Ecological Zoning in Mountainous Areas Based on Ecosystem Service Trade-Offs and Landscape Ecological Risk: A Case Study of the Hengduan Mountain Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Ecological Zoning Method
2.3.2. Production Possibility Frontier
2.3.3. Measuring the Trade-Offs of ESs
2.3.4. LER Assessment
2.3.5. Bivariate Spatial Autocorrelation Model
3. Results
3.1. Ecosystem Services Assessment
3.1.1. Spatial and Temporal Analysis of ESs
3.1.2. Correlation Analysis of ESs
3.2. ES Trade-Offs Assessment
3.2.1. Assessment of Overall ES Trade-Offs
3.2.2. Assessment of Overall ES Trade-Offs
3.3. Spatiotemporal Evolution of LER
3.4. Correlation Analysis of ES Trade-Offs with LER
3.5. Spatiotemporal Pattern of Ecological Zoning
4. Discussion
4.1. Adaptive Management for Ecological Zoning
- (1)
 - Ecological protection zone: Includes low-risk synergy protection zone and low-risk trade-off protection zone. Mainly in high-elevation areas, dominated by forest and grassland. These regions should be incorporated into the national or local ecological conservation redline, with key conservation areas clearly delineated to enhance ecosystem integrity and stability. It is recommended to strictly implement the Natural Forest Protection and Restoration Program, prevent illegal logging and deforestation, avoid anthropogenic interference, and maintain ecological balance. With high-relief mountains and hills, the region requires soil erosion control to maintain long-term ecological stability [65]. In accordance with the Soil and Water Conservation Law, efforts should be made to minimize surface disturbance and vegetation damage in critical areas to prevent further degradation. Forest cover can be increased through artificial afforestation and other means to enhance carbon storage and water conservation capacity [8].
 
- (2)
 - Ecological warning zone: Includes medium-risk synergy warning zone and medium-risk trade-off warning zone. Primarily in the middle elevation areas, with grassland and cultivated land dominance. It is recommended to implement rotational grazing and grazing ban systems, promote grassland sealing techniques, and plant efficient grass species to increase carbon storage and reduce the erosion risk. The region has a complex topography, including low-relief mountains, medium-relief mountains, and extreme high-relief mountains, and soil and water conservation should be strengthened, and the project of returning farmland to forest and grassland to farmland should be promoted to expand the ecological green space [66]. In alignment with the Grassland Law and the grassland ecological subsidy and reward policy, governments are encouraged to subsidize programs for restoring degraded grasslands. Horizontal ecological compensation mechanisms and watershed-based compensation systems should be introduced, delineating high ecological value grasslands and arable land to facilitate coordinated intergovernmental governance. Due to the serious landscape fragmentation, landscape connectivity can be improved through the construction of ecological corridors to optimize the biohabitat environment in the region and enhance ecological mobility [7].
 - (3)
 - Ecological restoration zone: Includes high-risk synergy restoration zone and high-risk trade-off restoration zone. Largely in low elevation areas, characterized by cultivated and urban lands. In accordance with the Outline of the National Territorial Spatial Master Plan, it is necessary to optimize production-life-ecology space, relieve human activity pressure, and limit land development [67]. With plains, terraces, and medium-relief mountains, the region should integrate urbanization and arable land protection, strengthen basic farmland management, and improve soil and water resource efficiency [68]. The focus should be on restoring ecologically fragile areas such as dry and hot river valleys, enhancing ecological supervision of watersheds, and prioritizing the restoration of functions in ecologically sensitive areas [69]. In addition, the land use structure should be optimized to achieve coordination between ecological protection and economic development [70]. Economic compensation mechanisms should be implemented to support key ecological function zones where development is restricted or prohibited due to environmental conservation efforts, thus offsetting the economic losses incurred from limited development opportunities.
 
4.2. Targeted Management of Priority Ecological Restoration Zones
4.3. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Analysis of ES Trade-Off and LER Relationship Within Priority Areas
| ES | Method | Equation | Description | 
|---|---|---|---|
| NPP | CASA | represents the net primary productivity of grid at time denotes the photosynthetically active radiation absorbed by vegetation in grid at time refers to the actual light use efficiency ). | |
| SC | RUSLE | represents the soil conservation in grid denotes the potential soil loss denotes the actual soil loss ). is the rainfall erosivity factor is the soil erodibility factor ) is the topographic factor, is the vegetation cover factor, and is the support practice factor related to soil conservation measures. | |
| WY | InVEST | represents the annual water yield for grid is the actual annual evapotranspiration , and denotes the annual precipitation . | 


References
- Chi, Y.; Zhang, Z.; Wang, J.; Xie, Z.; Gao, J. Island protected area zoning based on ecological importance and tenacity. Ecol. Indic. 2020, 112, 106139. [Google Scholar] [CrossRef]
 - Li, J.; Hu, D.; Wang, Y.; Chu, J.; Yin, H.; Ma, M. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value. Sustain. Cities Soc. 2024, 107, 105442. [Google Scholar] [CrossRef]
 - Liu, H.; Tang, D. Ecological zoning and ecosystem management based on landscape ecological risk and ecosystem services: A case study in the Wuling Mountain Area. Ecol. Indic. 2024, 166, 112421. [Google Scholar] [CrossRef]
 - Zhang, D.; Jing, P.; Sun, P.; Ren, H.; Ai, Z. The non-significant correlation between landscape ecological risk and ecosystem services in Xi’an Metropolitan Area, China. Ecol. Indic. 2022, 141, 109118. [Google Scholar] [CrossRef]
 - Nan, B.; Zhai, Y.; Wang, M.; Wang, H.; Cui, B. Ecological Security Assessment, Prediction, and Zoning Management: An Integrated Analytical Framework. Engineering 2024, 49, 238–250. [Google Scholar] [CrossRef]
 - Li, W.; Kang, J.; Wang, Y. Spatiotemporal changes and driving forces of ecological security in the Chengdu-Chongqing urban agglomeration, China: Quantification using health-services-risk framework. J. Clean. Prod. 2023, 389, 136135. [Google Scholar] [CrossRef]
 - Wang, S.; Chen, Y.; Jin, H.; Li, Y. Ecological management zoning based on the causation between ecological risk and ecosystem services in the Gaoligong Mountain. Ecol. Indic. 2024, 167, 112673. [Google Scholar] [CrossRef]
 - Zhang, Y.; Hu, X.; Wei, B.; Zhang, X.; Tang, L.; Chen, C.; Wang, Y.; Yang, X. Spatiotemporal exploration of ecosystem service value, landscape ecological risk, and their interactive relationship in Hunan Province, Central-South China, over the past 30 years. Ecol. Indic. 2023, 156, 111066. [Google Scholar] [CrossRef]
 - Herbertson, A.J. The major natural regions: An essay in systematic geography. Geogr. J. 1905, 25, 300–310. [Google Scholar] [CrossRef]
 - Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
 - Wang, Z.; Li, W.; Li, Y.; Qin, C.; Lv, C.; Liu, Y. The “three lines one permit” policy: An integrated environmental regulation in China. Resour. Conserv. Recycl. 2020, 163, 105101. [Google Scholar] [CrossRef]
 - Fu, B.; Liu, G.; Chen, L.; Ma, K.; Li, J. Scheme of ecological regionalization in China. Acta Ecol. Sin. 2001, 21, 1–6. [Google Scholar]
 - Wang, Z.; Wang, B.; Zhang, Y.; Sa, R.; Zhang, Q.; Hao, S. Ecological zone construction and multi-scenario simulation in Western China combining landscape ecological risk and ecosystem service value. Sci. Rep. 2025, 15, 11297. [Google Scholar] [CrossRef]
 - Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2020, 281, 111817. [Google Scholar] [CrossRef]
 - Li, H.; Zhu, Y.; Tang, Y.; Song, M. Ecological Zoning Based on Value–Risk in the Wuling Mountains Area of Hunan Province. Sustainability 2024, 16, 1397. [Google Scholar] [CrossRef]
 - Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef]
 - Xing, L.; Hu, M.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef] [PubMed]
 - Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
 - Daily, G.C. Nature’s services: Societal dependence on natural ecosystems (1997). In The Future of Nature; Yale University Press: New Haven, CT, USA, 2013; pp. 454–464. [Google Scholar]
 - Peng, J.; Hu, X.; Zhao, M.; Liu, Y.; Tian, L. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geogr. Sin. 2017, 72, 960–973. [Google Scholar]
 - Charles, P.; Anantha, D.; Anne, L.; Harold, M. The biodiversity and ecosystem services science-policy interface. Science 2011, 331, 1139–1140. [Google Scholar] [CrossRef]
 - Bradford, J.B.; D’Amato, A.W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 2012, 10, 210–216. [Google Scholar] [CrossRef]
 - Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across Space, Time, and Ecosystem Services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
 - Ruijs, A.; Wossink, A.; Kortelainen, M.; Alkemade, R.; Schulp, C.J.E. Trade-off analysis of ecosystem services in Eastern Europe. Ecosyst. Serv. 2013, 4, 82–94. [Google Scholar] [CrossRef]
 - Zhang, J.; Wang, Y.; Sun, J.; Zhang, Y.; Wang, D.; Chen, J.; Liang, E. Trade-offs and synergies of ecosystem services and their threshold effects in the largest tableland of the Loess Plateau. Glob. Ecol. Conserv. 2023, 48, e02706. [Google Scholar] [CrossRef]
 - Wang, J.; Wu, W.; Yang, M.; Gao, Y.; Shao, J.; Yang, W.; Ma, G.; Yu, F.; Yao, N.; Jiang, H. Exploring the complex trade-offs and synergies of global ecosystem services. Environ. Sci. Ecotechnol. 2024, 21, 100391. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, D.; Bi, H.; Wang, N.; Liu, Z.; Hou, G.; Huang, J.; Song, Y. Does increasing forest age lead to greater trade-offs in ecosystem services? A study of a Robinia pseudoacacia artificial forest on the Loess Plateau, China. Sci. Total Environ. 2024, 926, 171737. [Google Scholar] [CrossRef] [PubMed]
 - Li, Q.; Bao, Y.; Wang, Z.; Chen, X.; Lin, X. Trade-offs and synergies of ecosystem services in karst multi-mountainous cities. Ecol. Indic. 2024, 159, 111637. [Google Scholar] [CrossRef]
 - Wu, J.; Jin, X.; Feng, Z.; Chen, T.; Wang, C.; Feng, D.; Lv, J. Relationship of Ecosystem Services in the Beijing–Tianjin–Hebei Region Based on the Production Possibility Frontier. Land 2021, 10, 881. [Google Scholar] [CrossRef]
 - Lester, S.E.; Costello, C.; Halpern, B.S.; Gaines, S.D.; White, C.; Barth, J.A. Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Mar. Policy 2013, 38, 80–89. [Google Scholar] [CrossRef]
 - Yang, Y.; Zhang, S.; Xia, F.; Yang, Y.; Li, D.; Sun, W.; Wang, Y.; Xie, Y. A comprehensive perspective for exploring the trade-offs and synergies between carbon sequestration and grain supply in China based on the production possibility frontier. J. Clean. Prod. 2022, 354, 131725. [Google Scholar] [CrossRef]
 - Peng, J.; Wang, X.; Zheng, H.; Xu, Z. Applying production-possibility frontier based ecosystem services trade-off to identify optimal scenarios of Grain-for-Green Program. Landsc. Urban Plan. 2024, 242, 104956. [Google Scholar] [CrossRef]
 - Sanon, S.; Hein, T.; Douven, W.; Winkler, P. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. J. Environ. Manag. 2012, 111, 159–172. [Google Scholar] [CrossRef] [PubMed]
 - Ager, A.A.; Vogler, K.C.; Day, M.A.; Bailey, J.D. Economic Opportunities and Trade-Offs in Collaborative Forest Landscape Restoration. Ecol. Econ. 2017, 136, 226–239. [Google Scholar] [CrossRef]
 - Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.E.; Wu, J. Multi-scenario simulation of landscape ecological risk probability to facilitate different decision-making preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
 - Wang, K.; Zheng, H.; Zhao, X.; Sang, Z.; Yan, W.; Cai, Z.; Xu, Y.; Zhang, F. Landscape ecological risk assessment of the Hailar River basin based on ecosystem services in China. Ecol. Indic. 2023, 147, 109795. [Google Scholar] [CrossRef]
 - Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on landscape ecological risk assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar]
 - Pan, N.; Du, Q.; Guan, Q.; Tan, Z.; Sun, Y.; Wang, Q. Ecological security assessment and pattern construction in arid and semi-arid areas: A case study of the Hexi Region, NW China. Ecol. Indic. 2022, 138, 108797. [Google Scholar] [CrossRef]
 - Li, M.; Abuduwailia, J.; Liu, W.; Feng, S.; Saparov, G.; Ma, L. Application of geographical detector and geographically weighted regression for assessing landscape ecological risk in the Irtysh River Basin, Central Asia. Ecol. Indic. 2024, 158, 111540. [Google Scholar] [CrossRef]
 - Wang, W.; Wang, H.; Zhou, X. Ecological risk assessment of watershed economic zones on the landscape scale: A case study of the Yangtze River Economic Belt in China. Reg. Environ. Change 2023, 23, 105. [Google Scholar] [CrossRef]
 - Liu, Y.; Zhao, M. Linking ecosystem service supply and demand to landscape ecological risk for adaptive management: The Qinghai-Tibet Plateau case. Ecol. Indic. 2023, 146, 109796. [Google Scholar] [CrossRef]
 - Cao, Q.; Zhang, X.; Ma, H.; Wu, J. Review of landscape ecological risk an assessment framework based on ecological services: ESRIS. Acta Geogr. Sin. 2018, 73, 843–855. [Google Scholar]
 - Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
 - Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
 - Shi, Z.; Deng, W.; Zhang, S. Spatio-temporal pattern changes of land space in Hengduan Mountains during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef]
 - Ao, S.; Chih, C.M.; Li, X.; Tan, L.; Cai, Q.; Ye, L. Watershed farmland area and instream water quality co-determine the stream primary producer in the central Hengduan Mountains, southwestern China. Sci. Total Environ. 2021, 770, 145267. [Google Scholar] [CrossRef]
 - Sun, J.; Zhou, L.; Zong, H. Landscape pattern vulnerability of the eastern Hengduan Mountains, China and response to elevation and artificial disturbance. Land 2022, 11, 1110. [Google Scholar] [CrossRef]
 - Yin, L.; Dai, E.; Xie, G.; Zhang, B. Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region. Land 2021, 10, 528. [Google Scholar] [CrossRef]
 - Dai, E.; Wang, Y. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region. Acta Geogr. Sin. 2020, 75, 607–619. [Google Scholar]
 - Dong, Y.; Xiong, D.; Su, Z.A.; Li, J.; Yang, D.; Shi, L.; Liu, G. The distribution of and factors influencing the vegetation in a gully in the Dry-hot Valley of southwest China. Catena 2014, 116, 60–67. [Google Scholar] [CrossRef]
 - Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
 - Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 2016, 163, S172–S180. [Google Scholar] [CrossRef]
 - Jiang, C.; Zhang, H.; Zhang, Z. Spatially explicit assessment of ecosystem services in China’s Loess Plateau: Patterns, interactions, drivers, and implications. Glob. Planet. Change 2018, 161, 41–52. [Google Scholar] [CrossRef]
 - Santos, P.H.D.; Neves, S.M.; Sant’Anna, D.O.; De Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
 - Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
 - Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
 - King, E.; Bares, J.C.; Balvanera, P.; Mwampamba, T.H.; Polasky, S. Trade-offs in ecosystem services and varying stakeholder preferences: Evaluating conflicts, obstacles, and opportunities. Ecol. Soc. 2015, 20, 25. [Google Scholar] [CrossRef]
 - Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.; Hacker, S.D.; Granek, E.F.; Primavera, J.H.; Nyawira, M.; Stephen, P. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 2009, 7, 29–37. [Google Scholar] [CrossRef]
 - Yang, W.; Jin, Y.; Sun, T.; Yang, Z.; Cai, Y.; Yi, Y. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecol. Indic. 2018, 92, 354–366. [Google Scholar] [CrossRef]
 - Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
 - Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
 - Fürst, C.; Helming, K.; Lorz, C.; Müller, F.; Verburg, P.H. Integrated land use and regional resource management—A cross-disciplinary dialogue on future perspectives for a sustainable development of regional resources. J. Environ. Manag. 2013, 127, S1–S5. [Google Scholar] [CrossRef]
 - Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
 - Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
 - Jiang, H.; Peng, J.; Zhao, Y.; Xu, D.; Dong, J. Zoning for ecosystem restoration based on ecological network in mountainous region. Ecol. Indic. 2022, 142, 109138. [Google Scholar] [CrossRef]
 - Ran, Y.; Zhao, X.; Ye, X.; Wang, X.; Pu, J.; Huang, P.; Zhou, Y.; Tao, J.; Wu, B.; Dong, W.; et al. A framework for territorial spatial ecological restoration zoning integrating “Carbon neutrality” and “Human-geology-ecology”: Theory and application. Sustain. Cities Soc. 2024, 115, 105824. [Google Scholar] [CrossRef]
 - Lyu, R.; Clarke, K.C.; Tian, X.; Zhao, W.; Pang, J.; Zhang, J. Land Use Zoning Management to Coordinate the Supply–Demand Imbalance of Ecosystem Services: A Case Study in the City Belt Along the Yellow River in Ningxia, China. Front. Environ. Sci. 2022, 10, 911190. [Google Scholar] [CrossRef]
 - Xu, Z.; Peng, J.; Dong, J.; Liu, Y.; Liu, Q.; Lyu, D.; Qiao, R.; Zhang, Z. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landsc. Urban Plan. 2022, 217, 104258. [Google Scholar] [CrossRef]
 - Zhang, Y.; Lin, F. Study on comprehensive zoning of landscape ecological risk and ecosystem service value of tourist scenic spots with high landscape value. Hum. Ecol. Risk Assess. Int. J. 2024, 30, 58–76. [Google Scholar] [CrossRef]
 - Ji, Z.; Xu, Y.; Sun, M.; Zhang, P.; Qi, Y.; Sun, D.; Koomen, E.; Lun, F.; Liu, T. Linking the assessment of ecological engineering construction with zoning management in the typical agro-pastoral area of China: A perspective from quantity, quality and function. J. Environ. Manag. 2024, 366, 121635. [Google Scholar] [CrossRef]
 - Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a Social-Ecological Endeavour. Trends Ecol. Evol. 2020, 36, 20–28. [Google Scholar] [CrossRef] [PubMed]
 - UN. General Assembly. United Nations Decade on Ecosystem Restoration (2021–2030); UN. General Assembly: New York City, NY, USA, 2019. [Google Scholar]
 - Ouyang, L.; Wu, J.; Zhao, P.; Zhu, L.; Ni, G. Stand age rather than soil moisture gradient mainly regulates the compromise between plant growth and water use of Eucalyptus urophylla in hilly South China. Land Degrad. Dev. 2021, 32, 2423–2436. [Google Scholar] [CrossRef]
 - Repo, A.; Albrich, K.; Jantunen, A.; Aalto, J.; Lehtonen, I.; Honkaniemi, J. Contrasting forest management strategies: Impacts on biodiversity and ecosystem services under changing climate and disturbance regimes. J. Environ. Manag. 2024, 371, 123124. [Google Scholar] [CrossRef]
 - Lu, S.; Zhang, Z.; Li, R.; Wu, F.; Zhang, N.; Yang, J. Effects of contour tillage on soil erosion process in different slope. J. Soil Water Conserv. 2023, 37, 37–44. [Google Scholar]
 - Tan, M.; Cui, N.; Jiang, S.; Xing, L.; Wen, S.; Liu, Q.; Li, W.; Yan, S.; Wang, Y.; Jin, H.; et al. Effect of practicing water-saving irrigation on greenhouse gas emissions and crop productivity: A global meta-analysis. Agric. Water Manag. 2025, 308, 109300. [Google Scholar] [CrossRef]
 - Dai, E.; Wang, Y. Identifying driving factors of ecosystem service trade-offs in mountainous region of southwestern China across geomorphic and climatic types. Ecol. Indic. 2024, 158, 111520. [Google Scholar] [CrossRef]
 - Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
 - Lin, S.; Wu, R.; Yang, F.; Wang, J.; Wu, W. Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecol. Indic. 2018, 84, 371–381. [Google Scholar] [CrossRef]
 - Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
 - Yang, J.; Duan, H.; Song, F.; Wang, J.; Ren, Z.; Jiang, Z.; Chen, Y. Spatiotemporal evolution of landscape ecological risk in the Gaoligong Mountain, 2000–2020. J. Southwest For. Univ. 2024, 44, 54–63. [Google Scholar]
 - Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
 - Zhang, X.; Zhang, G.; Long, X.; Zhang, Q.; Liu, D.; Wu, H.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132 (Suppl. C), 108304. [Google Scholar] [CrossRef]
 - Guo, Q.; Wang, A.; Qin, W.; Shan, Z.; Gong, J.; Wang, D.; Ding, L. Changes in the characteristics of flood discharge and sediment yield in a typical watershed in the Hengduan Mountain Region, Southwest China, under extreme precipitation events. Ecol. Indic. 2022, 145, 109600. [Google Scholar] [CrossRef]
 - Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
 - Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef] [PubMed]
 - Yang, X.; Yu, S.; Luo, Z.; Luo, S.; Nie, X. Interaction and zoning management of landscape ecological risk and ecosystem services around poyang lake from multi-scale perspective. Environ. Sci. 2025, 1–18. [Google Scholar] [CrossRef]
 










| Data Type | Formats | Sources | Description | 
|---|---|---|---|
| Land use data | Grid/30 m | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 3 June 2024)  | Classified into seven land categories for ESs and LER assessment. | 
| Vegetation type data  | Grid/30 m | http://www.resdc.cn/, accessed on 3 June 2024 | Used in CASA, InVEST, and RUSLE to represent vegetation types. | 
| Soil data | Grids/30 m | http://www.resdc.cn/, accessed on 3 June 2024 | Provides soil texture and properties for RUSLE and InVEST models. | 
| Normalized difference vegetation index (NDVI)  | Grids/30 m | http://www.resdc.cn/, accessed on 3 June 2024 | Reflects vegetation cover for CASA and RUSLE parameterization. | 
| Geomorphic type | Grids/1 km | http://www.resdc.cn/, accessed on 3 June 2024 | Categorizes landforms for ESs and SC analysis. | 
| Meteorological information | Grids/1 km | National Meteorological Information Center (http://data.cma.cn/, accessed on 5 June 2024)  | Provides precipitation and temperature for RUSLE and WY estimation. | 
| Potential evapotranspiration | Grids/1 km | National Earth System Science Data Center (http://www.geodata.cn/, accessed on 5 June 2024)  | Used to estimate actual evapotranspiration in InVEST. | 
| Digital elevation model data (DEM) | Grids/90 m | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 28 February 2024)  | Offers elevation data for slope, length, steepness factor, and hydrological modeling. | 
| Sub-watershed data | Vector | Geonetwork Opensource (https://www.geonetwork-opensource.org/, accessed on 4 July 2024)  | Defines watershed boundaries for spatial unit analysis. | 
| ESs | NPP | SC | WY | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
| Moran’I | 0.74 | 0.75 | 0.72 | 0.45 | 0.42 | 0.38 | 0.80 | 0.84 | 0.83 | 
| z-value | 1171.11 | 1176.48 | 1127.53 | 2211.65 | 2061.90 | 1890.34 | 3968.28 | 4166.97 | 4133.17 | 
| p-value | 0.001, significant relation | ||||||||
| ESs | Year | Inflection Point  | Mean Point  | Trade-Off Strength | 
|---|---|---|---|---|
| NPP-SC | 2000 | (−0.27, 0.38) | (0.28, 0.28) | 0.48 | 
| 2010 | (−0.15, 0.07) | (0.28, 0.28) | 0.46 | |
| 2020 | (0.09, −0.07) | (0.26, 0.27) | 0.42 | |
| NPP-WY | 2000 | (0.31, −0.03) | (0.49, 0.49) | 0.58 | 
| 2010 | (0.21, 0.002) | (0.43, 0.42) | 0.51 | |
| 2020 | (0.22, 0.01) | (0.48, 0.48) | 0.50 | |
| SC-WY | 2000 | (0.06, −0.09) | (0.26, 0.26) | 0.71 | 
| 2010 | (0.16, −0.20) | (0.19, 0.19) | 0.64 | |
| 2020 | (0.17, −0.04) | (0.24, 0.24) | 0.43 | 
| ESs | NPP-SC | NPP-WY | SC-WY | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
| Moran’I | −0.01 | −0.004 | −0.04 | −0.02 | −0.02 | 0.04 | 0.10 | −0.10 | −0.06 | 
| z-value | −3.02 | −1.31 | −11.39 | −5.34 | −7.67 | 14.19 | 31.70 | −32.22 | −21.25 | 
| p-value | 0.001, significant relation | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Dai, E.; Kong, K.; Tian, Y.; Yang, Y.; Li, Z.; Liu, J.; Zhang, B.; Yin, L. Ecological Zoning in Mountainous Areas Based on Ecosystem Service Trade-Offs and Landscape Ecological Risk: A Case Study of the Hengduan Mountain Region. Sustainability 2025, 17, 7630. https://doi.org/10.3390/su17177630
Zhao X, Dai E, Kong K, Tian Y, Yang Y, Li Z, Liu J, Zhang B, Yin L. Ecological Zoning in Mountainous Areas Based on Ecosystem Service Trade-Offs and Landscape Ecological Risk: A Case Study of the Hengduan Mountain Region. Sustainability. 2025; 17(17):7630. https://doi.org/10.3390/su17177630
Chicago/Turabian StyleZhao, Xiaoyu, Erfu Dai, Kangning Kong, Yuan Tian, Yong Yang, Zhuo Li, Jiachen Liu, Baolei Zhang, and Le Yin. 2025. "Ecological Zoning in Mountainous Areas Based on Ecosystem Service Trade-Offs and Landscape Ecological Risk: A Case Study of the Hengduan Mountain Region" Sustainability 17, no. 17: 7630. https://doi.org/10.3390/su17177630
APA StyleZhao, X., Dai, E., Kong, K., Tian, Y., Yang, Y., Li, Z., Liu, J., Zhang, B., & Yin, L. (2025). Ecological Zoning in Mountainous Areas Based on Ecosystem Service Trade-Offs and Landscape Ecological Risk: A Case Study of the Hengduan Mountain Region. Sustainability, 17(17), 7630. https://doi.org/10.3390/su17177630
        
