Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = soft actuator design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1397 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
18 pages, 20927 KiB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 275
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

19 pages, 7661 KiB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Viewed by 247
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 422
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

24 pages, 1185 KiB  
Review
A Comprehensive Review of Elbow Exoskeletons: Classification by Structure, Actuation, and Sensing Technologies
by Callista Shekar Ayu Supriyono, Mihai Dragusanu and Monica Malvezzi
Sensors 2025, 25(14), 4263; https://doi.org/10.3390/s25144263 - 9 Jul 2025
Viewed by 519
Abstract
The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow [...] Read more.
The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow exoskeletons have emerged as a key focus due to the joint’s essential role in upper limb functionality and its frequent impairment following neurological injuries such as stroke. With increasing research activity, there is a strong interest in evaluating these systems not only from a technical perspective but also in terms of user comfort, adaptability, and clinical relevance. This review investigates recent advancements in elbow exoskeleton technology, evaluating their effectiveness and identifying key design challenges and limitations. Devices are categorized based on three main criteria: mechanical structure (rigid, soft, or hybrid), actuation method, and sensing technologies. Additionally, the review classifies systems by their supported range of motion, flexion–extension, supination–pronation, or both. Through a systematic analysis of these features, the paper highlights current design trends, common trade-offs, and research gaps, aiming to guide the development of more practical, effective, and accessible elbow exoskeletons. Full article
(This article belongs to the Special Issue Sensors and Data Analysis for Biomechanics and Physical Activity)
Show Figures

Figure 1

16 pages, 1234 KiB  
Article
A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
by Janeth Arias Guadalupe, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas and Dorin Copaci
Actuators 2025, 14(7), 337; https://doi.org/10.3390/act14070337 - 6 Jul 2025
Viewed by 439
Abstract
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. [...] Read more.
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. In response to these challenges, this work presents the development and validation of a novel soft exosuit designed for elbow flexion rehabilitation, incorporating a multi-wire Shape Memory Alloy (SMA) actuator capable of both position and force control. The proposed system features a lightweight and ergonomic textile-based design, optimized for user comfort, ease of use, and low manufacturing cost. A sequential activation strategy was implemented to improve the dynamic response of the actuator, particularly during the cooling phase, which is typically a major limitation in SMA-based systems. The performance of the multi-bundle actuator was compared with a single-bundle configuration, demonstrating superior trajectory tracking and reduced thermal accumulation. Surface electromyography tests confirmed a decrease in muscular effort during assisted flexion, validating the device’s assistive capabilities. With a total weight of 0.6 kg and a fabrication cost under EUR 500, the proposed exosuit offers a promising solution for accessible and effective home-based rehabilitation. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Efficient Manufacturing of Steerable Eversion Robots with Integrated Pneumatic Artificial Muscles
by Thomas Mack, Cem Suulker, Abu Bakar Dawood and Kaspar Althoefer
J. Manuf. Mater. Process. 2025, 9(7), 223; https://doi.org/10.3390/jmmp9070223 - 1 Jul 2025
Viewed by 435
Abstract
Soft-growing robots based on the eversion principle are renowned for their ability to rapidly extend along their longitudinal axis, allowing them to access remote, confined, or otherwise inaccessible spaces. Their inherently compliant structure enables safe interaction with delicate environments, while their simple actuation [...] Read more.
Soft-growing robots based on the eversion principle are renowned for their ability to rapidly extend along their longitudinal axis, allowing them to access remote, confined, or otherwise inaccessible spaces. Their inherently compliant structure enables safe interaction with delicate environments, while their simple actuation mechanisms support lightweight and low-cost designs. Despite these benefits, implementing effective navigation mechanisms remains a significant challenge. Previous research has explored the use of pneumatic artificial muscles mounted externally on the robot’s body, which, when contracting, induce directional bending. However, this method only offers limited bending performance. To enhance maneuverability, pneumatic artificial muscles embedded in between the walls of double-walled eversion robots have also been considered and shown to offer superior bending performance and force output as compared to externally attached muscle. However, their adoption has been hindered by the complexity of the current manufacturing techniques, which require individually sealing the artificial muscles. To overcome this multi-stage fabrication approach in which muscles are embedded one by one, we propose a novel single-step method. The key to our approach is the use of non-heat-sealable inserts to form air channels during the sealing process. This significantly simplifies the process, reducing production time and effort and improving scalability for manufacturing, potentially enabling mass production. We evaluate the fabrication speed and bending performance of robots produced in this manner and benchmark them against those described in the literature. The results demonstrate that our technique offers high bending performance and significantly improves the manufacturing efficiency. Full article
(This article belongs to the Special Issue Advances in Robotic-Assisted Manufacturing Systems)
Show Figures

Figure 1

33 pages, 7235 KiB  
Review
Hysteresis Modeling of Soft Pneumatic Actuators: An Experimental Review
by Jesús de la Morena, Francisco Ramos and Andrés S. Vázquez
Actuators 2025, 14(7), 321; https://doi.org/10.3390/act14070321 - 27 Jun 2025
Viewed by 806
Abstract
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable [...] Read more.
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable model can be used to design compensators that mitigate the negative effects of hysteresis, improving closed-loop control accuracy and expanding the applicability of soft actuators in robotics. Physics-based approaches for modeling hysteresis in soft actuators offer valuable insights into the underlying material behavior. Nevertheless, they are often highly complex, making them impractical for real-world applications. Instead, phenomenological models provide a more feasible solution by representing hysteresis through input–output mappings based on experimental data. To effectively fit these phenomenological models, it is essential to rely on sensing data collected from real actuators. In this context, the primary objective of this work is a comprehensive comparative evaluation of the efficiency and performance of representative phenomenological hysteresis models (e.g., Bouc–Wen and Prandtl-Ishlinskii) using experimental data obtained from a pneumatic bending actuator made of a viscoelastic material. This evaluation suggests that the Generalized Prandtl–Ishlinskii model achieves the highest modeling accuracy, while the Preisach model with a probabilistic density function formulation excels in terms of parameter compactness. Full article
(This article belongs to the Special Issue Advanced Mechanism Design and Sensing for Soft Robotics)
Show Figures

Figure 1

28 pages, 5633 KiB  
Review
Biomimetic Cellulose Nanocrystals Composite Hydrogels: Recent Progress in Surface Modification and Smart Soft Actuator Applications
by Yuzhu Cui, Zekai Wang, Mingliang Zhao, Zhihui Wang and Lu Zong
Nanomaterials 2025, 15(13), 996; https://doi.org/10.3390/nano15130996 - 26 Jun 2025
Viewed by 617
Abstract
Cellulose nanocrystals (CNCs), derived from renewable biomass, have emerged as a pivotal component in the design of biomimetic composite hydrogels due to their exceptional mechanical strength, biocompatibility, and tunable surface chemistry. This review comprehensively explores recent advancements in surface modification strategies for CNCs [...] Read more.
Cellulose nanocrystals (CNCs), derived from renewable biomass, have emerged as a pivotal component in the design of biomimetic composite hydrogels due to their exceptional mechanical strength, biocompatibility, and tunable surface chemistry. This review comprehensively explores recent advancements in surface modification strategies for CNCs (physical adsorption, chemical grafting, and bio-functionalization) and their impacts on the structure and properties of hydrogel networks, with particular emphasis on mechanical properties. Future applications in light/thermal/electrical-responsive soft actuators are critically analyzed. Guided by biomimetic design principles, the anisotropic mechanical responses induced by CNC-oriented alignment are explored, along with their cutting-edge advancements in soft robotics, wearable sensing, and biomedical devices. Perspectives are provided on future directions, including multi-stimuli synergistic actuation systems and sensing-actuation integration architectures. This work establishes a fundamental framework for designing CNC-enhanced smart hydrogels with tailored functionalities and hierarchical structures. Full article
Show Figures

Graphical abstract

24 pages, 13787 KiB  
Article
Design and Evaluation of a Soft Robotic Actuator with Non-Intrusive Vision-Based Bending Measurement
by Narges Ghobadi, Witold Kinsner, Tony Szturm and Nariman Sepehri
Sensors 2025, 25(13), 3858; https://doi.org/10.3390/s25133858 - 20 Jun 2025
Viewed by 641
Abstract
This paper presents the design and evaluation of a novel soft pneumatic actuator featuring two independent bending chambers, enabling independent joint actuation and localization for rehabilitation purposes. The actuator’s dual-chamber configuration provides flexibility for applications requiring customized bending profiles. To measure the bending [...] Read more.
This paper presents the design and evaluation of a novel soft pneumatic actuator featuring two independent bending chambers, enabling independent joint actuation and localization for rehabilitation purposes. The actuator’s dual-chamber configuration provides flexibility for applications requiring customized bending profiles. To measure the bending angle of the finger joints in real time, a camera-based system is employed, utilizing a deep learning detection model to localize the joints and estimate their bending angles. This approach provides a non-intrusive, sensor-free alternative to hardware-based measurement methods, reducing complexity and wiring typically associated with wearable devices. Experimental results demonstrate the effectiveness of the proposed actuator in achieving bending angles of 105 degrees for the metacarpophalangeal (MCP) joint and 95 degrees for the proximal interphalangeal (PIP) joint, as well as a gripping force of 9.3 N. The vision system also captures bending angles with a precision of 98%, indicating potential applications in fields such as rehabilitation and human–robot interaction. Full article
(This article belongs to the Special Issue Recent Advances in Sensor Technology and Robotics Integration)
Show Figures

Figure 1

35 pages, 4434 KiB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 491
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

21 pages, 2070 KiB  
Review
Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications
by Yao Chai, Yutong Qin, Ziyi Xu, Xianhong Zheng and Hao Jia
Sensors 2025, 25(12), 3665; https://doi.org/10.3390/s25123665 - 11 Jun 2025
Viewed by 897
Abstract
As a groundbreaking innovation in the field of soft robotics, fabric-based pneumatic soft actuators exhibit substantial advantages over traditional rigid mechanical systems in terms of adaptability, safety, and multifunctionality. This paper presents a thorough review of the design principles, classifications, and application advancements [...] Read more.
As a groundbreaking innovation in the field of soft robotics, fabric-based pneumatic soft actuators exhibit substantial advantages over traditional rigid mechanical systems in terms of adaptability, safety, and multifunctionality. This paper presents a thorough review of the design principles, classifications, and application advancements of these actuators. By leveraging the intrinsic flexibility and programmability of fabric materials, these actuators achieve complex and precise motion control through the modulation of internal air pressure. This review investigates the state-of-the-art research progress in overcoming critical challenges, such as enhancing multidirectional expansion capabilities, optimizing the trade-off between flexibility and driving force, and improving control accuracy and response speed. Furthermore, the integration of fabric-based actuators with flexible sensors is highlighted as a highly promising research direction, offering the potential to enhance device intelligence via real-time feedback and adaptive control functionalities. In conclusion, with ongoing advancements in material science, structural design, and control strategies, fabric-based pneumatic soft actuators are expected to unlock broader application potentials in domains such as healthcare, wearable technology, and human–-computer interaction. Full article
(This article belongs to the Special Issue Feature Review Papers in Biosensors Section 2025)
Show Figures

Figure 1

17 pages, 3485 KiB  
Article
Development of an Oblique Cone Dielectric Elastomer Actuator Module-Connected Vertebrate Fish Robot
by Taro Hitomi, Ryuki Sato and Aiguo Ming
Biomimetics 2025, 10(6), 365; https://doi.org/10.3390/biomimetics10060365 - 4 Jun 2025
Viewed by 595
Abstract
As a soft actuator for fish robots, an oblique cone dielectric elastomer actuator (DEA) module inspired by the structure of white muscles in fish was proposed in the authors’ previous study. However, a mathematical model of an oblique cone DEA was not established, [...] Read more.
As a soft actuator for fish robots, an oblique cone dielectric elastomer actuator (DEA) module inspired by the structure of white muscles in fish was proposed in the authors’ previous study. However, a mathematical model of an oblique cone DEA was not established, and designing a drive module that took into account its driving characteristics and passivity for integration into a fish robot remained a challenge. The purpose of this paper is to develop a vertebrate fish robot using multiple oblique cone DEA modules to achieve fish-like bending capability. First, an oblique cone DEA module was modeled for the design of a fish robot. The relationships among bending angle, blocking torque, driving voltage, and design parameters were established and confirmed by comparing the calculated and experimental results. Based on the modeling results, we designed an oblique cone DEA module-connected vertebrate fish robot. Finally, the experimental results of the fabricated fish robot demonstrated that the model-based design enabled flexible body swinging and swimming through a multiple-module-connected vertebrate structure. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

25 pages, 9816 KiB  
Article
Design and Basic Performance Analysis of a Bionic Finger Soft Actuator with a Dual-Chamber Composite Structure
by Yu Cai, Sheng Liu, Dazhong Wang, Shuai Huang, Dong Zhang, Mengyao Shi, Wenqing Dai and Shang Wang
Actuators 2025, 14(6), 268; https://doi.org/10.3390/act14060268 - 28 May 2025
Viewed by 591
Abstract
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by [...] Read more.
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by the human middle finger, featuring a dual-chamber pneumatic drive and embedded steel sheet structure. Utilizing the principles of moment equilibrium and virtual work, a theoretical model for the bending behavior of the soft finger is developed, and the correlation between the bending angle and driving air pressure is derived. The determination process of key parameters and their influence on bending deformation are explained in detail through simulation. The bending experiment confirmed the reliability of the theoretical model. The fingertip force test indicates that the composite finger exerts a greater force than the ordinary one, with the extra force equivalent to 42.57% of the composite finger’s own fingertip force. Subsequent tests on the soft robotic hand measured the hooking quality, gripping diameter, and gripping force. The hooking experiment confirmed that composite fingers have a stronger load-bearing capacity than ordinary fingers, with an extra capacity equivalent to 31.25% of the composite finger’s own load-bearing capacity. Finally, the grasping experiment demonstrates that the soft manipulator can grasp objects of varying shapes and weights, indicating its strong adaptability and promising applications. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

33 pages, 9324 KiB  
Review
Hydrogels for Translucent Wearable Electronics: Innovations in Materials, Integration, and Applications
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Gels 2025, 11(5), 372; https://doi.org/10.3390/gels11050372 - 20 May 2025
Viewed by 1016
Abstract
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical [...] Read more.
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical properties, particularly transparency, remain relatively unexplored. Transparent wearable electronics offer distinct advantages: they allow for non-invasive health monitoring by enabling a clear view of biological systems and improve aesthetics by minimizing the visual presence of electronics on the skin, thereby increasing user acceptance. Hydrogels have emerged as a key material for transparent wearable electronics due to their high water content, excellent biocompatibility, and tunable mechanical and optical properties. Their inherent softness and stretchability allow intimate, stable contact with dynamic biological surfaces. Furthermore, their ability to support ion-based conductivity is advantageous for bioelectronic interfaces and physiological sensors. Current research is focused on advancing hydrogel design to improve transparency, mechanical resilience, conductivity, and adhesion. The core components of transparent wearable systems include physiological sensors, energy storage devices, actuators, and real-time displays. These must collectively balance efficiency, functionality, and long-term durability. Practical applications span continuous health tracking and medical imaging to next-generation interactive displays. Despite progress, challenges such as material durability, scalable manufacturing, and prolonged usability remain. Addressing these limitations will be crucial for the future development of transparent, functional, and user-friendly wearable electronics. Full article
Show Figures

Figure 1

Back to TopTop