Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications
Abstract
:1. Introduction
2. Overview of Soft Actuators
2.1. Principles and Classification of Soft Actuators
- (1)
- Liquid-driven Soft Actuators
- (2)
- Temperature-driven Soft Actuators
- (3)
- Magnetic-driven Soft Actuators
- (4)
- Electric-field-driven Soft Actuators
2.2. Principles of Pneumatic Soft Actuators
2.3. Challenges Faced by Pneumatic Soft Actuators
- (1)
- Challenges of Multi-directional Expansion and Large Deformation in “Balloon-like” Structures
- (2)
- The Contradiction Between Inherent Flexibility and Driving Force
- (3)
- Insufficient Control Accuracy and Response Speed
3. Overview of Pneumatic Soft Actuators
- (1)
- Fiber-reinforced Pneumatic Soft Actuators
- (2)
- Elastic Chamber Type Pneumatic Soft Actuator
- (3)
- Corrugated Structure Pneumatic Soft Actuators
- (4)
- Folded or Pleated Pneumatic Soft Actuators
4. Overview of Fabric-Based Pneumatic Soft Actuators
4.1. Principles of Fabric-Based Pneumatic Soft Actuators
4.2. Research Progress on Fabric-Based Pneumatic Soft Actuators
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, J.; Zidek, T.; Harbel, C.; Yoon, S.; Strickland, F.S.; Kumar, S.; Shin, M. Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators 2020, 9, 3. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Y.; Zhong, H.; Tang, K.; Chen, Y.; Xiao, Y.; Yi, J.; Liu, S.; Wang, Z. Soft origami optical-sensing actuator for underwater manipulation. Front. Robot. AI 2021, 7, 616128. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Sameoto, D. A review of electrically driven soft actuators for soft robotics. Micromachines 2022, 13, 1881. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, Z.; Zhu, L.; Wang, Y. Design and research of series actuator structure and control system based on lower limb exoskeleton rehabilitation robot. Actuators 2024, 13, 20. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, X.; Liu, J.; Kang, J.; Hu, C.; Liao, H. Spring-reinforced pneumatic actuator and soft robotic applications. Smart Mater. Struct. 2024, 33, 105017. [Google Scholar] [CrossRef]
- Li, D.; Fan, D.; Zhu, R.; Lei, Q.; Liao, Y.; Yang, X.; Pan, Y.; Wang, Z.; Wu, Y.; Liu, S.; et al. Origami-inspired soft twisting actuator. Soft Rob. 2023, 10, 395–409. [Google Scholar] [CrossRef]
- Shi, H.; Tan, K.; Zhang, B.; Liu, W. Review on research progress of hydraulic powered soft actuators. Energies 2022, 15, 9048. [Google Scholar] [CrossRef]
- Roh, Y.; Lim, D.; Kang, M.; Cho, J.; Han, S.; Ko, S.H. Rigidity-tunable materials for soft engineering systems. Adv. Eng. Mater. 2024, 26, 2400563. [Google Scholar] [CrossRef]
- Martinez, J.G.; Richter, K.; Persson, N.-K.; Jager, E.W.H. Investigation of electrically conducting yarns for use in textile actuators. Smart Mater. Struct. 2018, 27, 074004. [Google Scholar] [CrossRef]
- Mueller, L.A.E.; Demongeot, A.; Vaucher, J.; Leterrier, Y.; Avaro, J.; Liebi, M.; Neels, A.; Burgert, I.; Zimmermann, T.; Nystroem, G.; et al. Photoresponsive movement in 3d printed cellulose nanocomposites. ACS Appl. Mater. Interfaces 2022, 14, 16703–16717. [Google Scholar] [CrossRef]
- Choi, H.; Kim, Y.; Kim, S.; Kim, S.Y.; Kim, J.S.; Yun, E.; Kweon, H.; Amoli, V.; Choi, U.H.; Lee, H.; et al. Ions-silica percolated Ionic dielectric elastomer actuator for soft robots. Adv. Sci. 2023, 10, 2303838. [Google Scholar] [CrossRef] [PubMed]
- Kalulu, M.; Chilikwazi, B.; Hu, J.; Fu, G. Soft actuators and actuation: Design, synthesis, and applications. Macromol. Rapid Commun. 2025, 46, 2400282. [Google Scholar] [CrossRef] [PubMed]
- Gariya, N.; Kumar, S.; Shaikh, A.; Prasad, B.; Nautiyal, H. A review on soft pneumatic actuators with integrated or embedded soft sensors. Sens. Actuators A 2024, 372, 115364. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, M.; Cheng, Y.; Chen, W.; Wang, L.; Qin, X. Stimuli-responsive fiber/fabric actuators for intelligent soft robots: From current progress to future opportunities. Nano Energy 2024, 129, 110050. [Google Scholar] [CrossRef]
- Li, L.; Jia, G.; Huang, W.; Zhou, J.; Li, C.; Han, J.; Zhang, Y.; Zhou, X. Multi-responsive soft actuator with integrated ultrasensitive sensing performances for human motion detection and soft robots. Sens. Actuators A 2023, 351, 114149. [Google Scholar] [CrossRef]
- Boyraz, P.; Runge, G.; Raatz, A. An overview of novel actuators for soft robotics. Actuators 2018, 7, 48. [Google Scholar] [CrossRef]
- Pan, M.; Yuan, C.; Liang, X.; Dong, T.; Liu, T.; Zhang, J.; Zou, J.; Yang, H.; Bowen, C. Soft actuators and robotic devices for rehabilitation and assistance. Adv. Intell. Syst. 2022, 4, 2100140. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, J.; Yan, J.; Liu, X. Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 2023, 5, 12–35. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.W.; Kim, H.C.; Zhai, L.; Ko, H.-U.; Muthoka, R.M. Review of soft actuator materials. Int. J. Precis. Eng. Manuf. 2019, 20, 2221–2241. [Google Scholar] [CrossRef]
- Wang, J.; Chortos, A. Control strategies for soft robot systems. Adv. Intell. Syst. 2022, 4, 2100165. [Google Scholar] [CrossRef]
- Wei, S.; Ghosh, T.K. Bioinspired structures for soft actuators. Adv. Mater. Technol. 2022, 7, 2101521. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, X.; Wang, P.; Jiao, Z.; Yu, Y.; Yu, M.; Luo, B.; Yang, W. A haptic feedback actuator suitable for the soft wearable device. Appl. Sci. 2020, 10, 8827. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, A.; Qin, Z.; Han, X.; Li, T.; Liu, S. Modeling and fabrication of soft actuators based on fiber-reinforced elastomeric enclosures. Actuators 2021, 10, 127. [Google Scholar] [CrossRef]
- Kanno, R.; Kwak, B.; Pankhurst, M.; Shintake, J.; Floreano, D. Edible soft actuators based on konjac glucomannan for underwater operation. Adv. Intell. Syst. 2024, 6, 2300473. [Google Scholar] [CrossRef]
- Yue, W.; Bai, C.; Lai, J.; Ren, H. Dual-stroke soft peltier pouch motor based on pipeless thermo-pneumatic actuation. Adv. Eng. Mater. 2024, 26, 2301408. [Google Scholar] [CrossRef]
- Carpenter, J.A.; Eberle, T.B.; Schuerle, S.; Rafsanjani, A.; Studart, A.R. Facile manufacturing route for magneto-responsive soft actuators. Adv. Intell. Syst. 2021, 3, 2000283. [Google Scholar] [CrossRef]
- Hajiesmaili, E.; Clarke, D.R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 2019, 10, 183. [Google Scholar] [CrossRef]
- Choi, I.; Corson, N.; Peiros, L.; Hawkes, E.W.; Keller, S.; Follmer, S. A soft, controllable, high force density linear brake utilizing layer jamming. IEEE Rob. Autom. Lett. 2018, 3, 450–457. [Google Scholar] [CrossRef]
- Shi, Q.W.; Sun, J.Q.; Hou, C.Y.; Li, Y.G.; Zhang, Q.H.; Wang, H.Z. Advanced functional fiber and smart textile. Adv. Fiber Mater. 2019, 1, 3–31. [Google Scholar] [CrossRef]
- Li, Y.N.; Fu, C.L.; Huang, L.L.; Chen, L.H.; Ni, Y.H.; Zheng, Q.H. Cellulose-based multi-responsive soft robots for programmable smart devices. Chem. Eng. J. 2024, 498, 155099. [Google Scholar] [CrossRef]
- Chen, J.; Pakdel, E.; Xie, W.; Sun, L.; Xu, M.; Liu, Q.; Wang, D. High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2020, 2, 64–73. [Google Scholar] [CrossRef]
- Kellaris, N.; Venkata, V.G.; Smith, G.M.; Mitchell, S.K.; Keplinger, C. Peano-hasel actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Rob. 2018, 3, eaar3276. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Nakahara, K.; Narumi, K.; Niiyama, R.; Kida, N.; Takamura, N.; Okamoto, H.; Kawahara, Y. Laser pouch motors: Selective and wireless activation of soft actuators by laser-powered liquid-to-gas phase change. IEEE Rob. Autom. Lett. 2020, 5, 4180–4187. [Google Scholar] [CrossRef]
- Wang, Z.; Polygerinos, P.; Overvelde, J.T.B.; Galloway, K.C.; Bertoldi, K.; Walsh, C.J. Interaction forces of soft fiber reinforced bending actuators. IEEE/ASME Trans. Mechatron. 2017, 22, 717–727. [Google Scholar] [CrossRef]
- Kalita, B.; Leonessa, A.; Dwivedy, S.K. A review on the development of pneumatic artificial muscle actuators: Force model and application. Actuators 2022, 11, 288. [Google Scholar] [CrossRef]
- Kanno, R.; Watanabe, S.; Shimizu, K.; Shintake, J. Self-sensing mckibben artificial muscles embedded with dielectric elastomer sensor. IEEE Rob. Autom. Lett. 2021, 6, 6274–6280. [Google Scholar] [CrossRef]
- Abe, T.; Koizumi, S.; Nabae, H.; Endo, G.; Suzumori, K.; Sato, N.; Adachi, M.; Takamizawa, F. Fabrication of “18 weave” muscles and their application to soft power support suit for upper limbs using thin mckibben muscle. IEEE Robot. Autom. Lett. 2019, 4, 2532–2538. [Google Scholar] [CrossRef]
- Wang, T.Y.; Ge, L.S.; Gu, G.Y. Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions. Sens. Actuators A-Phys. 2018, 271, 131–138. [Google Scholar] [CrossRef]
- Paek, J.W.; Cho, I.; Kim, J.Y. Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Sci. Rep. 2015, 5, 10768. [Google Scholar] [CrossRef]
- Jamil, B.; Yoo, G.; Choi, Y.; Rodrigue, H. Proprioceptive soft pneumatic gripper for extreme environments using hybrid optical fibers. IEEE Rob. Autom. Lett. 2021, 6, 8694–8701. [Google Scholar] [CrossRef]
- Yi, J.; Chen, X.; Song, C.; Wang, Z. Fiber-reinforced origamic robotic actuator. Soft Robot. 2018, 5, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Na, S.M.; Park, J.J.; Jones, N.J.; Werely, N.; Flatau, A.B. Magnetostrictive whisker sensor application of carbon fiber-alfenol composites. Smart Mater. Struct. 2018, 27, 105010. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Kadir, M.R.A.; Faudzi, A.A.M.; Rahman, M.A.A. Performance evaluation for braided mckibben pneumatic actuators in telescopic nested structure. IEEE Robot. Autom. Lett. 2022, 7, 10906–10913. [Google Scholar] [CrossRef]
- Cho, H.S.; Kim, T.H.; Hong, T.H.; Park, Y.-L. Ratchet-integrated pneumatic actuator (RIPA): A large-stroke soft linear actuator inspired by sarcomere muscle contraction. Bioinspiration Biomim. 2020, 15, 036011. [Google Scholar] [CrossRef]
- Wang, B.; Ye, X. Finite element simulation analysis of a novel 3d-frspa for crawling locomotion. Comput. Model. Eng. Sci. 2024, 139, 1401–1425. [Google Scholar] [CrossRef]
- Hu, J.; Weilong, C. Design and performance analysis of novel origami pneumatic soft actuator. Eng. Appl. Artif. Intell. 2019, 86, 56–67. [Google Scholar]
- Wirekoh, J.; Parody, N.; Riviere, C.N.; Park, Y.-L. Design of fiber-reinforced soft bending pneumatic artificial muscles for wearable tremor suppression devices. Smart Mater. Struct. 2021, 30, 015013. [Google Scholar] [CrossRef]
- Chen, W.; Xiong, C.; Liu, C.; Li, P.; Chen, Y. Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft Robot. 2019, 6, 495–506. [Google Scholar] [CrossRef]
- Zhong, G.; Dou, W.; Zhang, X.; Yi, H. Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures. Int. J. Mech. Sci. 2021, 193, 106150. [Google Scholar] [CrossRef]
- Jones, T.J.; Jambon-Puillet, E.; Marthelot, J.; Brun, P.T. Bubble casting soft robotics. Nature 2021, 599, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ning, M.; Chen, H. Design and research of novel soft actuator. Mech. Sci. Technol. Aerosp. Eng. 2021, 40, 33–39. [Google Scholar]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Gunawardane, P.D.S.H.; Cheung, P.; Zhou, H.; Alici, G.; de Silva, C.W.; Chiao, M. A versatile 3d-printable soft pneumatic actuator design for multi-functional applications in soft robotics. Soft Rob. 2024, 11, 709–723. [Google Scholar] [CrossRef]
- Kano, T.; Watanabe, Y.; Ishiguro, A. Sheetbot: Two-dimensional sheet-like robot as a tool for constructing universal decentralized control systems. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3733–3738. [Google Scholar]
- Wang, J.; Fei, Y.; Pang, W. Design, modeling, and testing of a soft pneumatic glove with segmented pneunets bending actuators. IEEE/ASME Trans. Mechatron. 2019, 24, 990–1001. [Google Scholar] [CrossRef]
- Drotman, D.; Jadhav, S.; Karimi, M.; de Zonia, P.; Tolley, M.T. 3D printed soft actuators for a legged robot capable of navigating unstructured terrain. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5532–5538. [Google Scholar]
- Kim, Y.; Cha, Y. Soft pneumatic gripper with a tendon-driven soft origami pump. Front. Bioeng. Biotechnol. 2020, 8, 461. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Chen, X.; Wang, Z.; Li, Y.; Liu, Y. A proprioceptive bellows (pb) actuator with position feedback and force estimation. IEEE Rob. Autom. Lett. 2020, 5, 1867–1874. [Google Scholar] [CrossRef]
- Yap, H.K.; Ng, H.Y.; Yeow, C.-H. High-force soft printable pneumatics for soft robotic applications. Soft Robot. 2016, 3, 144–158. [Google Scholar] [CrossRef]
- Kim, W.; Eom, J.; Cho, K.-J. A dual-origami design that enables the quasisequential deployment and bending motion of soft robots and grippers. Adv. Intell. Syst. 2022, 4, 2100176. [Google Scholar] [CrossRef]
- Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 2017, 114, 13132–13137. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.V.; Fish, C.R.; Chen, X.; Whitesides, G.M. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 2012, 22, 1376–1384. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.W. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning. Smart Mater. Struct. 2015, 24, 105031. [Google Scholar] [CrossRef]
- Kim, W.; Byun, J.; Kim, J.-K.; Choi, W.-Y.; Jakobsen, K.; Jakobsen, J.; Lee, D.-Y.; Cho, K.-J. Bioinspired dual-morphing stretchable origami. Sci. Robot. 2019, 4, eaay3493. [Google Scholar] [CrossRef]
- Feng, J.-F.; Chen, J.-L.; Guo, K.; Hou, J.-B.; Zhou, X.-L.; Huang, S.; Li, B.-J.; Zhang, S. Leeches-inspired hydrogel-elastomer integration materials. ACS Appl. Mater. Interfaces 2018, 10, 40238–40245. [Google Scholar] [CrossRef]
- Oguntosin, V.; Akindele, A. Design and characterization of artificial muscles from wedge-like pneumatic soft modules. Sens. Actuators A-Phys. 2019, 297, 111523. [Google Scholar] [CrossRef]
- Cappello, L.; Galloway, K.C.; Sanan, S.; Wagner, D.A.; Granberry, R.; Engelhardt, S.; Haufe, F.L.; Peisner, J.D.; Walsh, C.J. Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robot. 2018, 5, 662–674. [Google Scholar] [CrossRef]
- Fang, C.; Xu, B.; Li, M.; Han, J.; Yang, Y.; Liu, X. Advanced design of fibrous flexible actuators for smart wearable applications. Adv. Fiber Mater. 2024, 6, 622–657. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.J.; Han, X.; Yang, S.G.; An, G.H.; Lu, C.H. Fiber-shaped soft actuators: Fabrication, actuation mechanism and application. Adv. Fiber Mater. 2023, 5, 868–895. [Google Scholar] [CrossRef]
- Yin, R.; Yang, B.; Ding, X.J.; Liu, S.; Zeng, W.; Li, J.; Yang, S.; Tao, X.M. Wireless multistimulus-responsive fabric-based actuators for soft robotic, human-machine interactive, and wearable applications. Adv. Mater. Technol. 2020, 5, 2000341. [Google Scholar] [CrossRef]
- Jang, J.H.; Coutinho, A.; Park, Y.J.; Rodrigue, H. A positive and negative pressure soft linear brake for wearable applications. IEEE Trans. Ind. Electron. 2023, 70, 688–698. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Chen, J.; Lee, P.S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 2021, 33, 2002640. [Google Scholar] [CrossRef]
- Zhu, M.J.; Do, T.N.; Hawkes, E.; Visell, Y. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robot. 2020, 7, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.G.; Xiong, X.Z.; He, J.; Zhang, Y. Highly stretchable and durable conductive knitted fabrics for the skins of soft robots. Soft Robot. 2019, 6, 687–700. [Google Scholar] [CrossRef]
- Sanchez, V.; Mahadevan, K.; Ohlson, G.; Graule, M.A.; Yuen, M.C.; Teeple, C.B.; Weaver, J.C.; McCann, J.; Bertoldi, K.; Wood, R.J. 3D knitting for pneumatic soft robotics. Adv. Funct. Mater. 2023, 33, 2212541. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Li, L.C.; Zhao, C.Y.; He, S.Q.; Qi, Q.K.; Kang, S.; Ma, S.G. Enhancing undulation of soft robots in granular media: A numerical and experimental study on the effect of anisotropic scales. Biomim. Intell. Robot. 2024, 4, 100158. [Google Scholar] [CrossRef]
- Lu, Y.J.; Tian, M.W.; Sun, X.T.; Pan, N.; Chen, F.X.; Zhu, S.F.; Zhang, X.S.; Chen, S.J. Highly sensitive wearable 3d piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Part A Appl. Sci. Manuf. 2019, 117, 202–210. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Zhang, W.L. Design and computational modeling of fabric soft pneumatic actuators for wearable assistive devices. Sci. Rep. 2020, 10, 9638. [Google Scholar] [CrossRef]
- Ge, L.S.; Chen, F.F.; Wang, D.; Zhang, Y.F.; Han, D.; Wang, T.; Gu, G.Y. Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robot. 2020, 7, 583–596. [Google Scholar] [CrossRef]
- Guo, X.Y.; Li, W.B.; Fang, F.Y.; Chen, H.Y.; Zhao, L.C.; Fang, X.Y.; Yi, Z.R.; Shao, L.; Meng, G.; Zhang, W.M. Encoded sewing soft textile robots. Sci. Adv. 2024, 10, eadk3855. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Song, Y.Y.; Nomura, T. Fabric soft pneumatic actuators with programmable turing pattern textures. Sci. Rep. 2024, 14, 19175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, J.; Zhao, J. A gas-ribbon-hybrid actuated soft finger with active variable stiffness. Soft Rob. 2022, 9, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Y.; Sun, F.X.; Xiao, C.Q.; Iqbal, M.I.; Sun, Z.G.; Guo, M.R.; Gao, W.D.; Hu, X.R. Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl. Mater. Interfaces 2021, 13, 54386–54395. [Google Scholar] [CrossRef]
- Yang, M.; Wu, J.; Jiang, W.; Hu, X.; Iqbal, M.I.; Sun, F. Bioinspired and hierarchically textile-structured soft actuators for healthcare wearables. Adv. Funct. Mater. 2023, 33, 2210351. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Lu, Y. Design of a bistable artificial venus flytrap actuated by low pressure with larger capture range and faster responsiveness. Biomimetics 2023, 8, 181. [Google Scholar] [CrossRef]
- Belforte, G.; Raparelli, I.; Mazza, L.; Trivella, A. Analysis, design, and comparison of different types of pistons for sealless pneumatic cylinders and valves. Tribol. Trans. 2005, 48, 377–388. [Google Scholar] [CrossRef]
- Jouppila, V.; Gadsden, S.A.; Ellman, A. Experimental comparisons of sliding mode controlled pneumatic muscle and cylinder actuators. J. Dyn. Syst. Meas. Control 2014, 136, 044503. [Google Scholar] [CrossRef]
- Pang, W.B.; Xu, S.W.; Liu, L.Y.; Bo, R.H.; Zhang, Y.H. Thin-film-shaped flexible actuators. Adv. Intell. Syst. 2023, 5, 2300060. [Google Scholar] [CrossRef]
- Bruno, N.; Zhu, Y.C.; Liu, C.; Gao, Q.; Li, Y.Y. Development of a piezoelectric high speed on/off valve and its application to pneumatic closed-loop position control system. J. Mech. Sci. Technol. 2019, 33, 2747–2759. [Google Scholar] [CrossRef]
- Fei, Y.Q.; Wang, J.B.; Pang, W. A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft Robot. 2019, 6, 1–20. [Google Scholar] [CrossRef]
Actuator Type | Advantages | Disadvantages | Applications |
---|---|---|---|
Liquid-driven Actuators | - Significant force generation - High energy density - Suitable for applications requiring high force output (e.g., flexible robotic arms, bionic devices) | - Requires complex fluid systems - Slower response times - Sensitive to environmental humidity | - Flexible robotic arms - Bionic devices - High-force applications |
Temperature-driven Actuators | - Simple structure - Fast response speed - No external power source needed - Environmentally friendly and pollution-free | - Performance highly dependent on ambient temperature and material thermal conductivity - Limited precision and reliability in variable environments | - Micro-mechanical systems - Biomedical devices - Autonomous or environment-powered soft robotics |
Magnetic-driven Actuators | - Precise control - Fast response speed - Remote operation capabilities - Tubing-free operation | - Requires high-strength magnetic field sources - Potential interference with other devices - High cost for large-scale systems | - Applications requiring remote control - Micro-robots - Medical instruments |
Electric-field-driven Actuators | - High energy efficiency - High control precision - Fine control with rapid response - Easy sensor integration | - High operating voltages (kV-scale) - Requires complex electrical systems - Sensitive to environmental factors (humidity, temperature) | - Applications requiring fine control and rapid response - Micro-robots - Flexible sensors |
Pneumatic-driven Actuators | - Intrinsic safety - Strong environmental adaptability - Simple and lightweight design | - Requires external compressor systems - Slow response - Nonlinear control complexity - Potential noise issues - Gas leakage susceptibility | - Soft grippers - Wearable devices - Rehabilitation robotics |
Conventional Pneumatic Cylinders | Pneumatic Muscle | Pneumatic Thin-film Actuators | High-Speed Pneumatic Valve Actuator | Fabric-Based Pneumatic Soft Actuator | |
---|---|---|---|---|---|
Drive Force (N) | 500–5000 | 100–2000 | 1–50 | 100–1000 | 2–100 |
Stroke/Deformation | 10–1000 mm | 20–300% contraction | 1–10 mm | 1–5 mm | 100–400% elongation |
Response Speed (ms) | 50–200 | 100–500 | 10–50 | 1–10 | 80–400 |
Typical application scenarios | Industrial automation | Robots, rehabilitation equipment | Microfluidics, sensors | Precision control, injection system | Wearable haptic suits, Smart textiles for healthcare, Adaptive ergonomic supports |
Reference | [89] | [90] | [91] | [92] | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Qin, Y.; Xu, Z.; Zheng, X.; Jia, H. Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications. Sensors 2025, 25, 3665. https://doi.org/10.3390/s25123665
Chai Y, Qin Y, Xu Z, Zheng X, Jia H. Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications. Sensors. 2025; 25(12):3665. https://doi.org/10.3390/s25123665
Chicago/Turabian StyleChai, Yao, Yutong Qin, Ziyi Xu, Xianhong Zheng, and Hao Jia. 2025. "Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications" Sensors 25, no. 12: 3665. https://doi.org/10.3390/s25123665
APA StyleChai, Y., Qin, Y., Xu, Z., Zheng, X., & Jia, H. (2025). Advances in Fabric-Based Pneumatic Soft Actuators for Flexible Robotics: Design and Applications. Sensors, 25(12), 3665. https://doi.org/10.3390/s25123665