Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = sodium-metal anodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

23 pages, 3040 KiB  
Review
All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects
by Alexander M. Skundin and Tatiana L. Kulova
Batteries 2025, 11(8), 292; https://doi.org/10.3390/batteries11080292 - 2 Aug 2025
Viewed by 276
Abstract
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review [...] Read more.
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review considers the fundamental advantages of all-solid-state anode-free sodium batteries as well as challenges in their creation. The advantages of all-solid-state anode-free sodium batteries reveal themselves when comparing them with ordinary sodium-ion batteries, sodium metal batteries, sodium batteries with liquid electrolyte, and their lithium counterparts. Full article
Show Figures

Graphical abstract

18 pages, 2241 KiB  
Article
Optimization of a Monopolar Electrode Configuration for Hybrid Electrochemical Treatment of Real Washing Machine Wastewater
by Lidia C. Espinoza, Angélica Llanos, Marjorie Cepeda, Alexander Carreño, Patricia Velásquez, Brayan Cruz, Galo Ramírez, Julio Romero, Ricardo Abejón, Esteban Quijada-Maldonado, María J. Aguirre and Roxana Arce
Int. J. Mol. Sci. 2025, 26(13), 6445; https://doi.org/10.3390/ijms26136445 - 4 Jul 2025
Viewed by 317
Abstract
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The [...] Read more.
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The monopolar setup employed mixed metal oxide (MMO) and aluminum anodes, along with a stainless steel cathode, operating under controlled conditions with sodium chloride as the supporting electrolyte. An applied current density of 15 mA cm−2 achieved 90% chemical oxygen demand (COD) removal, 98% surfactant degradation, complete turbidity reduction within 120 min, and pH stabilization near 8. Additionally, electrochemical disinfection achieved <2 MPN/100 mL, with no detectable phenols and the presence of organic anions such as oxalate and acetate. These results demonstrate the effectiveness of an optimized monopolar EC–EO system as a cost-efficient and sustainable strategy for wastewater treatment and potential water reuse. Further studies should focus on refining energy consumption and monitoring reaction by-products to enhance large-scale applicability. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

9 pages, 3386 KiB  
Article
Reversible Sodium Storage of CoTe2 Anode via Lanthanum Doping
by Haonan Xie, Xiaolin Xie, Taijiao Guo and Ting Deng
Inorganics 2025, 13(6), 207; https://doi.org/10.3390/inorganics13060207 - 19 Jun 2025
Viewed by 365
Abstract
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ [...] Read more.
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ ion, meaning the integrity of CoTe2 electrodes can be easily damaged when Na+ ions diffuse into CoTe2 and convert to large Na2Te. Herein, we propose a doping strategy by introducing an unreactive element but with a large radius to enhance the overall performance. Lanthanum (La) can be doped into the CoTe2 structure to counteract the size effect of Na2Te since La has a large radius. On the other hand, La with abundant electrons in CoTe2 can also facilitate the charge transfer during charge/discharge. As a result, La-doped CoTe2 (La-CoTe2) can deliver a maximum capacity of 345 mAh g−1 at 0.05 A g−1 and has a decent rate performance. After 2000 cycles at 2 A g−1, a capacity of 88 mAh g−1 remained, which is a notable improvement compared to undoped CoTe2. These results demonstrate the potential of rare earth elements in preparing advanced SIB electrode materials. Full article
Show Figures

Figure 1

14 pages, 6740 KiB  
Article
High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries
by Mingyang Chen, Yan Liu, Zhenchun Fang, Yinan Wang, Shaonan Gu and Guowei Zhou
Nanomaterials 2025, 15(12), 881; https://doi.org/10.3390/nano15120881 - 7 Jun 2025
Viewed by 535
Abstract
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. [...] Read more.
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. In this work, we report the rational design of a hollow triple-shelled high-entropy sulfide (NaFeZnCoNiMn)9S8, synthesized through sequential templating method under hydrothermal conditions. Transmission electron microscopy confirms its well-defined three-shelled architecture. The inter-shell voids effectively buffer Na+ insertion/desertion-induced volume extension, while the tailored high-entropy matrix enhances electronic conductivity and accelerates Na+ transport. This synergistic design yields outstanding performance, including a high initial Coulombic efficiency (ICE) of 94.1% at 0.1 A g−1, low charge-transfer resistance (0.32~2.54 Ω), fast Na+ diffusion efficiency (10−8.5–10−10.5 cm2 s−1), and reversible capacity of 582.6 mAh g−1 after 1600 cycles at 1 A g−1 with 91.2% capacity retention. These results demonstrate the potential of high-entropy, multi-shelled architectures as a robust platform for next-generation durable SIB anodes. Full article
Show Figures

Figure 1

13 pages, 4829 KiB  
Article
Synergistic Cationic–Anionic Regulation in Ni-Doped FeSe@C Anodes with Se Vacancies for High-Efficiency Sodium Storage
by Liang Wang, Shutong Cai, Dingwen Wang, Xiangyi Wang and Yang Cheng
Batteries 2025, 11(6), 205; https://doi.org/10.3390/batteries11060205 - 23 May 2025
Viewed by 1105
Abstract
Sodium-ion batteries present an economical energy storage solution, yet their anode kinetics remain slow, impeding rate performance and cyclability. Layered FeSe anodes, characterized by metallic conductivity, hold potential, but structural decay and insufficient active sites during cycling continue to pose challenges. Herein, these [...] Read more.
Sodium-ion batteries present an economical energy storage solution, yet their anode kinetics remain slow, impeding rate performance and cyclability. Layered FeSe anodes, characterized by metallic conductivity, hold potential, but structural decay and insufficient active sites during cycling continue to pose challenges. Herein, these challenges are addressed through the implementation of dual Ni doping and Se vacancy engineering in FeSe@C to synergistically regulate cationic/anionic configurations. The ionic substitution of larger Fe2+ ions (0.78 Å ionic radius) with smaller Ni2+ ions (0.69 Å) induces lattice distortion and generates abundant Se vacancies, enhancing electron transport, active site accessibility, and Na+ adsorption. These synergistic modifications effectively boost Na+ diffusion kinetics and electrolyte compatibility, creating a favorable electrochemical environment for fast sodium storage. Consequently, the optimized 2%Ni-FeSe@C electrode retains an exceptional discharge specific capacity of 307.67mAh g−1 after 1000 cycles at an ultrahigh current density of 5 Ag−1, showcasing superior rate capability and long-term cycling stability, paving the way for practical high-power SIBs. Full article
Show Figures

Graphical abstract

13 pages, 2393 KiB  
Article
Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes
by Gang Zhi, Zhanwei Hu, Zhuangfei Zhang, Hui Wang, Dezhi Kong, Guozhong Xing, Dandan Wang, Zhihong Mai, Tingting Xu, Xinjian Li and Ye Wang
Molecules 2025, 30(10), 2092; https://doi.org/10.3390/molecules30102092 - 8 May 2025
Viewed by 543
Abstract
Sodium metal is a promising anode material for sodium metal batteries (SMBs) due to its high theoretical specific capacity and low electrochemical potential. However, its practical implementation is severely limited by dendrite formation, which causes short circuits and safety issues. Here, we introduce [...] Read more.
Sodium metal is a promising anode material for sodium metal batteries (SMBs) due to its high theoretical specific capacity and low electrochemical potential. However, its practical implementation is severely limited by dendrite formation, which causes short circuits and safety issues. Here, we introduce a separator modification strategy using Ag nanoparticles decorated with two-dimensional diamane on a commercial polypropylene (PP) substrate (Ag-diamane/PP) to enhance the performance of sodium metal anodes (SMAs). The synergistic effect between the sodiophilic Ag nanoparticles and the diamane network not only accelerates Na⁺ transport through the modified separator but also reduces interfacial resistance. This dendrite-suppression effect was systematically validated using in situ optical microscopy and ex situ scanning electron microscopy. Symmetric Na||Na cells incorporating the Ag-diamane/PP separator exhibit exceptional cycling stability, maintaining more than 3800 h of operation at 2 mA cm−2 with a capacity of 1 mAh cm−2. Furthermore, a full-cell configuration with a Na3V2(PO4)3@C cathode, Ag-diamane/PP separator, and Na metal anode delivers a high reversible capacity of 94.35 mAh g−1 and stable cycling for 270 cycles. This work highlights the Ag-diamane/PP separator as a promising solution for advancing dendrite-free SMBs with long-term cycling stability and high energy density. Full article
(This article belongs to the Special Issue Mesoporous Materials for Electrochemical Energy Storage)
Show Figures

Figure 1

13 pages, 2869 KiB  
Article
Study on Thermal Behavior and Safety Properties of Na4Fe3(PO4)2(P2O7) and NaNi1/3Fe1/3Mn1/3O2 Cathode-Based Sodium Ion Battery
by Ran Yu, Shiyang Liu, Xuehai Li, Bin Wei and Xiaochao Wu
Batteries 2025, 11(5), 184; https://doi.org/10.3390/batteries11050184 - 7 May 2025
Viewed by 1003
Abstract
Sodium-ion batteries (SIBs) share similar working principles with lithium-ion batteries while demonstrating cost advantages. However, the current understanding of their safety characteristics remains insufficient, and the thermal runaway mechanisms of different SIB systems have not been fully elucidated. This study investigated the following [...] Read more.
Sodium-ion batteries (SIBs) share similar working principles with lithium-ion batteries while demonstrating cost advantages. However, the current understanding of their safety characteristics remains insufficient, and the thermal runaway mechanisms of different SIB systems have not been fully elucidated. This study investigated the following two mainstream sodium-ion battery systems: polyanion-type compound (PAC) and layered transition metal oxide (TMO) cathodes. Differential scanning calorimetry (DSC) was employed to evaluate the thermal stability of cathodes and anodes, examining the effects of state of charge (SOC), cycling, and overcharging on electrode thermal stability. The thermal stability of electrolytes with different compositions was also characterized and analyzed. Additionally, adiabatic thermal runaway tests were conducted using an accelerating rate calorimeter (ARC) to explore temperature–voltage evolution patterns and temperature rise rates. The study systematically investigated heat-generating reactions during various thermal runaway stages and conducted a comparative analysis of the thermal runaway characteristics between these two battery systems. Full article
(This article belongs to the Special Issue Advances in Battery Electric Vehicles—2nd Edition)
Show Figures

Figure 1

14 pages, 2546 KiB  
Article
Hollow-Structured Carbon-Coated CoxNiySe2 Assembled with Ultrasmall Nanoparticles for Enhanced Sodium-Ion Battery Performance
by Chao Wang, Weijie Si and Xiongwu Kang
Inorganics 2025, 13(3), 96; https://doi.org/10.3390/inorganics13030096 - 20 Mar 2025
Viewed by 518
Abstract
Transition metal selenides are considered one of the most promising materials for sodium-ion battery anodes due to their excellent theoretical capacity. However, it remains challenging to suppress the volume variation and the resulted capacity decay during the charge–discharge process. Herein, hollow-structured CoNiSe2 [...] Read more.
Transition metal selenides are considered one of the most promising materials for sodium-ion battery anodes due to their excellent theoretical capacity. However, it remains challenging to suppress the volume variation and the resulted capacity decay during the charge–discharge process. Herein, hollow-structured CoNiSe2 dual transition metal selenides wrapped in a carbon shell (HS-CoxNiySe2@C) were deliberately designed and prepared through sequential coating of polyacrylonitrile (PAN), ion exchange of ZIF-67 with Ni2+ metal ions, and carbonization/selenization. The hollow structure was evidenced by transmission electron microscopy, and the crystalline structure was confirmed by X-ray diffraction. The ample internal space of HS-CoxNiySe2@C effectively accommodated volume expansion during the charge and discharge processes, and the large surface area enabled sufficient contact between the electrode and electrolyte and shortened the diffusion path of sodium ions for a feasible electrochemical reaction. The surface area and ionic conductivity of HS-CoxNiySe2@C were strongly dependent on the ratio of Co to Ni. The synergistic effect between Co and Ni enhanced the conductivity and electron mobility of HS-CoxNiySe2@C, thereby improving charge transfer efficiency. By taking into account the structural advantages and rational metal selenide ratios, significant improvements can be achieved in the cycling performance, rate performance, and overall electrochemical stability of sodium-ion batteries. The optimized HS-CoxNiySe2@C demonstrated excellent performance, and the reversible capacity remained at 334 mAh g−1 after 1000 cycles at a high current of 5.0 A g−1. Full article
Show Figures

Graphical abstract

12 pages, 3920 KiB  
Article
Tape Casting of NASICON-Based Separators with High Conductivity for Na All-Solid-State Batteries
by Melanie Rosen, Samir Mahioui, Christian Schwab, Gerald Dück and Martin Finsterbusch
Electrochem 2025, 6(1), 5; https://doi.org/10.3390/electrochem6010005 - 16 Feb 2025
Cited by 2 | Viewed by 1368
Abstract
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like [...] Read more.
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like oxide-ceramic-based all-solid-state batteries feature the highest possible safety while still maintaining competitive electrochemical performance. However, production technologies are still in their infancy, especially for Na all-solid-state batteries, and need to be urgently developed to enable solid-state-battery technology using only abundant raw materials. In this study, the additive-free production of freestanding, undoped NaSICON separators via tape-casting is demonstrated, having an extremely high total Na-ion conductivity of up to 2.44 mS·cm−1 at room temperature. Nevertheless, a strong influence of sample thickness on phase purity as well as electrochemical performance is uncovered. Additionally, the effect of self-coating of NaSICON during high-temperature treatment was evaluated as a function of thickness. While advantageous for increasing the stability against Na-metal anodes, detrimental consequences are identified when separator thickness is reduced to industrially relevant values and mitigation measures are postulated. Full article
Show Figures

Graphical abstract

30 pages, 10158 KiB  
Review
A Review of Pnictogenides for Next-Generation Anode Materials for Sodium-Ion Batteries
by Sion Ha, Junhee Kim, Dong Won Kim, Jun Min Suh and Kyeong-Ho Kim
Batteries 2025, 11(2), 54; https://doi.org/10.3390/batteries11020054 - 29 Jan 2025
Viewed by 1361
Abstract
With the growing market of secondary batteries for electric vehicles (EVs) and grid-scale energy storage systems (ESS), driven by environmental challenges, the commercialization of sodium-ion batteries (SIBs) has emerged to address the high price of lithium resources used in lithium-ion batteries (LIBs). However, [...] Read more.
With the growing market of secondary batteries for electric vehicles (EVs) and grid-scale energy storage systems (ESS), driven by environmental challenges, the commercialization of sodium-ion batteries (SIBs) has emerged to address the high price of lithium resources used in lithium-ion batteries (LIBs). However, achieving competitive energy densities of SIBs to LIBs remains challenging due to the absence of high-capacity anodes in SIBs such as the group-14 elements, Si or Ge, which are highly abundant in LIBs. This review presents potential candidates in metal pnictogenides as promising anode materials for SIBs to overcome the energy density bottleneck. The sodium-ion storage mechanisms and electrochemical performance across various compositions and intrinsic physical and chemical properties of pnictogenide have been summarized. By correlating these properties, strategic frameworks for designing advanced anode materials for next-generation SIBs were suggested. The trade-off relation in pnictogenides between the high specific capacities and the failure mechanism due to large volume expansion has been considered in this paper to address the current issues. This review covers several emerging strategies focused on improving both high reversible capacity and cycle stability. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

14 pages, 5099 KiB  
Article
S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries
by Kaiqin Li, Yuqi Kang, Chengjiang Deng, Yanfeng Wang, Haocun Ba, Qi An, Xiaoyan Han and Shaozhuan Huang
Batteries 2025, 11(1), 28; https://doi.org/10.3390/batteries11010028 - 15 Jan 2025
Cited by 1 | Viewed by 1095
Abstract
The development of metal sulfides as anodes for sodium-ion batteries (SIBs) is significantly obstructed by the slow kinetics of the electrochemical reactions and the substantial volume changes on the cycling. Herein, we introduce a selenium-substituted cobalt disulfide embedded within a dual carbon–graphene framework [...] Read more.
The development of metal sulfides as anodes for sodium-ion batteries (SIBs) is significantly obstructed by the slow kinetics of the electrochemical reactions and the substantial volume changes on the cycling. Herein, we introduce a selenium-substituted cobalt disulfide embedded within a dual carbon–graphene framework (Se-CoS2/C@rGO) for high-performance SIBs. The Se-CoS2/C@rGO was prepared via a synchronous sulfurization/selenization strategy using Co-alkoxide as the precursor and SeS2 as the source of selenium and sulfur, during which the EG anions are converted in situ to a S, Se codoped carbon scaffold. The dual carbon–graphene matrix not only improves the electronic conductivity but also stabilizes the electrode material effectively. In addition, the Se substitution within the CoS2 lattice further improves the electrical conductivity and promotes the Na+ reaction kinetics. The enhanced intrinsic electronic/ionic conductivity and reinforced structural stability endow the Se-CoS2/C@rGO anode with a high reversible capacity (558.2 mAh g−1 at 0.2 A g−1), superior rate performance (351 mAh g−1 at 20 A g−1), and long cycle life (93.5% capacity retention after 2100 cycles at 1 A g−1). This work provides new insights into the development of stable and reversible anode materials through Se substitution and dual carbon encapsulation. Full article
Show Figures

Figure 1

13 pages, 3845 KiB  
Article
Facile Synthesis of Iron Phosphide Nanoparticles in 3D Porous Carbon Framework as Superior Anodes for Sodium-Ion Batteries
by Jian Yan, Sheng Lin, Yongji Xia, Zhidong Zhou, Jintang Li and Guanghui Yue
Coatings 2025, 15(1), 85; https://doi.org/10.3390/coatings15010085 - 14 Jan 2025
Cited by 1 | Viewed by 1140
Abstract
Iron phosphide (FeP) represents a promising anode material for sodium-ion batteries, attributed to its significant theoretical capacity, moderate operating potential, and natural abundance. However, due to the low conductivity and significant volume expansion of FeP electrodes, their specific capacity and cycle life decrease [...] Read more.
Iron phosphide (FeP) represents a promising anode material for sodium-ion batteries, attributed to its significant theoretical capacity, moderate operating potential, and natural abundance. However, due to the low conductivity and significant volume expansion of FeP electrodes, their specific capacity and cycle life decrease rapidly during charging and discharging. In this study, we synthesized FeP nanoparticles supported on a three-dimensional porous carbon framework composite (FeP@PCF) using a straightforward colloidal blow molding method, employing iron nitrate nonahydrate and polyvinylpyrrolidone as raw materials. The nanoscale size of the FeP particles, along with the abundant mesopores and high specific surface area of the 3D porous carbon framework, contribute to the impressive sodium storage performance of FeP@PCF. It is revealed that FeP@PCF achieves a remarkable capacity of 196.6 mA h g−1 at a current density of 1.0 A g−1. Furthermore, after 800 cycles at this current density, it retains a capacity of 172.4 mA h g−1, demonstrating excellent cycling performance. Kinetic and dynamic studies indicate that this exceptional performance is largely attributed to the well-designed FeP@PCF, which exhibits a high capacitive contribution of 88.3% at a scan rate of 1 mV s−1. Full article
(This article belongs to the Special Issue Coatings for Batteries and Energy Storage)
Show Figures

Figure 1

12 pages, 3498 KiB  
Article
An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature
by Sichang Ma, Yueming Zhu, Yadong Yang, Dongyang Li, Wendong Tan, Ling Gao, Wanwei Zhao, Wenbo Liu, Wenyu Liang and Rui Xu
Batteries 2025, 11(1), 9; https://doi.org/10.3390/batteries11010009 - 27 Dec 2024
Viewed by 1197
Abstract
Room-temperature sodium–sulfur (RT Na–S) batteries offer a superior, high-energy-density solution for rechargeable batteries using earth-abundant materials. However, conventional RT Na–S batteries typically use sulfur as the cathode, which suffers from severe volume expansion and requires pairing with a sodium metal anode, raising significant [...] Read more.
Room-temperature sodium–sulfur (RT Na–S) batteries offer a superior, high-energy-density solution for rechargeable batteries using earth-abundant materials. However, conventional RT Na–S batteries typically use sulfur as the cathode, which suffers from severe volume expansion and requires pairing with a sodium metal anode, raising significant safety concerns. Utilizing Na2S as the cathode material addresses these issues, yet challenges such as Na2S’s low conductivity as well as the shuttle effect of polysulfide still hinder RT Na–S battery development. Herein, we present a simple and cost-effective method to fabricate a Na2S–Na6CoS4/Co@C cathode, wherein Na2S nanoparticles are embedded in a conductive carbon matrix and coupled with dual catalysts, Na6CoS4 and Co, generated via the in situ carbothermal reduction of Na2SO4 and CoSO4. This approach creates a three-dimensional porous composite cathode structure that facilitates electrolyte infiltration and forms a continuous conductive network for efficient electron transport. The in situ formed Na6CoS4/Co electrocatalysts, tightly integrated with Na2S, exhibit strong catalytic activity and robust physicochemical stabilization, thereby accelerating redox kinetics and mitigating the polysulfide shuttle effect. As a result, the Na2S–Na6CoS4/Co@C cathode achieves superior capacity retention, demonstrating a discharge capacity of 346 mAh g−1 after 100 cycles. This work highlights an effective strategy for enhancing Na2S cathodes with embedded catalysts, leading to enhanced reaction kinetics and superior cycling stability. Full article
(This article belongs to the Special Issue Energy-Dense Metal–Sulfur Batteries)
Show Figures

Figure 1

11 pages, 2311 KiB  
Article
Ion-Replacement Strategy in Preparing Bi-Based MOF and Its Derived Bi/C Composite for Efficient Sodium Storage
by Zhenpeng Zhu, Shuya Zhang, Kuan Shen, Fu Cao, Qinghong Kong and Junhao Zhang
Batteries 2025, 11(1), 2; https://doi.org/10.3390/batteries11010002 - 24 Dec 2024
Viewed by 1175
Abstract
To address large volumetric expansion and low conductivity of bismuth-based anodes, an ion-replacement technique is proposed to prepare Bi/C composites, using 1,3,5-benzenetricarboxylicacid (H3BTC) based metal–organic framework as precursors. The characterizations reveal that the Bi/C composite derived from Cu-H3BTC is [...] Read more.
To address large volumetric expansion and low conductivity of bismuth-based anodes, an ion-replacement technique is proposed to prepare Bi/C composites, using 1,3,5-benzenetricarboxylicacid (H3BTC) based metal–organic framework as precursors. The characterizations reveal that the Bi/C composite derived from Cu-H3BTC is a sheet structure with the size of 150 nm, and Bi nanoparticles are uniformly dispersed in carbon sheets. When assessed as anode material for sodium ion batteries (SIBs), a sheet-like Bi/C anode exhibits superior sodium storage performance. It delivers a reversible capacity of 254.6 mAh g−1 at 1.0 A g−1 after 100 cycles, and the capacity retention is high at 91%. Even at 2.0 A g−1, the reversible capacity still reaches 242.8 mAh g−1. The efficient sodium storage performance benefits from the uniform dispersion of Bi nanoparticles in the carbon matrix, which not only provides abundant active sites but also alleviates the volume expansion. Meanwhile, porous carbon sheets can increase the electrical conductivity and accelerate the electrochemical reaction kinetics. Full article
(This article belongs to the Special Issue Thermal Safety of Lithium Ion Batteries—2nd Edition)
Show Figures

Figure 1

Back to TopTop