue Hydrosystems Engineering and Water Resource Management)
Show Figures

Figure 1

17 pages, 4187 KiB  
Article
Optimization of Subsurface Drainage Parameters in Saline–Alkali Soils to Improve Salt Leaching Efficiency in Farmland in Southern Xinjiang
by Han Guo, Guangning Wang, Zhenliang Song, Pengfei Xu, Xia Li and Liang Ma
Agronomy 2025, 15(5), 1222; https://doi.org/10.3390/agronomy15051222 - 17 May 2025
Viewed by 633
Abstract
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of [...] Read more.
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of varying subsurface drainage configurations—specifically, burial depths (1.0–1.5 m) and pipe spacings (20–40 m)—on drainage and salt removal efficiency in silty loam soils of southern Xinjiang, aiming to develop an optimized scheme balancing water conservation and desalination. Five treatments (A1–A5) were established to measure evaporation, drainage, and salt discharge during both spring and winter irrigation. These variables were analyzed using a water balance model and multifactorial ANOVA to quantify the interactive effects of drainage depth and spacing. The results indicated that treatment A5 (1.5 m depth, 20 m spacing) outperformed all the others in terms of both the drainage-to-irrigation ratio (Rd/i) and the drainage salt efficiency coefficient (DSEC), with a two-year average Rd/i of 32.35% across two spring and two winter irrigation events, and a mean DSEC of 3.28 kg·m−3. The 1.5 m burial depth significantly improved salt leaching efficiency by increasing the salt control volume and reducing capillary rise. The main effect of burial depth on both Rd/i and DSEC was highly significant (p < 0.01), whereas the effect of spacing was not statistically significant (p > 0.05). Although the limited experimental duration and the use of a single soil type may affect the generalizability of the findings, the recommended configuration (1.5 m burial depth, 20 m spacing) shows strong potential for broader application in silty loam regions of southern Xinjiang and provides technical support for subsurface drainage projects aimed at reclaiming saline soils in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

15 pages, 5473 KiB  
Article
Integrating Proximal Gamma Ray and Cosmic Ray Neutron Sensors to Assess Soil Moisture Dynamics in an Agricultural Field in Spain
by Leticia Gaspar, Trenton E. Franz and Ana Navas
Agriculture 2025, 15(10), 1074; https://doi.org/10.3390/agriculture15101074 - 16 May 2025
Viewed by 513
Abstract
Antecedent soil moisture is a critical driver of hydrological and erosive processes, directly affecting runoff generation and soil loss. An accurate assessment of soil water content (SWC) variability is therefore essential for sustainable land and water management, particularly in arid and semiarid regions. [...] Read more.
Antecedent soil moisture is a critical driver of hydrological and erosive processes, directly affecting runoff generation and soil loss. An accurate assessment of soil water content (SWC) variability is therefore essential for sustainable land and water management, particularly in arid and semiarid regions. This study explores the use of two emerging nuclear techniques, cosmic ray neutron sensors (CRNS) and proximal gamma ray spectroscopy (PGRS), to monitor SWC at the field scale in a semiarid agricultural field in NE Spain. Changes in soil moisture induced by a 16 mm rainfall event were monitored to evaluate the sensitivity and response of both techniques under dry and wet conditions. A stationary CRNS, located in the centre of the study field, recorded neutron counts at hourly intervals over a two-week period. Complementary PGRS surveys were conducted before and after the rainfall event, including (i) stationary measurements at the four corners of a 20 × 20 m plot, and (ii) mobile stop-and-go measurements along ten transects across the plot, with a spatial resolution of one metre. The results captured clear temporal dynamics in SWC, inferred from neutron count variations, as well as significant differences in 40K (cps) measurements, between dry and wet conditions. These differences were observed when comparing the data from both stationary and mobile surveys conducted before and after the event. The integration of CRNS and PGRS offers complementary insights into scale, temporal dynamics and spatial variability, validating and highlighting the potential of these sensors for soil moisture monitoring. Both techniques demonstrated high sensitivity to variations in soil water content, and their complementary capabilities offer a robust, multi-scale approach with clear applications for precision agriculture and soil conservation. Full article
(This article belongs to the Special Issue Soil Chemical Properties and Soil Conservation in Agriculture)
Show Figures

Figure 1

19 pages, 7698 KiB  
Article
Environmental Assessment of a Heritage Forest Urban Park on the Densely Populated Coast of Versilia, Italy
by Roberto Giannecchini, Lisa Ghezzi, Simone Arrighi, Silvia Fornasaro, Stefania Giannarelli, Alessio Pardini and Riccardo Petrini
Water 2025, 17(10), 1466; https://doi.org/10.3390/w17101466 - 13 May 2025
Viewed by 466
Abstract
The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain [...] Read more.
The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain of Tuscany. Surface water and bed sediments from canals crossing the urban park were collected at 10 stations during four different surveys to account for hydrological seasonality. Groundwater was collected in a survey through 10 piezometers. Eleven shallow soil samples were also collected, with the aim of evaluating the potential release of pollutants. Groundwater ranged from Ca-HCO3, to NaCl, CaCl2, and Na-HCO3 water types, indicating conservative mixing and cation exchange processes during seawater intrusion. Most waters from canals belonged to the Ca-HCO3 hydrofacies; a salinization shift, due to hydraulic connection with saline groundwater and soil sea salt dissolution, is observed. The concentration of most PTEs in groundwater and canal water is below Italian regulatory thresholds, with the only exception being As, which exceeds the legal limit in some samples. In most sediments, Ni, Cr, Zn, and As exceed the threshold effect concentration, and in some cases, the probable effect concentration. Geogenic PTE sources are attributed to metalliferous mineralization that characterizes the upstream Versilia River basin catchment. However, local PTE inputs from vehicular emissions and local industrial activities have been highlighted. Arsenic in sediments originated from geogenic sources and from arsenical pesticides, as indicated by the analysis of organic compounds, highlighting the legacy of the use of organic pesticides that have settled in bed sediments, in particular malathion and metalaxyl. The arsenic risk-based screening level in soil is lower compared with the regulatory threshold and with the measured concentration. Full article
Show Figures

Figure 1

26 pages, 10675 KiB  
Article
Analysis of Water and Sediment Changes at Different Spatial Scales and Their Attribution in the Huangfuchuan River Basin
by Yan Li, Fucang Qin, Long Li and Xiaoyu Dong
Sustainability 2025, 17(10), 4389; https://doi.org/10.3390/su17104389 - 12 May 2025
Viewed by 403
Abstract
Water–sediment evolution and attribution analysis in watersheds is one of the research focuses of hydrogeology. An in-depth investigation into the spatiotemporal variation of water and sediment at multiple spatial scales within the basin, along with a systematic assessment of the respective impacts of [...] Read more.
Water–sediment evolution and attribution analysis in watersheds is one of the research focuses of hydrogeology. An in-depth investigation into the spatiotemporal variation of water and sediment at multiple spatial scales within the basin, along with a systematic assessment of the respective impacts of climate change and human activities, provides a scientific foundation for formulating effective soil and water conservation practices and integrated water resource management strategies. This research holds significant implications for the sustainable development and ecological management of the basin. In this study, the Mann–Kendall nonparametric test method, double cumulative curve method, cumulative anomaly method, and cumulative slope change rate analysis method were used to quantitatively study the effects of climate change and human activities on runoff and sediment load changes at different spatial scales in the Huangfuchuan River basin. The results show that (1) from 1966 to 2020, the annual runoff and annual sediment load discharge in the Huangfuchuan River basin showed a significant decreasing trend. Among them, the reduction in runoff and sediment in the control sub-basin of Shagedu Station in the upper reaches was more obvious than that in the whole basin. The mutation points of runoff and sediment load in the two basins were 1979 and 1998. The water–sediment relationship exhibits a power function pattern. (2) After the abrupt change, in the change period B (1980–1997), the contribution rates of climate change and human activities to runoff and sediment load reduction in the Huangfuchuan River basin were 24.12%, 75.88% and 20.05%, 79.95%, respectively. In the change period C (1998–2020), the contribution rates of the two factors to the runoff and sediment load reduction in the Huangfuchuan River basin were 18.91%, 81.09% and 15.61%, 84.39%, respectively. Among them, the influence of precipitation in the upper reaches of the Huangfuchuan River basin on the change in runoff and sediment load is higher than that of the whole basin, and the influence on the decrease of sediment load discharge is more significant before 1998. There are certain stage differences and spatial scale effects. (3) Human activities such as large-scale vegetation restoration and construction of silt dam engineering measures are the main reasons for the reduction in runoff and sediment load in the Huangfuchuan River basin and have played a greater role after 1998. Full article
Show Figures

Figure 1

17 pages, 9014 KiB  
Article
Spatially Explicit Evaluation of the Suitability and Quality Improvement Potential of Forest and Grassland Habitat in the Yanhe River Basin
by Zhihong Yao, Xiaoyang Sun, Peiqing Xiao, Zhuangzhuang Liu, Menghao Yang and Peng Jiao
Land 2025, 14(5), 1049; https://doi.org/10.3390/land14051049 - 12 May 2025
Viewed by 455
Abstract
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations [...] Read more.
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations of habitat suitability in complex geomorphic regions like the Loess Plateau remain scarce, particularly in balancing hydrological and ecological trade-offs. The Yanhe River Basin (7725 km2), a sediment-prone tributary of the Yellow River, exemplifies the challenges of soil erosion and semi-arid climatic constraints, making it a critical case for evaluating restoration strategies. This study employed a comprehensive approach utilizing Analytic Hierarchy Process (AHP), Geographic Detector, mathematical statistics, and other methods. An evaluation indicator system and methodology were established to assess the suitability of forest and grassland habitats in the Yanhe River Basin, evaluating the suitability and quality improvement potential under the current land use conditions. The results indicate: (1) The dominant factors influencing the suitable distribution of forests include photosynthetically active radiation (PAR), soil total phosphorus content, annual precipitation, and elevation. For grasslands, the dominant factors include photosynthetically active radiation, annual average temperature, elevation, and annual precipitation. (2) In the watershed, forestland and grassland areas classified as moderately suitable or higher cover 1064.9 km2 and 4196.9 km2, accounting for 91.9% and 94.7% of their total respective areas, indicating a generally rational spatial allocation of forest and grassland ecosystems. (3) The improvable area for forests measures 366 km2 (34.4% of moderately or higher suitability zones), with most already meeting coverage thresholds. In contrast, grasslands have an improvable area of 2491.6 km2 (59.4% of moderately or higher suitability zones), where over half of the area remains below coverage thresholds corresponding to their habitat conditions. (4) Forests can adopt natural restoration-focused low-intensity interventions through strengthened closure management, while grasslands require spatially tailored measures—such as precipitation interception and enhanced stewardship—targeting suitability-based potential grades, collectively achieving overall improvement in grassland vegetation coverage. This study represents the first systematic evaluation of forest–grassland habitat suitability in the Yanhe River Basin, elucidating its spatial distribution patterns and providing critical insights for watershed-scale ecological restoration. Full article
Show Figures

Figure 1

24 pages, 14623 KiB  
Article
Vegetation Growth Changes and Their Constraining Effects on Ecosystem Services Under Ecological Restoration in the Shendong Mining Area
by Xufei Zhang, Zhichao Chen, Yiheng Jiao, Yiqiang Cheng, Zhenyao Zhu, Shidong Wang and Hebing Zhang
Remote Sens. 2025, 17(10), 1674; https://doi.org/10.3390/rs17101674 - 9 May 2025
Viewed by 481
Abstract
Under the ecological restoration project, the vegetation in the mining area shows a significant improvement trend. Exploring the causal relationship among the implementation of ecological restoration projects in mining areas, vegetation restoration, and the improvement of ecosystem service functions is of great significance [...] Read more.
Under the ecological restoration project, the vegetation in the mining area shows a significant improvement trend. Exploring the causal relationship among the implementation of ecological restoration projects in mining areas, vegetation restoration, and the improvement of ecosystem service functions is of great significance for the current green development of coal mines. Therefore, in this study, we used the kernel Normalized Vegetation Index (kNDVI) to measure how vegetation growth has changed since ecological restoration projects began. Changes in four major ecosystem service functions, including soil conservation, net primary productivity (NPP), water yield, and habitat quality, were assessed before and after the restoration projects. The relationship between kNDVI and ecosystem services was further discussed by using the constraint line method. The results show the following: (1) Under the implementation of ecological restoration projects from 1994 to 2022, the annual vegetation growth rate in the mining area has progressively risen each year at a rate of 0.0046/a. Spatially speaking, 90.44% of the mining area had a substantial upward trend, indicating clear evidence of vegetation restoration. (2) Under the scientific ecological restoration of the mining areas, the total ecosystem service index increased from 0.41 in 1994 to 0.49 in 2022. The functions of ecosystem services have been enhanced to differing extents. (3) KNDVI’s constraint effect on the four ecosystem services changed dramatically before and after the ecological restoration effort. After the ecological restoration project, kNDVI’s constraint on ecosystem services decreased. (4) After restoration, the threshold value of kNDVI for maximizing the benefits of the four ecosystem services ranges from 0.1 to 0.2, and the constraint on the total ecosystem services reaches the threshold value of 0.225. This study employs more comprehensive data to examine the intricate relationship between environmental change and service function, which is crucial for the scientific management of ecological processes and facilitates the sustainable green development of mining areas. Full article
Show Figures

Figure 1

17 pages, 628 KiB  
Review
Impacts of Intensive Management Practices on the Long-Term Sustainability of Soil and Water Conservation Functions in Bamboo Forests: A Mechanistic Review from Silvicultural Perspectives
by Jingxin Shen, Xianli Zeng, Shaohui Fan and Guanglu Liu
Forests 2025, 16(5), 787; https://doi.org/10.3390/f16050787 - 8 May 2025
Cited by 1 | Viewed by 494
Abstract
Bamboo forest ecosystems are an important component of the Earth’s terrestrial ecosystems and play an important role in addressing the global timber crisis as well as climate change. Bamboo is a typical shallow-rooted, fast-growing clonal plant species whose developed rhizome system and high [...] Read more.
Bamboo forest ecosystems are an important component of the Earth’s terrestrial ecosystems and play an important role in addressing the global timber crisis as well as climate change. Bamboo is a typical shallow-rooted, fast-growing clonal plant species whose developed rhizome system and high canopy closure play an important role in soil and water conservation. The function of soil and water conservation services of bamboo forests can intuitively reflect the regional regulation of precipitation, the redistribution function of precipitation, and the function of soil fixation, which is one of the crucial ecological service functions in regional ecosystems. Bamboo forests are divided into monopodial bamboo forests, sympodial bamboo forests, and mixed bamboo forests, which are mainly distributed in tropical and subtropical mountainous areas. The region’s variable climate, abundant precipitation, and high potential risk of soil erosion, in conjunction with the frequent operation of bamboo forests and frequent occurrence of extreme weather events, have the potential to adversely affect the ecosystem function of bamboo forests. Presently, bamboo forests are primarily managed through the cultivation of bamboo, with the objective of enhancing productivity. Extensive research has been conducted on the long-term maintenance of bamboo forest productivity. However, there is a paucity of research on the mechanisms of management measures for ecosystem stability and the development of adaptive management technology systems suitable for soil and water conservation, carbon sequestration and sink enhancement, and biodiversity conservation. This paper is predicated on the biological characteristics of bamboo and, thus, aims to compile the extant research progress on the following subjects: the role of rainfall redistribution in bamboo forest canopies, the role of deadfall interception, and the mechanism of soil fixation mechanics of the root system. It also synthesizes the current status of research on the impact of traditional management measures on the soil and water conservation function of bamboo forests. Finally, it discusses the problems of current research and the direction of future development. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests: 2nd Edition)
Back to TopTop