Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = sodium dodecyl benzene sulfonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2337 KB  
Article
Study on the Effect of Sodium Dodecyl Benzene Sulfonate on Coal Moisture Imbibition and Gas Adsorption
by Kaizhi Li, Yanqi Chen, Zhaofeng Wang, Liguo Wang, Demin Chen, Shujun Ma and Shijie Li
Fuels 2025, 6(4), 80; https://doi.org/10.3390/fuels6040080 - 15 Oct 2025
Viewed by 633
Abstract
Coal mining has entered the stage of deep mining, and the prevention and control of gas disasters are facing significant challenges. Coal seam water injection, as an effective means of preventing and controlling gas disasters, has dual effects of pressure relief, permeability enhancement, [...] Read more.
Coal mining has entered the stage of deep mining, and the prevention and control of gas disasters are facing significant challenges. Coal seam water injection, as an effective means of preventing and controlling gas disasters, has dual effects of pressure relief, permeability enhancement, and displacement sodium dodecyl benzene sulfonate (SDBS), as an anionic surfactant, can reduce surface tension to a certain extent in its aqueous solution and is therefore commonly used in coal seam water injection technology. In order to clarify the effect of SDBS on the water absorption capacity of coal and whether it will affect the gas adsorption capacity of coal, imbibition tests were conducted on dried coal samples in different concentrations of SDBS solutions, as well as gas adsorption tests on dried coal samples after imbibition was completed. Research shows that the key concentration range of SDBS for practical application is 0.050–0.075 wt%. When the concentration of SDBS solution is lower than 0.050 wt%, as the concentration of SDBS solution increases, the spontaneous imbibition capacity of coal increases significantly, and the adsorption capacity of coal to gas decreases significantly. When the concentration of SDBS solution is higher than 0.075 wt%, the spontaneous imbibition water capacity and gas adsorption capacity of coal hardly change significantly with the increase in solution concentration. Considering the effects of SDBS on coal water absorption and gas adsorption capacity, as well as environmental protection factors, it is recommended to use SDBS as a surfactant with a solution concentration of 0.050 wt%. Full article
Show Figures

Figure 1

15 pages, 5059 KB  
Article
Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism
by Qiuxia Wang, Jianhua Bai, Hongyu Wang, Xiaodong Han, Hongwen Zhang, Zijuan Cao and Longli Zhang
Processes 2025, 13(10), 3220; https://doi.org/10.3390/pr13103220 - 10 Oct 2025
Viewed by 710
Abstract
The deposition of asphaltenes poses a critical challenge to the petroleum industry, reducing the efficiency of oil wells and, in severe cases, clogging pipelines. Dispersants are widely used to enhance asphaltene stability, but asphaltenes are complex, solubility-defined compounds with variable properties, leading to [...] Read more.
The deposition of asphaltenes poses a critical challenge to the petroleum industry, reducing the efficiency of oil wells and, in severe cases, clogging pipelines. Dispersants are widely used to enhance asphaltene stability, but asphaltenes are complex, solubility-defined compounds with variable properties, leading to uncertainties in dispersant microscopic mechanisms, macroscopic effects, and their relationships—requiring further study. This work investigated two anionic dispersants (sodium dodecyl benzene sulfonate (SDBS) and dodecyl benzene sulfonic acid (DBSA)) for dispersing GT asphaltene (GT-ASP, isolated from offshore heavy oil), aiming to improve offshore heavy oil stability. Using an asphaltene–toluene system, it analyzed dispersant effects on GT-ASP stability, particle size, and adsorption and underlying mechanisms. DBSA showed superior performance: at 1000 ppm (w/v), it reduced GT-ASP average particle size from ~160 nm to ~29 nm and increased the onset of the flocculation point (OFP) from 33.5 vol% to 63.0 vol%, driven by chemical adsorption, hydrogen bonding, and π–π conjugation. In contrast, SDBS promoted aggregation: particle size reached 257 nm (1000 ppm (w/v)) and 1271 nm (5000 ppm (w/v)), with OFP at 54.6 vol%, likely due to Na+-induced charge neutralization, insufficient steric hindrance, and “micellar bridges” via SDBS self-aggregation. Finally, this study makes a valuable contribution to both the theoretical guidance and the practical application of asphaltene dispersants. Full article
Show Figures

Figure 1

22 pages, 24500 KB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 - 1 Aug 2025
Cited by 1 | Viewed by 1039
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Graphical abstract

18 pages, 2779 KB  
Article
Development and Optimization of Bentonite-Based Slurry Sealing Material
by Qingsong Zhang, Changyuan Xiao, Zhaoyang Su, Hui Zhuo and Tuo Qiang
Minerals 2025, 15(4), 385; https://doi.org/10.3390/min15040385 - 5 Apr 2025
Viewed by 728
Abstract
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, [...] Read more.
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, have gradually become a research hotspot. Compared to the traditional solid sealing materials such as cement-based or organic polymers, liquid-phase sealing materials can effectively seal secondary fractures caused by mining vibration through grout replenishment. However, the influence of each component in liquid-phase non-solidified materials on sealing properties such as fluidity, water retention, and permeability remains unclear. To address these issues, a novel liquid-phase non-solidified hole sealing material was developed using bentonite as the base material, sodium dodecyl benzene sulfonate as the dispersant, and sodium carboxymethyl cellulose as the thickener. Initially, single-factor experiments were applied to investigate the effects of material ratios on the fluidity, water retention, and permeability. Subsequently, orthogonal experimental design and response surface methodology were used to establish nonlinear quadratic regression models relating these properties to water–bentonite ratio, dispersant content, and thickener content. The results indicated that an optimal water–bentonite ratio enhances both fluidity and permeability, while dispersants improve water retention and permeability and thickeners primarily boost water retention. Finally, the optimized composition was determined as a water–bentonite ratio of 4.41:1, a dispersant content of 0.38%, and a thickener content of 0.108%. We believe that the developed slurry materials will maintain excellent sealing performance through the entire gas extraction period. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

12 pages, 2307 KB  
Article
Synthesis of Novel Zwitterionic Surfactants: Achieving Enhanced Water Resistance and Adhesion in Emulsion Polymer Adhesives
by Mai Toan, Jaehyouk Choi, Hang Thi Ngo, Jin-Young Bae, Seunghan Shin and Kiok Kwon
Polymers 2024, 16(24), 3504; https://doi.org/10.3390/polym16243504 - 17 Dec 2024
Cited by 2 | Viewed by 2075
Abstract
Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a [...] Read more.
Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation. The zwitterionic groups in SF enhance adhesion to hydrophilic substrates (glass, stainless steel, and skin). Films produced with SF exhibit outstanding water resistance, with only 18.48% water uptake after 1800 min, compared to 81% for the control using Rhodacal DS-4. Notably, SF maintains low water uptake across various concentrations, minimizing water penetration. Thus, the synthesized SF demonstrates improved adhesive properties and excellent water resistance in emulsion polymerization applications, highlighting its potential as a sustainable, high-performance alternative to petrochemical surfactants. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 9241 KB  
Article
Precipitation–Flotation Process for Molybdenum and Uranium Separation from Wastewater
by Yanfang Huang, Sa Yue, Aohua Li, Hu Sun, Yizhuang Wang, Qunzhen Bu, Bingbing Liu and Guihong Han
Metals 2024, 14(11), 1231; https://doi.org/10.3390/met14111231 - 28 Oct 2024
Cited by 1 | Viewed by 2110
Abstract
The mining of molybdenum and uranium ores inevitably results in the generation of large volumes of wastewater containing low concentrations of metals, which poses significant threats to the environment. This study presents a novel precipitation–flotation process for the simultaneous separation of molybdenum and [...] Read more.
The mining of molybdenum and uranium ores inevitably results in the generation of large volumes of wastewater containing low concentrations of metals, which poses significant threats to the environment. This study presents a novel precipitation–flotation process for the simultaneous separation of molybdenum and uranium from wastewater. A systematic investigation was conducted on the impacts of the type of precipitant, flotation reagent type, and flotation parameters on the experimental results. Ferric salt served better as a precipitant than aluminum salt and humic acid did, and sodium dodecyl sulfate (SDS) was more suitable than sodium dodecyl benzene sulfonate for acting as a surfactant and foaming agent. Under specific conditions, including a pH of 6.6, an Fe3+ dosage of 0.6 mmol·L−1, an SDS dosage of 40 mg·L−1, an air flow rate of 25 mL·min−1, and a flotation time of 10 min, the removal efficiencies of molybdenum and uranium reached 96.6% and 93.6%, respectively. After flotation, the molybdenum concentration, uranium concentration, chemical oxygen demand, and turbidity of the treated water all meet the emission standards. Furthermore, the metal removal mechanisms, including the particle size distribution, functional group structure, surface element composition, microstructure, and element distribution, were elucidated on the basis of characterization of the precipitation–flotation products. Full article
(This article belongs to the Special Issue Separation and Purification of Critical Metals)
Show Figures

Figure 1

16 pages, 2525 KB  
Article
SDBS-AEO Mixture for Triton X-100 Replacement: Surface Activity and Application in Biosensors
by Zhenzhen Li, Lei Wang, Mengjie Tang, Yulong Sun, Li Zhang and Zhongxiu Chen
Biosensors 2024, 14(10), 505; https://doi.org/10.3390/bios14100505 - 16 Oct 2024
Cited by 3 | Viewed by 2737
Abstract
Triton X-100 (TX-100) is a commonly used surfactant in the manufacture of biosensors. The factors limiting the use of TX-100 in biosensors are environmental concerns. In this study, the binary system of sodium dodecyl benzene sulfonate (SDBS) and fatty alcohol-polyoxyethlene ether (AEO) was [...] Read more.
Triton X-100 (TX-100) is a commonly used surfactant in the manufacture of biosensors. The factors limiting the use of TX-100 in biosensors are environmental concerns. In this study, the binary system of sodium dodecyl benzene sulfonate (SDBS) and fatty alcohol-polyoxyethlene ether (AEO) was investigated from the physicochemical principle of surfactant interaction and its application in biosensors. The results demonstrated that a mixture of SDBS and AEO at an appropriate molar ratio had a comparable activity to TX-100 in terms of surface activity, micelle formation, dynamic adsorption, foaming, emulsifying, and cell permeability. Theory and experimentation support the idea that SDBS-AEO might take the place of TX-100 in the manufacturing of biosensors. This study contributes to the development of alternatives to TX-100 and provides a new perspective for an in-depth study of the interaction mechanism of additives in biosensor design. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

11 pages, 3531 KB  
Article
Analysis of Chemical Oxygen Demand in Barrel Finishing Based on Reusing Water Resource of Grinding Fluid
by Huiting Shi, Xuenan Li, Shengqiang Yang, Ruihao Zhao and Xiang Yuan
Materials 2024, 17(16), 4051; https://doi.org/10.3390/ma17164051 - 15 Aug 2024
Cited by 2 | Viewed by 1339
Abstract
To explore the sustainable development of grinding fluid in barrel finishing, the idea of water resource reuse in grinding fluid has been proposed. The influence of the graphene oxide (GO) and the sodium dodecyl benzene sulfonate (SDBS) as main components in the grinding [...] Read more.
To explore the sustainable development of grinding fluid in barrel finishing, the idea of water resource reuse in grinding fluid has been proposed. The influence of the graphene oxide (GO) and the sodium dodecyl benzene sulfonate (SDBS) as main components in the grinding fluid on the chemical oxygen demand (COD) was analyzed. Repreparing new grinding fluids by utilizing the water resources in grinding fluid after finishing will not cause a sharp increase in COD value. GO which absorbs SDBS can be taken away from grinding fluid by physical separation. It will decrease the COD value of grinding fluid. However, SDBS exists in the form of colloids in the grinding fluid and cannot be removed through physical separation, which also affects the COD value. Based on water quality indicators (the COD, pH, total hardness, metal aluminum, anionic surfactants, and total dissolved solids), the water quality index (WQI) of the reusing grinding fluid after finishing by the physical separation is significantly reduced. It indicates that reusing water resources in grinding fluid is a feasible way to reuse grinding fluid. Full article
Show Figures

Figure 1

16 pages, 7352 KB  
Article
Development and Performance Study of Composite Protein Foaming Agent Based on Human Hair Residue
by Xuebo Zhang, Shuaiqi Du, Linxiu Han, Xiaojun Feng and Ming Yang
Sustainability 2024, 16(15), 6608; https://doi.org/10.3390/su16156608 - 2 Aug 2024
Cited by 2 | Viewed by 2834
Abstract
The instability and collapse of boreholes during coal seam gas extraction significantly affect the effectiveness of gas extraction. In response, this study selected human hair residue as the base material for composite protein foaming agents, leveraging the high protein content of animal hoof [...] Read more.
The instability and collapse of boreholes during coal seam gas extraction significantly affect the effectiveness of gas extraction. In response, this study selected human hair residue as the base material for composite protein foaming agents, leveraging the high protein content of animal hoof and hair materials to develop a high-strength, high-permeability, and environmentally friendly new type of foam concrete. This research found that the optimal ratio of foaming agent base solution to water is 1:4 when sodium hydroxide is used for protein hydrolysis. Comparing the foaming effects of sodium dodecyl sulfate (K12), α-sodium alpha-alkenyl sulfonate (AOS), sodium lauryl polyoxyethylene ether sulfate (SLS), and sodium dodecyl benzene sulfonate (LAS), sodium lauryl polyoxyethylene ether sulfate (SLS) exhibited the best foaming performance, while α-sodium alpha-alkenyl sulfonate (AOS) had the best foam stability. The optimal foam performance was achieved by mixing 2.0 g per liter of sodium lauryl polyoxyethylene ether sulfate and 0.3% calcium stearate. The experimental results showed that this foam concrete, with 25 mL of foaming agent, has a high strength exceeding 11 MPa and a high permeability with an average of 2.13 MD. This paper utilizes environmentally friendly materials and preparation processes. By using renewable resources such as human hair residue as raw materials, it helps reduce the dependence on natural resources and promotes sustainable development. This research demonstrates significant sustainability and provides the mining industry with an eco-friendly and efficient solution, with the potential to achieve positive economic and environmental benefits in practical applications. Full article
Show Figures

Figure 1

20 pages, 13412 KB  
Article
Experimental Study on the Hydraulic Performance of the Horizontal Main Drain of Building Drainage Systems Affected by Surfactants Sodium Dodecyl Benzene Sulfonate and Alkyl Ethoxylate-9
by Shengjie Hu, Ping Xu and Bin Fu
Water 2024, 16(12), 1641; https://doi.org/10.3390/w16121641 - 7 Jun 2024
Viewed by 1861
Abstract
Surfactants play a pivotal role in daily life owing to their commendable performance. The outbreak of the COVID-19 pandemic notably escalated surfactant usage. Upon entering building drainage systems with wastewater, surfactants profoundly influence hydraulic performance, an aspect that has garnered limited scholarly attention. [...] Read more.
Surfactants play a pivotal role in daily life owing to their commendable performance. The outbreak of the COVID-19 pandemic notably escalated surfactant usage. Upon entering building drainage systems with wastewater, surfactants profoundly influence hydraulic performance, an aspect that has garnered limited scholarly attention. This study employs an equally proportioned drainage test device to meticulously examine the variances in physical properties between surfactants, such as sodium dodecyl benzene sulfonate (SDBS) and alkyl ethoxylate-9 (AEO-9), and their repercussions on the hydraulic dynamics of building drainage horizontal main drains. Our findings reveal that the introduction of surfactants leads to the following: (1) an augmentation in water velocity and deposition distances of the solid simulant in the building drainage horizontal main drain with concentrations exacerbating this effect. The deposition distance of the solid simulation surged by up to 527% under experimental conditions compared to no surfactant; (2) there was a suppression of hydraulic jump and full degree of the horizontal main drain, with the concentration amplifying this suppression; and (3) an exacerbation of positive pressure in the horizontal main drain was found with increasing concentration, reaching a staggering 235.3% elevation compared to no surfactant. Moreover, SBDS foam outperformed AEO-9, demonstrating a 17.70–36.04% higher positive pressure in the horizontal main pipes. SBDS exhibits lower starting and ultimate viscosity, along with smaller colloid particle sizes, resulting in a 0.9–2.0% reduction in hydraulic jump and full degree. However, its inferior drag-reduction capability leads to a 17.48–36.44% decrease in the final deposition distances of solid simulant in the building drainage horizontal main drain compared to AEO-9. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

13 pages, 1853 KB  
Article
Synergistic Effect of Sodium Dodecyl Benzene Sulfonate on Flotation Separation of Magnesite and Dolomite with Sodium Oleate Collector
by Na Luo, Baobao Yan, Jingyang Shi, Dahu Li and Zhiqiang Huang
Minerals 2024, 14(6), 599; https://doi.org/10.3390/min14060599 - 7 Jun 2024
Cited by 2 | Viewed by 1712
Abstract
The synergistic effect of sodium dodecyl benzene sulfonate (SDBS) on the flotation separation of magnesite and dolomite using sodium oleate (NaOL) as a collector has been studied through flotation experiments, zeta potential measurements, contact angle measurements, Fourier transformation infrared spectroscopy analysis (FT-IR), particle [...] Read more.
The synergistic effect of sodium dodecyl benzene sulfonate (SDBS) on the flotation separation of magnesite and dolomite using sodium oleate (NaOL) as a collector has been studied through flotation experiments, zeta potential measurements, contact angle measurements, Fourier transformation infrared spectroscopy analysis (FT-IR), particle size measurements and transmittance measurements. The flotation experiments show that when the synergist, SDBS, is added to the collector, NaOL, the collecting ability and ion resistance of NaOL can be improved so that the flotation separation of magnesite and dolomite can be realized. Zeta potential measurements, contact angle measurements and FT-IR analysis indicate that SDBS and NaOL can co-adsorb on the surface of magnesite. Particle size measurements and transmittance measurements show that SDBS can also improve the dispersion and solubility of NaOL in an aqueous solution, so as to achieve a synergistic effect. Full article
Show Figures

Figure 1

16 pages, 8489 KB  
Article
Preparation and Tribological Performance of Multi-Layer van der Waals Heterostructure WS2/h-BN
by Yunqi Fang, Yang Sun, Fengqin Shang, Jing Zhang, Jiayu Yao, Zihan Yan and Hangyan Shen
Lubricants 2024, 12(5), 163; https://doi.org/10.3390/lubricants12050163 - 7 May 2024
Cited by 2 | Viewed by 1657
Abstract
Van der Waals heterostructures with incommensurate contact interfaces show excellent tribological performance, which provides solutions for the development of new solid lubricants. In this paper, a facile electrostatic layer-by-layer self-assembly (LBL) technique was proposed to prepare multi-layer van der Waals heterostructures tungsten disulfide/hexagonal [...] Read more.
Van der Waals heterostructures with incommensurate contact interfaces show excellent tribological performance, which provides solutions for the development of new solid lubricants. In this paper, a facile electrostatic layer-by-layer self-assembly (LBL) technique was proposed to prepare multi-layer van der Waals heterostructures tungsten disulfide/hexagonal boron nitride (vdWH WS2/h-BN). The h-BN and WS2 were modified with poly (diallyldimethylammonium chloride) (PDDA) and sodium dodecyl benzene sulfonate (SDBS) to obtain the positively charged PDDA@h-BN and the negatively charged SDBS@WS2, respectively. When the mass ratio of PDDA to h-BN and SDBS to WS2 were both 1:1 and the pH was 3, the zeta potential of PDDA@h-BN and SDBS@WS2 were 60.0 mV and −50.1 mV, respectively. Under the electrostatic interaction, the PDDA@h-BN and SDBS@WS2 attracted each other and stacked alternately along the (002) crystal plane forming the multi-layer (four-layer) vdWH WS2/h-BN. The addition of the multi-layer vdWH WS2/h-BN (1.0 wt%) to the base oil resulted in a significant reduction of 33.8% in the friction coefficient (0.104) and 16.8% in the wear rate (4.43 × 10−5 mm3/(N·m)). The excellent tribological property of the multi-layer vdWH WS2/h-BN arose from the lattice mismatch (26.0%), a 15-fold higher interlayer slip possibility, and the formation of transfer film at the contact interface. This study provided an easily accessible method for the multi-layer vdWH with excellent tribological properties. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials)
Show Figures

Figure 1

11 pages, 5970 KB  
Article
Preparation of Two-Dimensional Polyaniline Sheets with High Crystallinity via Surfactant Interface Self-Assembly and Their Encryption Application
by Zhiwei Li
Polymers 2024, 16(9), 1285; https://doi.org/10.3390/polym16091285 - 3 May 2024
Cited by 1 | Viewed by 2449
Abstract
In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to [...] Read more.
In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to these urgent issues, this study determines how to prepare a highly ordered structure in polyaniline formed at the gas-liquid interface. By dynamically arranging aniline monomers into a highly ordered structure with sodium dodecyl benzene sulfonate (SDBS) surfactant, aniline polymerization is initiated at the gas-liquid interface, resulting in two-dimensional polyaniline crystal sheets with a highly ordered structure. By elucidating the microstructure, crystallization process, and molecular structure of the two-dimensional polyaniline crystal sheets, the practical application of polyaniline as an encryption label in the field of electrochromism has been further expanded, thus making polyaniline widely used in the field of information encryption. Therefore, the synthesis of flaky polyaniline crystal sheets has a role in scientific research and practical application, which will arouse the interest and exploration of researchers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

20 pages, 5015 KB  
Article
Structural Design and Performance Optimization of Green Concrete Based on Recycled Pumice and Modified Rubber Powder
by Xinyi Chen, Xiaoming Li and Xiaosheng Song
Appl. Sci. 2024, 14(8), 3372; https://doi.org/10.3390/app14083372 - 17 Apr 2024
Cited by 4 | Viewed by 2512
Abstract
With the increasing severity of global climate change and environmental degradation, countries have put forward strategies to reduce carbon emissions and promote sustainable development. The construction industry is a major source of carbon emissions, and as such, the development of green concrete is [...] Read more.
With the increasing severity of global climate change and environmental degradation, countries have put forward strategies to reduce carbon emissions and promote sustainable development. The construction industry is a major source of carbon emissions, and as such, the development of green concrete is now critically important to the industry’s growth. Traditional concrete production methods use a lot of resources and produce a lot of carbon emissions. The study examines the use of recycled pumice and sodium dodecyl benzene sulfonate to modify waste rubber powder, which is then externally mixed into recycled coarse aggregate concrete. The study analyzes the impact of these modifiers on the rubber powder particles, as well as the effects of particle size and mixing amount on the resulting concrete. The investigation proved that the rubber recycled coarse aggregate concrete’s performance was enhanced by the modifier. This improvement addressed the issue of low compressive strength in rubber concrete to some extent and also had a positive impact on its resistance to freeze-thaw cycles. The experiment concluded that the best results were achieved by selecting rubber powder particles of Sipan 40 with a mesh size of 80 mesh and an external admixture of 6%. This type of green concrete can solve the problem of construction waste disposal while also enhancing the performance and durability of the concrete. It has a promising future application prospect. Full article
(This article belongs to the Special Issue Green and Low-Carbon Concrete Technology and Construction)
Show Figures

Figure 1

17 pages, 4182 KB  
Article
Comparative Analysis of Hydrogel Adsorption/Desorption with and without Surfactants
by Salam Abdulla Dhahir, Auda Jabbar Braihi and Salih Abbas Habeeb
Gels 2024, 10(4), 251; https://doi.org/10.3390/gels10040251 - 8 Apr 2024
Cited by 9 | Viewed by 3819
Abstract
In this particular study, a hydrogel known as SAP-1 was synthesized through the grafting of acrylic acid-co-acrylamide onto pullulan, resulting in the creation of Pul-g-Poly (acrylic acid-co-acrylamide). Additionally, a sponge hydrogel named SAP-2 was prepared by incorporating the surfactant sodium dodecyl benzene sulfonate [...] Read more.
In this particular study, a hydrogel known as SAP-1 was synthesized through the grafting of acrylic acid-co-acrylamide onto pullulan, resulting in the creation of Pul-g-Poly (acrylic acid-co-acrylamide). Additionally, a sponge hydrogel named SAP-2 was prepared by incorporating the surfactant sodium dodecyl benzene sulfonate (SDBS) into the hydrogel through free radical solution polymerization. To gain further insight into the composition and properties of the hydrogels, various techniques, such as Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance (1H NMR), atomic absorption spectroscopy, and field emission scanning electron microscopy (FE-SEM), were employed. Conversely, the absorption kinetics and the equilibrium capacities of the prepared hydrogels were investigated and analyzed. The outcomes of the investigation indicated that each of the synthesized hydrogels exhibited considerable efficacy as adsorbents for cadmium (II), copper (II), and nickel (II) ions. In particular, SAP-2 gel displayed a remarkable cadmium (II) ion absorption ability, with a rate of 190.72 mg/g. Following closely, SAP-1 gel demonstrated the ability to absorb cadmium (II) ions at a rate of 146.9 mg/g and copper (II) ions at a rate of 154 mg/g. Notably, SAP-2 hydrogel demonstrated the ability to repeat the adsorption–desorption cycles three times for cadmium (II) ions, resulting in absorption capacities of 190.72 mg/g, 100.43 mg/g, and 19.64 mg/g for the first, second, and third cycles, respectively. Thus, based on the abovementioned results, it can be concluded that all the synthesized hydrogels possess promising potential as suitable candidates for the adsorption and desorption of cadmium (II), copper (II), and nickel (II) ions. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

Back to TopTop