Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = soil N transformation dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1736 KiB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Viewed by 148
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
by Jie Yang, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang and Rong Zheng
Agronomy 2025, 15(7), 1647; https://doi.org/10.3390/agronomy15071647 - 7 Jul 2025
Viewed by 323
Abstract
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2 [...] Read more.
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2O emission potential and silicon (Si) availability. We collected soil samples (0–20 cm) from bamboo stands subjected to 0–39 years of intensive management and from adjacent natural broad-leaved forests as a reference. The Soil pH, nitrogen forms, nitrification and denitrification potential, and Si concentrations were measured. The results showed significant nitrogen accumulation and progressive soil acidification with increasing management duration. The nitrification and denitrification potentials were 5.7 and 6.0 times higher in the 39-year-old stand compared to unmanaged bamboo. Meanwhile, the available Si decreased by 20.1%, despite stable total Si levels. The available Si showed strong positive correlations with nitrogen forms and transformation rates. These findings highlight the long-term impact of fertilizer-driven bamboo management on soil biogeochemistry and emphasize the need to consider Si dynamics in sustainable nutrient strategies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
The Contribution of Microbial- and Plant-Derived Carbon to Soil Organic Carbon Fractions and Stability Under Manure Application Combined with Straw Incorporation
by Yunjie Wen, Xian Liu, Na Yang, Yongping Li and Jiancheng Zhang
Agronomy 2025, 15(6), 1424; https://doi.org/10.3390/agronomy15061424 - 11 Jun 2025
Viewed by 1011
Abstract
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each [...] Read more.
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each influencing soil carbon dynamics and nutrient cycling. Current research gaps remain regarding how combined fertilization practices affect the inputs of plant-originated and microbe-derived carbon into SOC pools and stability mechanisms. Our investigation measured SOC fractions (DOC, POC, MOC), SOC mineralization rate (SCMR), microbial necromass carbon, lignin phenols, enzyme activities, and microbial phospholipid fatty acids (PLFAs) over a long-term (17 years) field experiment with four treatments: mineral fertilization alone (CF), manure-mineral combination (CM), straw-mineral application (CS), and integrated manure-straw-mineral treatment (CMS). The CMS treatment exhibited notably elevated levels of POC (7.42 g kg−1), MOC (10.7 g kg−1), and DOC (0.108 g kg−1), as well as a lower SCMR value (1.85%), compared with other fertilization treatments. Additionally, the CMS treatment stimulated the buildup of both bacterial and fungal necromass while enhancing the concentrations of ligneous biomarkers (vanillin, syringyl, and cinnamic derivatives), which correlated strongly with the elevated contents of fungal and bacterial PLFAs and heightened activity of carbon-processing enzymes (α-glucosidase, polyphenol oxidase, cellobiohydrolase, peroxidase, N-acetyl-β-D-glucosidase). Furthermore, fungal and bacterial microbial necromass carbon, together with lignin phenols, significantly contributed to shaping the composition of SOC. Through random forest analysis, we identified that the contents of bacterial and fungal necromass carbon were the key factors influencing DOC and MOC. The concentrations of syringyl phenol and cinnamyl phenols, and the syringyl-to-cinnamyl phenols ratio were the primary determinants for POC, while the fungal-to-bacterial necromass carbon ratio, as well as the concentrations of vanillyl, syringyl, and cinnamyl phenols, played a critical role in SCMR. In conclusion, the manure combined with straw incorporation not only promoted microbial growth and enzyme activity but also enhanced plant- and microbial-derived carbon inputs. Consequently, this led to an increase in the contents and stability of SOC fractions (DOC, POC, and MOC). These results suggest that manure combined with straw is a viable strategy for soil fertility due to its improvement in SOC sequestration and stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Soil pH and Nutrient Stoichiometry as Key Drivers of Phosphorus Availability in Crop Rotation Systems
by Yi Yuan, Yi Zhu, Yichen Zhao, Meng Wang, Zhaoming Qu, Dongqing Lv, Yanli Liu, Yan Song, Tingting Wang, Chengliang Li and Haojie Feng
Agronomy 2025, 15(5), 1023; https://doi.org/10.3390/agronomy15051023 - 24 Apr 2025
Viewed by 540
Abstract
Crop rotation systems profoundly influence soil phosphorus (P) dynamics through physicochemical and microbial interactions. The mechanisms regulating P availability under various rotational practices remain poorly understood. This five-year field experiment investigated the effects of four rotation systems (WM: wheat–maize; WP: wheat–peanut; WS: wheat–soybean; [...] Read more.
Crop rotation systems profoundly influence soil phosphorus (P) dynamics through physicochemical and microbial interactions. The mechanisms regulating P availability under various rotational practices remain poorly understood. This five-year field experiment investigated the effects of four rotation systems (WM: wheat–maize; WP: wheat–peanut; WS: wheat–soybean; MV: maize–hairy vetch) on soil P fractions, phosphatase activities, P-cycling gene abundance, and their interactions with soil properties. The WM rotation substantially reduced soil pH (6.29) while increasing labile P fractions (Ca2-P) and moderately labile P (Al-P, Fe-P, and Ca8-P), which was attributed to enhanced acid phosphatase activity. The WP rotation elevated soil pH (8.13) but reduced P availability due to calcium–P immobilization. The MV rotation stimulated microbial P cycling, exhibiting the highest phoD (2.01 × 106 copies g−1) and phnK (33,140 copies g−1) gene abundance, which was linked to green manure-induced microbial activation. Redundancy analysis identified soil pH, total nitrogen, and stoichiometric ratios (C/N and N/P) as key shared drivers of P fractions and enzymatic activity. Partial least squares path modeling (PLS–PM) indicated that crop rotation directly regulated P availability through pH modulation (r = −0.559 ***) and the C/N ratio (r = 0.343 ***) while indirectly regulating P fractions through phosphatase activity. Lower C/N ratios (<10) across all rotation regimes amplified the carbon limitation in the process of P transformation, indicating that exogenous carbon inputs and appropriate stoichiometry in the soil should be optimized. The results of this study inform the selection of suitable crop rotation patterns for sustainable agriculture. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

23 pages, 5520 KiB  
Article
Multivariate Insight into Soil Organic Matter Dynamics in Subarctic Abandoned Farmland by the Chronosequence Approach
by Timur Nizamutdinov, Sizhong Yang, Xiaodong Wu, Vladislav Gurzhiy and Evgeny Abakumov
Agronomy 2025, 15(4), 893; https://doi.org/10.3390/agronomy15040893 - 3 Apr 2025
Viewed by 556
Abstract
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to [...] Read more.
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil, and this study investigates the dynamics of SOM properties in Subarctic agricultural soils in process of post-agrogenic transformation and long-term fertilization. Using a chronosequence approach (0–25 years of abandonment) and a reference site with over 90 years of fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify the connections between SOM composition and other soil properties. The results revealed transient increases in soil organic carbon (SOC) during early abandonment (5–10 years; 3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineralization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization. The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%) through long-term organic inputs, compensating for poor mineralogical protection. 13C NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxidized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlusion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosystems, emphasizing the necessity of organic amendments to counteract limitations of poor mineralogical composition and climatic stress. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

23 pages, 4508 KiB  
Review
Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination
by Xingang Chang, Wenying Wang and Huakun Zhou
Plants 2025, 14(5), 748; https://doi.org/10.3390/plants14050748 - 1 Mar 2025
Cited by 4 | Viewed by 1276
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the [...] Read more.
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3 in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species’ preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant–soil interactions potentially influence soil N dynamics. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

24 pages, 6470 KiB  
Article
Dynamic Modeling of Soil Water Dynamics and Nitrogen Species Transport with Multi-Crop Rotations Under Variable-Saturated Conditions
by Vilim Filipović, Dragutin Petošić, Ivan Mustać, Igor Bogunović, Hailong He and Lana Filipović
Land 2025, 14(2), 315; https://doi.org/10.3390/land14020315 - 5 Feb 2025
Viewed by 1134
Abstract
Excessive application of nitrogen (N) fertilizers in agriculture poses significant environmental risks, notably nitrate leaching into groundwater. This study evaluates soil water dynamics and the transport of urea, ammonium, and nitrate under variable-saturated conditions in a long-term experimental field in Croatia, Europe. Utilizing [...] Read more.
Excessive application of nitrogen (N) fertilizers in agriculture poses significant environmental risks, notably nitrate leaching into groundwater. This study evaluates soil water dynamics and the transport of urea, ammonium, and nitrate under variable-saturated conditions in a long-term experimental field in Croatia, Europe. Utilizing HYDRUS-1D and HYDRUS-2D models, we simulated water flow and nitrogen transformation and transport across six lysimeter-monitored locations over four years (2019–2023), incorporating diverse crop rotations and N addition. Key modeled processes included nitrification, urea hydrolysis, and nitrate leaching, integrating field-measured parameters and climatic conditions. The models achieved high reliability, with R2 values for water flow ranging from 0.58 to 0.97 and for nitrate transport from 0.13 to 0.97; however, some cases reported lower reliability. Results revealed that nitrate leaching was influenced by precipitation patterns, soil moisture, crop growth stages, and fertilization timing. Peak nitrate losses were observed during early crop growth and post-harvest periods when elevated soil moisture and reduced plant uptake coincided. The findings highlight the importance of optimizing nitrogen application strategies to balance crop productivity and environmental protection. This research demonstrates the effectiveness of numerical modeling as a tool for sustainable nitrogen management and groundwater quality preservation in agricultural systems. It also indicates the need for further development by capturing some of the processes such as identification in the N cycle. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

19 pages, 2614 KiB  
Review
Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems
by Anju Chaudhary, Shital Poudyal and Amita Kaundal
Appl. Microbiol. 2025, 5(1), 6; https://doi.org/10.3390/applmicrobiol5010006 - 11 Jan 2025
Cited by 2 | Viewed by 2375
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in maintaining sustainable agroecosystems by forming mutualistic relationships with plant roots, improving soil health, facilitating nutrient uptake, and enhancing resilience to abiotic stresses. The mutualistic relationship between AM fungi and plants promotes a balanced microbial [...] Read more.
Arbuscular mycorrhizal (AM) fungi play a crucial role in maintaining sustainable agroecosystems by forming mutualistic relationships with plant roots, improving soil health, facilitating nutrient uptake, and enhancing resilience to abiotic stresses. The mutualistic relationship between AM fungi and plants promotes a balanced microbial community and improves soil structure by forming stable soil aggregates. Additionally, AM fungi can lower the adverse effects of high soil phosphorus (P) while also enhancing plant tolerance to drought, salinity, and heavy metal toxicity through osmotic regulation and antioxidant production. Arbuscular mycorrhizal fungi also support beneficial microorganisms, such as potassium (K)-solubilizing microbes and nitrogen (N)-transforming bacteria, which enhance the nutrient dynamics in soil. However, intensive agricultural practices, including heavy tillage and continuous monoculture, disrupt AM fungal networks and reduce microbial diversity, impairing their effectiveness. Adopting conservation practices such as reduced tillage, crop rotation, and organic amendments supports AM fungal growth. Incorporating mycorrhizal crops and utilizing native fungal inoculants can enhance AM fungal colonization and plant growth. These strategies collectively bolster soil health, crop productivity, and resilience, offering a promising solution to the environmental and agricultural challenges posed by intensive farming. By promoting AM fungi growth and colonization, agroecosystems can achieve long-term productivity and increased sustainability. Full article
Show Figures

Figure 1

18 pages, 6143 KiB  
Article
Phosphorus Dynamics in Japanese Blueberry Field: Long-Term Accumulation and Fractionation across Soil Types and Depths
by Chun Lu, Soh Sugihara, Haruo Tanaka, Ryosuke Tajima, Shingo Matsumoto and Takuya Ban
Agronomy 2024, 14(9), 1947; https://doi.org/10.3390/agronomy14091947 - 29 Aug 2024
Cited by 1 | Viewed by 1256
Abstract
Effective phosphorus (P) management is crucial for optimal blueberry production. However, a comprehensive understanding of phosphorus distribution across soil depths and types after two decades of blueberry cultivation remains a challenge. This study examines pH, EC, SOC (soil organic carbon), Total N (total [...] Read more.
Effective phosphorus (P) management is crucial for optimal blueberry production. However, a comprehensive understanding of phosphorus distribution across soil depths and types after two decades of blueberry cultivation remains a challenge. This study examines pH, EC, SOC (soil organic carbon), Total N (total nitrogen), and phosphorus fractions in soils from Japanese blueberry fields that have been cultivated for over 20 years. The soils selected for this study represent typical soils from long-term blueberry-growing regions in Japan, ensuring the relevance of the findings to these key agricultural areas. Soil samples were gathered from depths of 0–30 cm and 30–60 cm, revealing significant variations in phosphorus content that are influenced by soil properties and fertilization history. Soil types such as KS (Kuroboku soils) and FS (Fluvic soils) show higher Total P accumulation in deeper layers, whereas BFS (Brown Forest soils) and RYS (Red-Yellow soils) accumulate more in shallower layers. Long-term cultivation has led to greater non-labile phosphorus (NLP) accumulation in shallower layers of KS, BFS, and FS soils, indicating strong phosphorus fixation. BFS soil also exhibits increased organic phosphorus (NaOH-Po) at deeper depths. NaOH-Po and NaHCO3-Po, through their interactions with EC and pH, critically modulate the transformation of NLP into labile phosphorus (LP), thereby influencing overall phosphorus and nitrogen dynamics in the soil. These findings underscore the importance of tailored phosphorus fertilization strategies based on blueberry field characteristics, providing a basis for low-input phosphorus fertilization approaches. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 3130 KiB  
Article
Assessment of Different Humate Ureas on Soil Mineral N Balanced Supply
by Shengjun Bai, Lingying Xu, Rongkui Ren, Yue Luo, Xiaoqi Liu, Jingli Guo, Xu Zhao and Wentai Zhang
Agronomy 2024, 14(8), 1856; https://doi.org/10.3390/agronomy14081856 - 21 Aug 2024
Viewed by 1145
Abstract
Urea supplements, such as humic acids, could enhance fertilizer nitrogen use effectiveness. Melting is superior to mixing for humate urea application; however, the effects of diverse humate ureas from various coal sources on soil N supply remain unclear. This study compared the properties [...] Read more.
Urea supplements, such as humic acids, could enhance fertilizer nitrogen use effectiveness. Melting is superior to mixing for humate urea application; however, the effects of diverse humate ureas from various coal sources on soil N supply remain unclear. This study compared the properties of two humic acids from different coal sources (HA1, weathered coal; HA2, lignite coal), and their impact on soil mineral N supply and the nitrate–ammonium ratio under flooded and 60% water-filled pore space (WFPS) over a 14-day incubation. Humate ureas stimulated soil mineral N accumulation and balanced the soil nitrate–ammonium ratio at 1:1; however, no significant difference existed between the two humate ureas under 60% WFPS. Humate urea enhanced soil ammonium nitrogen (NH4+-N) retention and delayed nitrate nitrogen (NH4-N) release, leading to soil mineral N retention, especially in lignite humic acid urea (H2AU) treatments from lignite under flooding. Structural equation modeling (SEM) and linear regression revealed that humic acids elevated soil redox potential (Eh) and electrical conductivity (EC), stimulating soil N mineralization and adjusting the optimal nitrate–ammonium ratio. Humate urea improved soil mineral N supply compared to traditional urea treatments, and humic acids from lignite were more beneficial for crop cultivation from a mineral soil N supply perspective. These findings enhance our understanding of humate urea benefits and aid in optimizing humic acids application for N management. Full article
(This article belongs to the Special Issue Advances in Application Effects and Mechanisms of Fertilizer Products)
Show Figures

Figure 1

14 pages, 1019 KiB  
Article
Effect of Nitrogen and Phosphorus on Soil Enzyme Activities and Organic Carbon Stability in Qinghai–Tibet Plateau
by Jiaying Zhai, Huakun Zhou, Yang Wu, Guoliang Wang and Sha Xue
Agronomy 2024, 14(7), 1376; https://doi.org/10.3390/agronomy14071376 - 26 Jun 2024
Cited by 5 | Viewed by 1948
Abstract
Alpine grassland ecosystems are the most important ecosystem type, exhibiting a high sensitivity to anthropogenic nitrogen (N) and phosphorus (P) inputs into terrestrial ecosystems and significantly affecting the carbon (C) cycle within these ecosystems. However, the effects of N and P additions on [...] Read more.
Alpine grassland ecosystems are the most important ecosystem type, exhibiting a high sensitivity to anthropogenic nitrogen (N) and phosphorus (P) inputs into terrestrial ecosystems and significantly affecting the carbon (C) cycle within these ecosystems. However, the effects of N and P additions on soil C stability and the processes of organic C transformation remain unclear. This study measured the soil enzyme activities and oxidizable C fractions over a 9-year period following N and P additions to an alpine meadow in the Qinghai–Tibet Plateau. It included four treatments: control (CK), N addition, P addition, and combined N and P addition (NP), utilizing statistical methods such as analysis of variance (ANOVA), correlation analysis, and redundancy analysis. The findings indicated that NP addition significantly increased the non-labile soil oxidizable C fraction in the topsoil layer. Redundancy and correlation analyses revealed strong associations between the vegetation characteristics, C-cycling enzyme activities, soil-oxidized C fractions, and SOC stability index. These results underscore the role of NP addition in enhancing SOC accumulation and stability in grassland ecosystems, with the soil vegetation properties and C source enzyme activities serving as key regulators of the SOC stability. This study offers valuable insights into predicting the SOC dynamics amid rising N and P availability, thereby elucidating the effect of nutrient addition on soil C-cycling mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

12 pages, 2696 KiB  
Article
The Effects of the Co-Application of MCPA Herbicide and Urea on Grass Rhizosphere Microcosms
by Marco A. Campos, Graciela Palma, Carlos Faundez and Sebastian Elgueta
Agronomy 2024, 14(7), 1366; https://doi.org/10.3390/agronomy14071366 - 25 Jun 2024
Viewed by 1658
Abstract
Background: Urea fertilizer and MCPA herbicide are widely used agrochemicals in pastures. Even though urea hydrolysis impacts soil pH, potentially affecting MCPA dissipation, little is known about the effects of their co-application into the rhizosphere. Hence, we aimed to analyze the dynamics of [...] Read more.
Background: Urea fertilizer and MCPA herbicide are widely used agrochemicals in pastures. Even though urea hydrolysis impacts soil pH, potentially affecting MCPA dissipation, little is known about the effects of their co-application into the rhizosphere. Hence, we aimed to analyze the dynamics of urea transformation and MCPA dissipation when both are co-applied to the soil. Methods: A greenhouse experiment was conducted with a planted control and treatments incorporating urea and/or MCPA. Subsequently, pH changes, urea transformation into N-NH4+ and N-NO3, the enzymatic activity of urease and dehydrogenase, and MCPA dissipation were monitored for 30 d. Results: Urea application induced a significant (p < 0.05) pH change, production of N-NH4+ (from 50 and 250 mg kg−1) and N-NO3 (from 206 to 347 mg kg−1), and urease (from 12 to 35 µmol N-NH4+g−1 h−1) and dehydrogenase (from 0.5 to 2.5 mg TPF g−1 h−1) activities. Urea also decelerated MCPA dissipation in the latter half of the experiment, whereas MCPA reduced urease activity when urea and herbicide were co-applied. Conclusions: Urea was the primary factor modifying the properties of the rhizosphere by stimulating the activity of microbial enzymes, shaping the pH changes during its mineralization, and decelerating MCPA dissipation. MCPA did not reduce urea mineralization but slowed urease activity, constituting an insight that requires further study. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

42 pages, 1593 KiB  
Article
Higher-Order Convolutional Neural Networks for Essential Climate Variables Forecasting
by Michalis Giannopoulos, Grigorios Tsagkatakis and Panagiotis Tsakalides
Remote Sens. 2024, 16(11), 2020; https://doi.org/10.3390/rs16112020 - 4 Jun 2024
Cited by 3 | Viewed by 1335
Abstract
Earth observation imaging technologies, particularly multispectral sensors, produce extensive high-dimensional data over time, thus offering a wealth of information on global dynamics. These data encapsulate crucial information in essential climate variables, such as varying levels of soil moisture and temperature. However, current cutting-edge [...] Read more.
Earth observation imaging technologies, particularly multispectral sensors, produce extensive high-dimensional data over time, thus offering a wealth of information on global dynamics. These data encapsulate crucial information in essential climate variables, such as varying levels of soil moisture and temperature. However, current cutting-edge machine learning models, including deep learning ones, often overlook the treasure trove of multidimensional data, thus analyzing each variable in isolation and losing critical interconnected information. In our study, we enhance conventional convolutional neural network models, specifically those based on the embedded temporal convolutional network framework, thus transforming them into models that inherently understand and interpret multidimensional correlations and dependencies. This transformation involves recasting the existing problem as a generalized case of N-dimensional observation analysis, which is followed by deriving essential forward and backward pass equations through tensor decompositions and compounded convolutions. Consequently, we adapt integral components of established embedded temporal convolutional network models, like encoder and decoder networks, thus enabling them to process 4D spatial time series data that encompass all essential climate variables concurrently. Through the rigorous exploration of diverse model architectures and an extensive evaluation of their forecasting prowess against top-tier methods, we utilize two new, long-term essential climate variables datasets with monthly intervals extending over four decades. Our empirical scrutiny, particularly focusing on soil temperature data, unveils that the innovative high-dimensional embedded temporal convolutional network model-centric approaches markedly excel in forecasting, thus surpassing their low-dimensional counterparts, even under the most challenging conditions characterized by a notable paucity of training data. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

11 pages, 1761 KiB  
Article
Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest
by Natsumi Yasuki, Wakana Saso, Hiroshi Koizumi, Yasuo Iimura, Toshiyuki Ohtsuka and Shinpei Yoshitake
Forests 2024, 15(3), 572; https://doi.org/10.3390/f15030572 - 21 Mar 2024
Cited by 2 | Viewed by 1829
Abstract
Changes in soil nutrient dynamics after biochar application may affect indirect carbon sequestration through changes in plant productivity in forest ecosystems. In the present study, we examined the effects of woody biochar application on soil nitrogen (N) cycling over 8 months in a [...] Read more.
Changes in soil nutrient dynamics after biochar application may affect indirect carbon sequestration through changes in plant productivity in forest ecosystems. In the present study, we examined the effects of woody biochar application on soil nitrogen (N) cycling over 8 months in a warm-temperate deciduous broad-leaved forest. Mineral soil samples were collected from the plots treated with different biochar applications (0, 5, and 10 Mg ha−1), and the soil inorganic N concentration was measured. Net mineralization and nitrification rates were determined in each plot using the resin–core method. Soil temperature and water content did not change significantly, but the pH increased significantly following biochar application. Soil inorganic N concentrations (NH4+ and NO3) and net N transformation rates (mineralization and nitrification rates) were significantly reduced. Microbial biomass and the nitrification ratio (the ratio of nitrification rate to mineralization rate) were unchanged, indicating that the decrease in soil inorganic N concentration was due to the reduced mineralization rate. Adsorption of substrates (from organic matter) by the applied biochar is the most likely reason for the reduction in the N mineralization rate. The results indicate that biochar application does not necessarily stimulate N transformation, which will affect indirect carbon sequestration. Full article
Show Figures

Figure 1

22 pages, 6978 KiB  
Article
The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater
by Xurun Li, Zhao Li, Weizhang Fu and Fadong Li
Agriculture 2024, 14(3), 341; https://doi.org/10.3390/agriculture14030341 - 21 Feb 2024
Cited by 6 | Viewed by 2434
Abstract
The depth of shallow groundwater significantly influences crop growth and yield by altering the physicochemical properties of farmland soil profiles. Concurrently, shallow groundwater is subject to various changes, and it remains unclear how alterations in shallow groundwater depth within field soil impact soil [...] Read more.
The depth of shallow groundwater significantly influences crop growth and yield by altering the physicochemical properties of farmland soil profiles. Concurrently, shallow groundwater is subject to various changes, and it remains unclear how alterations in shallow groundwater depth within field soil impact soil physicochemical properties, crop yields, and the overall dynamics of groundwater transformations. To address these uncertainties, this study utilized a sample plot equipped with a volume lysimeter and implemented four distinct groundwater depths as treatment conditions: G0 (no groundwater depth), G1 (a groundwater depth of 40 cm), G2 (a groundwater depth of 70 cm), G3 (a groundwater depth of 110 cm), and G4 (a groundwater depth of 150 cm). This study was carried out on a weekly basis to monitor fluctuations in ion content in shallow groundwater and soil moisture after the summer maize harvest, and special attention was afforded to non-irrigation conditions. This study also scrutinized the distribution of salt and nutrients in soil profiles and assessed changes in summer maize yield. Very interesting findings were obtained by conducting the study. Firstly, the shallower the groundwater depth, the higher the water and salt content of the soil surface. Small, frequent rainfall events (precipitation ≤ 25 mm) facilitated the effective removal of salt from the soil surface. Despite increased rainfall contributing to salt ion dilution in groundwater, the risk of soil surface salinization increased at the surface level. Secondly, a linear relationship existed between groundwater depth and surface soil moisture and salt content. With every 10 cm increase in groundwater depth, the surface soil moisture and salt content decreased by 0.56% and 0.06 g/kg, respectively. Soil nutrients tended to accumulate in the surface layer, with nutrient content increasing with depth. However, C/N was not notably affected by groundwater depth. Thirdly, Na+ and K+ consistently dominated the soil surface. As soil salinity increased, the prevalence of Cl and SO42− increased, with the rate of SO42− increase surpassing that of chlorine. HCO3 altered by rainfall served as an indicator of soil alkalization characteristics, while Na+ and K+ in soil, along with Cl and SO42− derived from groundwater, represented soil salt composition and salinization trends. Ultimately, under the conditions of this study, the most favorable groundwater depth for the growth of summer maize was determined to be 1.1 m. Analyzing the impact of different shallow groundwater depths on the physicochemical properties of farmland soil enhances our understanding of the mechanisms of interaction between groundwater and soil in agricultural ecosystems. This knowledge is instrumental in significantly improving the soil environment, thereby ensuring optimal crop yields. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

Back to TopTop