Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,331)

Search Parameters:
Keywords = soft phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 (registering DOI) - 1 Aug 2025
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

12 pages, 1677 KiB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 (registering DOI) - 1 Aug 2025
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 144
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 271
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

22 pages, 10555 KiB  
Article
Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials
by Zhiyuan Zhang, Xiaolan Bai, Jingjie Zhang, Mingdong Yi, Guangchun Xiao, Tingting Zhou, Hui Chen, Zhaoqiang Chen and Chonghai Xu
Materials 2025, 18(15), 3440; https://doi.org/10.3390/ma18153440 - 22 Jul 2025
Viewed by 339
Abstract
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O [...] Read more.
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O3 as precursors and consolidated by spark plasma sintering. Sc2W3O12 with negative thermal expansion was introduced to compensate for matrix shrinkage and modulate interfacial stress. The effects of varying Sc2W3O12 content on thermal expansion, residual stress, microstructure, and mechanical properties were systematically investigated. Among the compositions, SNS3 (12 wt.% Sc2W3O12) exhibited the best overall performance: relative density of 98.8 ± 0.2%, flexural strength of 712.4 ± 30 MPa, fracture toughness of 7.5 ± 0.3 MPa·m1/2, Vickers hardness of 16.3 ± 0.3 GPa, and an average thermal expansion coefficient of 2.81 × 10−6·K−1. The formation of a spherical chain-like Sc-W-O phase at the grain boundaries created a “hard core–soft shell” interface that enhanced crack resistance and stress buffering. Cutting tests showed that the SNS3 tool reduced workpiece surface roughness by 32.91% and achieved a cutting distance of 9500 m. These results validate the potential of this novel multiphase ceramic system as a promising candidate for high-performance and thermally stable ceramic cutting tools. Full article
Show Figures

Figure 1

27 pages, 3299 KiB  
Article
Corrosion Stability and Biological Activity of Anodized cpTi for Dental Application
by Aleksandra S. Popović, Minja Miličić Lazić, Dijana Mitić, Lazar Rakočević, Dragana Jugović, Predrag Živković and Branimir N. Grgur
Metals 2025, 15(7), 817; https://doi.org/10.3390/met15070817 - 21 Jul 2025
Viewed by 350
Abstract
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on [...] Read more.
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on polished, cleaned cpTi sheet samples in 1 M H2SO4 using a constant voltage of 15 V for 15 and 45 min. The color of the oxide layer is evaluated using the CIELab color space, while composition is analyzed by a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Additionally, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to identify and monitor the phase transformations of the formed titanium oxides. Corrosion measurements are performed in 9 g L−1 NaCl, pH = 7.4, and show the excellent corrosion stability of the anodized samples in comparison with pure titanium. The biological response is assessed by determining mitochondrial activity and gene expression in human fibroblasts. Anodized surfaces, particularly Ti-45, promote higher mitochondrial activity and the upregulation of adhesion-related genes (N-cadherin and Vimentin) in human gingival fibroblasts, indicating improved biocompatibility and the potential for enhanced early soft tissue integration. Full article
Show Figures

Graphical abstract

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 399
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

14 pages, 1084 KiB  
Article
Dynamic Changes in Mimic Muscle Tone During Early Orthodontic Treatment: An sEMG Study
by Oskar Komisarek, Roksana Malak and Paweł Burduk
J. Clin. Med. 2025, 14(14), 5048; https://doi.org/10.3390/jcm14145048 - 16 Jul 2025
Viewed by 255
Abstract
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in [...] Read more.
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in facial muscle tone during the leveling and alignment phase in adult female patients undergoing fixed appliance therapy. Methods: The study included 30 female patients aged 20–31 years who underwent sEMG assessment at four time points: before treatment initiation (T0), at the start of appliance placement (T1), three months into treatment (T2), and six months into treatment (T3). Muscle activity was recorded during four standardized facial expressions: eye closure, nasal strain, broad smile, and lip protrusion. Electrodes were placed on the orbicularis oris, orbicularis oculi, zygomaticus major, and levator labii superioris alaeque nasi muscles. A total of 1440 measurements were analyzed using Friedman and Conover-Inman tests (α = 0.05). Results: Significant changes in muscle tone were observed during treatment. During lip protrusion, the orbicularis oris and zygomaticus major showed significant increases in peak and minimum activity (p < 0.01). Eye closure was associated with altered orbicularis oris activation bilaterally at T3 (p < 0.01). Nasal strain induced significant changes in zygomaticus and levator labii muscle tone, particularly on the right side (p < 0.05). No significant changes were noted during broad smiling. Conclusions: Orthodontic leveling and alignment influence the activity of selected facial expression muscles, demonstrating a dynamic neuromuscular adaptation during treatment. These findings highlight the importance of considering soft tissue responses in orthodontic biomechanics and suggest potential implications for facial esthetics and muscle function monitoring. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

18 pages, 20927 KiB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 275
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

25 pages, 6536 KiB  
Article
Ni20/PTFE Composite Coating Material and the Synergistic Friction Reduction and Wear Resistance Mechanism Under Multiple Working Conditions
by Xiyao Liu, Ye Wang, Zengfei Guo, Xuliang Liu, Lejia Qin and Zhiwei Lu
Coatings 2025, 15(7), 830; https://doi.org/10.3390/coatings15070830 - 16 Jul 2025
Viewed by 201
Abstract
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, [...] Read more.
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, Ni20 powder doped with reinforced phase WC as hard coating material, using laser melting technology to prepare nickel-based hard coating on the surface of 20CrMo. PTFE emulsion and MoS2 as a soft coating are prepared on the hard coating, and the nickel-based hard-soft composite coating is formed. At 6N-0.3 m/s, the new interface structure obtains the optimum tribological performance, and compared to 20CrMo, the friction coefficient and wear amount are reduced by 83% and 93% respectively. The new friction interface can obtain stable and prominent tribological properties at wide load and low to high speed, which can provide the guidance on the structural design of friction reduction and wear resistance materials. Full article
Show Figures

Figure 1

27 pages, 5760 KiB  
Review
Recent Advances in Soft Acoustic Metamaterials: A Comprehensive Review of Geometry, Mechanisms, and System Responsiveness
by Ju-Hee Lee, Haesol Kwak, Eunjik Kim and Min-Woo Han
Appl. Sci. 2025, 15(14), 7910; https://doi.org/10.3390/app15147910 - 16 Jul 2025
Viewed by 776
Abstract
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable [...] Read more.
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable structures to achieve enhanced acoustic functionality. These systems make use of the inherent flexibility of their materials or the deformability of their geometry to support passive, active, and adaptive functions. To capture this structural and functional diversity, we introduce a three-dimensional classification that considers geometry, acoustic control mechanisms, and functional responsiveness as interrelated aspects. The geometry is classified into two-dimensional metasurfaces and three-dimensional bulk structures. The control mechanisms include local resonance, phase modulation, attenuation, and structural reconfiguration. The response type refers to whether the system behaves passively, actively, or adaptively. Using this approach, we provide an overview of representative implementations and compare different design approaches to highlight their working principles and application areas. This review presents a structured classification for soft acoustic metamaterials and offers a foundation for future research, with broad potential in intelligent sound systems, wearable acoustics, and architectural applications. Full article
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 312
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

15 pages, 5712 KiB  
Article
Synthesis of Magnetic Nanoparticle/Polymer Matrix Nanocomposites with Induced Magnetic Performance
by Anastasios C. Patsidis, Aikaterini Sanida, Georgia C. Manika, Sevasti Gioti, Georgios N. Mathioudakis, Nicholas Petropoulos, Athanasios Kanapitsas, Christos Tsonos, Thanassis Speliotis and Georgios C. Psarras
Polymers 2025, 17(14), 1913; https://doi.org/10.3390/polym17141913 - 10 Jul 2025
Viewed by 389
Abstract
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. [...] Read more.
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. Barium titanate content was kept constant, while magnetic phase content was varied. Fabricated specimens were structurally and morphologically characterized by employing scanning electron microscopy images and X-ray diffraction patterns. Results implied successful synthesis of the hybrid nanocomposites. The magnetic behavior of the pure magnetic nanoparticles and the fabricated nanocomposites was investigated via a Vibrating Sample Magnetometer. The magnetic performance of each type of magnetic phase (i.e., soft and hard) was induced in the nanocomposites, and magnetic performance is strengthened with the increase in magnetic phase content. Initial magnetization curves were used for the determination of mass magnetic susceptibility of all nanocomposites. Magnetic saturation and magnetic remanence have been found to follow a linear relationship with magnetic phase content, giving the opportunity to predict the system’s response in advance. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

22 pages, 3797 KiB  
Article
Structurally Ordered NIPUs via Catalyst-Free Synthesis with Hard Segments Based on Erythritol and a Long-Chain Diamine
by Edyta Hebda, Karolina Wróbel, Aleksandra Cieślik, Kinga Szołdrowska, Jan Ozimek, Paulina Zając, Konstantinos N. Raftopoulos and Krzysztof Pielichowski
Molecules 2025, 30(14), 2912; https://doi.org/10.3390/molecules30142912 - 10 Jul 2025
Viewed by 722
Abstract
A series of linear isocyanate-free polyurethanes (NIPUs) were obtained via the aminolysis of erythritol dicarbonate (EDC) with polyethers (diamino-PEG, diamino-PPO, and diamino-PEG/PPO) and 1,12-diaminododecane (DADD), which acts as a chain extender to form hard segments. The obtained NIPUs contained different concentrations of DADD [...] Read more.
A series of linear isocyanate-free polyurethanes (NIPUs) were obtained via the aminolysis of erythritol dicarbonate (EDC) with polyethers (diamino-PEG, diamino-PPO, and diamino-PEG/PPO) and 1,12-diaminododecane (DADD), which acts as a chain extender to form hard segments. The obtained NIPUs contained different concentrations of DADD relative to the polyether (72.5–80 wt%). A detailed chemical structure analysis of the synthesized NIPU was performed using a combination of FTIR and 1H NMR. FTIR spectra confirmed that the EDC/DADD segments formed a network of hydrogen bonds. This is reflected in WAXD diffractograms showing ordered crystalline domains originating in DADD. The reflections assigned to the EDC/DADD segments exhibited changes in their position and intensity with decreasing concentration, indicating an increase in interplanar spacing and a loss of higher-order order. WAXD also showed that the soft segments of PEG and PEG/PPO retain their ordered crystal structure regardless of the EDC/DADD content. At a larger length scale, SAXS revealed similar micromorphology for the different polyethers, with a broad peak indicating long-range order in the EDC/DADD-rich segments and a weak separation of the soft and hard phases. DSC analyses confirmed the complex phase behavior, where the PEG-based materials showed melting of crystalline fragments, and the amorphous PPO showed a glass transition. DMA indicated the stability of the glass transition temperature in the PPO samples and the presence of an unusual structural transition. The results emphasize the influence of the type of poly(ether) on the thermal and microphase properties of the studied non-isocyanate polyurethanes. Full article
Show Figures

Graphical abstract

15 pages, 1003 KiB  
Review
Patient-Reported Outcome Measurement and Reporting for Patients with Soft Tissue Tumors: A Scoping Literature Review
by Alessandro Mazzocca, Flavia Paternostro, Serena Garofalo, Marianna Silletta, Davide Romandini, Sarah Orlando, Laura Risi Ambrogioni, Pierangelo Gorgone, Giuseppe Tonini and Bruno Vincenzi
Cancers 2025, 17(14), 2280; https://doi.org/10.3390/cancers17142280 - 9 Jul 2025
Viewed by 327
Abstract
(1) Background: Quality of life (QoL) assessment is a crucial aspect for patients diagnosed with cancer. Over the years, different tools have been developed to measure QoL, both generic and pathology specific, but the inclusion of quality of life among other indicators of [...] Read more.
(1) Background: Quality of life (QoL) assessment is a crucial aspect for patients diagnosed with cancer. Over the years, different tools have been developed to measure QoL, both generic and pathology specific, but the inclusion of quality of life among other indicators of efficacy in randomized controlled trials (RCTs) remains a controversial issue. In this review, we aim to review the frequency and modality of QoL assessment in RCTs, enrolling patients diagnosed with mesenchymal tumors. (2) Methods: An electronic literature search of bone and soft tissue sarcoma and GIST-related RCTs published between January 2000 and December 2023 was performed by two independent reviewers using PubMed. English-language phase II and III clinical trials enrolling at least more than 15 patients were included, regardless of the disease stage. Studies involving patients under the age of 18 years or for which the full text was not available were excluded. For each study, data regarding the journal and year of publication, the study design, the primary objective, and the evaluation of quality of life as an endpoint with any type of patient-reported outcomes used were extracted. (3) Results: Among the 742 publications screened, 171 resulted eligible. QoL assessment was listed among the endpoints in 35 trials and QoL results were reported in 29 primary publications. In these trials, 16 included patients with soft tissue sarcomas, 8 Kaposi sarcomas, 6 GIST, and 3 desmoid tumors. Among all the trials included, 10.4% on an adjuvant/neoadjuvant setting and 24.4% on a metastatic setting included QoL as an endpoint. The proportion of trials, including QoL, was variable over time, as follows: 16.9% of trials in 2000–2014 vs. 23.4% in 2015–2023. In 35 trials, including QoL endpoints, 27 had a superiority design and 25 reported a positive result. In the majority of trials (80%), the tools for QoL assessment were generic and those mostly used were the EORTC QLQ-C30, the EQ-5D questionnaire, and the modified Brief Pain Inventory–Short Form. (4) Conclusions: Quality of life has not been assessed or published in many phase II and III trials, despite an improvement over time. QoL evaluation in RCTs should be considered even more carefully in patients with rare tumors, where the low number of patients who can be enrolled makes it difficult to draw statistically significant conclusions on the effectiveness of treatments. Full article
Show Figures

Figure 1

Back to TopTop