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Abstract: In this particular study, a hydrogel known as SAP-1 was synthesized through the grafting
of acrylic acid-co-acrylamide onto pullulan, resulting in the creation of Pul-g-Poly (acrylic acid-co-
acrylamide). Additionally, a sponge hydrogel named SAP-2 was prepared by incorporating the
surfactant sodium dodecyl benzene sulfonate (SDBS) into the hydrogel through free radical solu-
tion polymerization. To gain further insight into the composition and properties of the hydrogels,
various techniques, such as Fourier transform infrared spectroscopy, hydrogen nuclear magnetic res-
onance (1H NMR), atomic absorption spectroscopy, and field emission scanning electron microscopy
(FE-SEM), were employed. Conversely, the absorption kinetics and the equilibrium capacities of the
prepared hydrogels were investigated and analyzed. The outcomes of the investigation indicated
that each of the synthesized hydrogels exhibited considerable efficacy as adsorbents for cadmium (II),
copper (II), and nickel (II) ions. In particular, SAP-2 gel displayed a remarkable cadmium (II) ion
absorption ability, with a rate of 190.72 mg/g. Following closely, SAP-1 gel demonstrated the ability
to absorb cadmium (II) ions at a rate of 146.9 mg/g and copper (II) ions at a rate of 154 mg/g. Notably,
SAP-2 hydrogel demonstrated the ability to repeat the adsorption–desorption cycles three times for
cadmium (II) ions, resulting in absorption capacities of 190.72 mg/g, 100.43 mg/g, and 19.64 mg/g
for the first, second, and third cycles, respectively. Thus, based on the abovementioned results, it can
be concluded that all the synthesized hydrogels possess promising potential as suitable candidates
for the adsorption and desorption of cadmium (II), copper (II), and nickel (II) ions.

Keywords: pullulan hydrogel; adsorption/desorption; heavy metal ions; reusability; adsorption
kinetic models

1. Introduction

Hydrogels are known as hydrophilic, insoluble polymers with a high swelling capacity
due to their three-dimensional networks, enhancing their ability to absorb large amounts
of aqueous solutions. The hydrophilic property of the hydrogel could be taken advantage
of by grafting the basic unit of the hydrogel with active groups such as carboxyl groups
(–COOH) and amide (–CONH2) to increase the absorption capacity of the hydrogel [1].
Hydrogels are often used in many industrial, agricultural [2], biomedical [3], and wastew-
ater treatment applications [4,5]. Pullulan is a non-toxic polysaccharide, as well as being
hygroscopic, edible, biocompatible, biodegradable, and water-soluble, produced by the
yeast Aureobasidium [6]. Pullulan is characterized by its ability to absorb water, in addition
to its excellent adhesive properties that ensure its efficiency in the formulation of mem-
branes and fibers. It is used in various fields, such as agriculture, the food industry [7,8],
pharmaceuticals [9], and textiles [10]. Pullulan consists of repeated α-(1,6) maltotriose
units) via α-(1,4) glycosidic bonds and has the chemical formula (C6H10O5)n [11]. Pullulan,
in its natural state, is not used in wastewater treatment because it is soluble in water,
but the procedure of the graft polymerization of acrylamide and acrylic acid, used as
monomers, enhances the strength of the hydrogel and makes the hydrogel insoluble in
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water [12,13]. The industrial and domestic applications of surfactants have increased due
to their versatility and structural diversity [14]. Surfactants are divided according to the
charge of the main group into four types: anionic, non-ionic, cationic, and amphoteric [15].
The most important processes of surfactants’ interactions with polymers are precipitation,
complexation, and gelation in solution. The origins of the interaction between polymers and
surfactants, such as electrostatic dipoles, hydrophobicity, and hydrogen bonding, differ [16].
These materials work to change hydrophobicity to hydrophilicity [17,18]. In addition,
these materials work to improve the mechanical ability of polymers and their interfacial
properties and improve the adsorption behavior of polymers [19–23] by intercalating the
surface of non-ionic polymers with an ionic reducing agent. Such surfactants include
sodium dodecyl benzenesulfonate (SDBS) [24]. Recent studies have focused on heavy metal
ions as important environmental pollutants that should receive widespread attention [25].
The increase in industrial processes, such as the production of batteries, artificial leather,
electroplating, and textiles, has contributed to the increase of these pollutants in surface
water, drinking water, and even groundwater [26]. Research studies indicate that cadmium
ion pollutants cause breast and prostate cancer [27], in addition to affecting the body’s
health, especially that of the liver tissue [28], and increasing the development of bone and
muscle diseases [29]. As for copper ion pollution, it has toxic effects on the environment
and fish farming [30].

The health effects caused by swallowing or consuming nickel are pulmonary fibrosis,
kidney disease, and cancer, in addition to cardiovascular disease [31]. This is considered a
major pollutant of water bodies [32] and affects the liver and brain [33]. Therefore, it has
become mandatory to dispose of industrial wastes containing cadmium (II), copper (II), and
nickel (II) ions, and their removal from aqueous solutions has received wide attention [34].
Ion exchange and chemical and electrochemical precipitation are traditional processes for
removing these pollutants from wastewater. However, they have some disadvantages, such
as the need for high amounts of energy and corrosion [35]. Fome et al. used the MOF-88
particles to reinforce the polyacrylonitrile nanofiber membranes to remove Pb2+ ions from
aqueous solutions. Filtration membranes were produced that can produce more than 500 L
of pure water per square meter of the membrane after purifying the water from heavy
metal ions such as Zn2+, Cd2+, Pb2+, and Hg2+ [36].

A cation exchange membrane was manufactured, consisting of PVC-co-2, acryla-med-
2-methylpropane, and sulfonic acid with a separation capacity of 99.9%, 99.9%, and 96.9%
for K+, Pb2+, and Ni2+ ions, respectively, by Nemati et al. [37]. On the other hand, using the
biomass of Avena fatua, a non-toxic weed that grows easily and in large quantities for the
biosorption of cadmium (II), copper (II), lead (II), and zinc (II) ions from aqueous solutions
was developed by Arico et al. In addition, the effect of cadmium (II), copper (II), lead (II),
and zinc (II) ions on the growth of A. fatura was studied [38]. Hydrogels are considered
one of the most useful adsorbents due to their hydrophilic structure and ability to remove
various types of contaminants. Therefore, Rady et al. were able to prepare a non-toxic
porphyrin-silica chelate particle to adsorb cadmium (II), copper (II), lead (II), and zinc (II)
ions from aqueous solutions. Adsorption was found to reach equilibrium after 25 min [39].
This study aims to prepare pullulan-g-poly (AA-co-AAm) (SAP-1) and (acrylic acid-co-
acrylamide) containing an anionic surfactant as the sodium dodecyl benzene sulfonate
(SAP-2), synthesized by free radical solution polymerization for the removal of cadmium
(II), copper (II), and nickel (II) ions from aqueous solutions. The hydrogels’ experimental
equilibrium capacities, their adsorption kinetics models, their metal ion adsorption and
desorption rates, and their reusability were investigated throughout this study.

2. Results and Discussion
2.1. Chemical Structure Justification

Figure 1 shows that analysis by 1H NMR spectroscopy further supported the success
of the SDBS modification of (pullulan-g-poly (AA-co-AAm)). In addition to the different
carbons appearing at around 5.575–5.675 and 6.01–6.42, representing the Cis portion and
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trans portion of polyacrylic acid, those of the SAP-1 were converted to 5.590–5.685 and
5.99–6.28 ppm; these results agree with a previous study [40]. In addition, the new chemical
shifts for protons in the range of 0.85–1.5 ppm represented the pullulan, which converts to
0.85–1.52 after adding the SDBS at SAP-2, in addition to the peak at 2.53 ppm, characterized
by the methylene groups(–CH2CH2–) and the range of peaks (6–7 ppm) for amino groups
that convert to 2.54 ppm and 6–7.6 ppm after adding the SDBS. These results agreed with
previous studies [41,42].
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Figure 1. 1H NMR spectra of (a) SAP-1, and (b) SAP-2.

Figure 2 (SAP-1) shows that acrylic acid and acrylamide are grafted into pullulan.
The appearance of bands from about 1707 and 1645 cm−1 indicates AA grafting, where
AA contains a carboxyl group (COOH) [43]. This group includes the OH and C=O groups,
which usually appear in these positions. The AM grafting that occurs in the bands at about
1000–1250 cm−1 and the bands at about 3217.71–3425.58 cm−1 represents the symmetrical
and asymmetrical stretching of the N–H group from AM and the O–H stretching from AA
and Pullulan.

The AM was grafted onto the PUL substrate through an aliphatic C–N bond, where its
band appeared at 1000–1250 cm−1. In contrast, AA grafting occurred through a single C–C
bond; however, since this bond is nonpolar (no difference in electronegativity), it usually
does not show up as peaks in the IR spectrum. A covalent bond consists of two electrons
from each of two carbon atoms. This is called a sigma bond (σ) between one orbital of each
carbon atom. The peak is about 1658.71 cm−1 representing the stretching of the O–C–O
group from Pullulan [12]. Peaks in the spectrum at 2852, 2927, and 2947 cm−1 are induced
by C–H vibrations in SDBS at SAP-2. The absorption peaks at 3476 and 1187 cm−1 are
attributed to the remaining –OH groups and C–O–C bonds on the SAP-2, and the peaks at
1163 are assigned to the ionic sulphonate SO3− group present in SDBS [44,45]. The peaks
of 887 and 1024 cm−1 did not appear in SAP-1 and appeared after adding the SDBS to the
hydrogel, while the peaks at 1178 cm−1 and 2956 cm−1 represent the –COO– to extend
the acrylate groups and the C=O extension of the acrylamide groups and C–H vibrations



Gels 2024, 10, 251 4 of 17

in SDBS, respectively, which indicates that a grafting copolymer reaction occurs on the
pullulan backbone [46]. Therefore, grafting monomers such as acrylic acid and acrylamides
onto pullulan leads to the formation of a three-dimensional network that contributes to
increases in the adsorption of heavy metal ions by the surface of the hydrogels, as shown
in Figure 3.
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2.2. Adsorption Properties
2.2.1. Adsorption Capacity

Figure 4 shows the relationship between the absorption capacity of heavy metal ions,
such as cadmium, nickel, and copper ions, from their aqueous solutions by the prepared
hydrogels and a contact time of up to 1800 min. Using Equation (1), the absorption capacity
is calculated at any contact time (mg/g), as the absorption capacity gradually increases until
it finally reaches a plateau trend, with a non-linear relationship with contact time and for all
heavy metal ions using prepared hydrogels. This demonstrates that the active sites of the
adsorbent were gradually saturated and approached their maximum adsorption capacity.
The maximum adsorbent capacity by SAP-1 was 154 and 146.9 (mg/g) for Cu (II) and
Cd (II), while the maximum adsorbent capacity by SAP-2 was 190.72 and 187.978 (mg/g).
The above results indicated a good interaction between the Cu (II) and Cd (II) and the
hydrogel surface. The prepared gels can absorb all metal ions under investigation due to
their carboxyl, amine, and hydroxyl functions, which were grafted onto the pullulan spine
through acrylic acid and acrylamide [47–50].
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Figure 4. The adsorption capacity of heavy metal ions as Cd (II), Ni (II), and Cu (II) by hydrogels
SAP-1 and SAP-2 at many different contact times.

However, the porous hydrogel has a greater effect, as the absorption capacity increases
with the presence of SDBS, which causes an increase in the capacity and number of gaps
within the structure of the hydrogels [12]. The removal efficiencies (%) of heavy metal ions
from the acquiesce solution increased from 40.83 to 49.33% for Cd (II), from 43.21 to 54.0%
for Cu (II), and from 42.77 to 47.69% for Ni (II) after adding the SDBS to hydrogel.

2.2.2. Adsorption Mechanism Models

The adsorption mechanism uses three steps: 1. transference of heavy metal ions
to the adsorbent surface; 2. diffusion of heavy metal ion molecules into the adsorbent
interior; 3. interaction of heavy metal ion molecules with reactive sites and the polymer
structure (hydrogels) [15]. Figures 5–7 represent three models for studying the adsorption
kinetics of heavy metal ions from their aqueous solutions using prepared hydrogels, such
as the pseudo-first-order, pseudo-second-order, and Weber–Morris kinetic model, for many
different contact times. Figure 5 shows the relationship between the log (qe-qt) and contact
time (t) in the first-order kinetic model, while the relationship between the t/qt and contact
time (t) in the second-order kinetic model is shown in Figure 6. The second-order kinetic
model was more regular and exhibited a linear relationship correction factor (R2 > 0.97)
compared to the first-order kinetic model (R2 > 0.88) for both adsorbents.
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The theoretical equilibrium capacity of Cd (II) and Cu (II) at the second-order kinetic
model were 206.61 and 214.59 mg/g for SAP-2, which indicated a good agreement with
the experimental equilibrium capacities of 190.722 and 187.978 mg/g (the average results
shown in Table 1, repeated three times). The adsorption rate constants were highly reduced
in the second-order kinetic model (K2) compared to the adsorption rate constants in the
first-order kinetic model (K1). This leads to a reduction in the reaction rate, which could be
due to the decrease in adsorption sites on the adsorbent [12].

Due to the porous nature of the prepared gels, especially SAP-2, first- and second-
order kinetic models are not suitable for explaining the adsorption mechanism. Therefore,
the intraparticle diffusion model was also used to evaluate the relative importance of
intraparticle diffusion. The theoretical equilibrium capacity (C) was determined according
to Equation (5), which represents the interception plotted between the qt and t 0.5, while
the intra-particle diffusion rate constant Ki represents the slope illustrated in Figure 7.
The absorption kinetics of this model are divided into different steps, such as transferring
the solute to the surface of absorbent particles, as well as transporting it from the surface
of absorbent particles to active sites within the particle and then retaining it on these sites
across the absorption and sedimentation phenomena within particles [15,51].
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Table 1. Results of experimental and theoretical equilibrium capacity with kinetic rate constants of
metal ions at different adsorption models.

Samples Metal
Ions

A1
(mg/g) a

A B C

A2
(mg/g) b

K1
(min−1) R2

A3
(mg/g)

c

K2
(g. mg−1,
min−1)

R2
Ki1
Mg.

g−1 min−0.5

Ki2
Mg.

g−1 min−0.5

Ki3
Mg.

g−1 min−0.5

SAP-1

Cd (II) 146.9 156 0.0019 0.88 164.20 1.79 × 10−5 0.98 3.66 3.54 1.54

Ni (II) 126.75 130.72 0.002 0.87 137.36 3.18 × 10−5 0.98 3.88 3.54 1.50

Cu (II) 154 167.01 0.0023 0.86 168.63 2.50 × 10−5 0.96 3.30 3.28 0.51

SAP-2

Cd (II) 190.722 195.68 0.0027 0.95 206.61 2.74 × 10−5 0.99 6.60 4.29 1.14

Ni (II) 179.94 189.41 0.0018 0.93 201.21 1.39 × 10−5 0.98 4.48 3.90 1.28

Cu (II) 187.978 206.03 0.0024 0.92 214.59 1.47 × 10−5 0.98 5.0 4.88 1.22

A1: q e(experimental); A2: q e(calculated) for pseudo-first-order model; A3: q e(calculated) for pseudo-second
order model; A: pseudo-first-order model; B: pseudo-second-order model; C: intra-particle diffusion model,
R2: correction factor; K1, K2: pseudo-first- and second-order kinetic rate constants Ki1, Ki2, Ki3: intra-particle
diffusion rate constants for first, second, and third cycles. a–c The standard deviation around the mean of A1, A2,
and A3 for SAP-1 and SAP-2 was <10% and <5% respectively.

The curves of Figure 7 are divided into three steps: the first and second steps are
the fastest in terms of the adsorption process, while heavy metal ion molecules work
to penetrate the internal pores of the gel material in the third step, which leads to a
gradual reduction in the adsorption rate, as shown in Table 2, where the diffusion rates
within the particles are arranged as follows: ki1 > ki2 > ki3. In addition, the theoretical
adsorption capacity (C) in the first stage is low, while the adsorption rate constant is high.
However, after this, the slope of the curves was low, while C became high, indicating the
pores are filled with particles of heavy metal ions in the final stages. The final stage is
the equilibrium stage, which is slow, and diffusion into the pores or within the particles
decreases. This can be attributed to the reduction in pore size, as well as the decrease in the
concentration of adsorbents in the solution [52]. The theoretical adsorption capacities (C)
of Cd (II) and Cu (II) at the final stages by SAP-2 and SAP-1 were 147.26, 132.785, 77.60,
and 133.42 mg/g respectively.

Table 2. Chemical elements remain in hydrogel (SAP-2) after the desorption of heavy metal ions for
each cycle.

Elements
Desorption of Cd (II) Desorption of Ni (II) Desorption of Cu (II)

A B C A B C A B C

C 40.76 42.59 45.72 54.14 45.87 44.18 48.84 51.7 49
N 12.19 13.1 10.03 11.55 14.15 15.05 13 14.65 14.56
O 30.36 30.92 37.09 25.36 34.55 33.05 27.11 28.04 32.76
Si 2.1 1.97 1.92 0.62 0.76 0.8 1.69 0.95 1.05
Cl 1.84 1.3 2.13 2.11 0.98 4.06 1.74 1.97 0.57
Al 1.22 1.56 1.5 2.11 2.07 2 1.7 1.01 1.41
Cu - - - - - - 5.92 1.68 0.65
Ni - - - 4.11 1.62 0.86 - - -
Cd 11.53 8.56 1.61 - - - - - -

A: Wt.% of first cycle; B: Wt.% of second cycle; C: Wt.% of third cycle.

2.3. Adsorption and Desorption Properties
2.3.1. FE-SEM Analysis of Hydrogels

The acrylic acid and acrylamide are grafted into pullulan in the form of (pullulan-g-
poly (AA-co-AAm)), as shown in Figure 3.

However, the addition of SDBS during the preparation of the hydrogel (SAP-1) leads
to the formation of spherical micelles on the surface of the hydrogel. A super-absorbent
spongy structure is created after removing the SDBS micelles through the washing process,
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as these micelles contribute to an increase in the absorption capacity of the hydrogel for
heavy metal ions [53].

Figure 8A,B shows the FE-SEM images of hydrogels before adsorption (A) (SAP-1)
and (B) (SAP-2). On the other hand, it cannot reveal the general surface of the particles in
samples before and after adsorption, but it can monitor the surface changes in the hydrogel
before and after adsorption. The locations where the molecules were as similar as possible
were identified. In terms of the shapes and dimensions before and after adsorption, the FE-
SEM images showed that the surface of the hydrogel (SAP-1) was soft and had a lamellar
structure before and after adsorption. As the surface of the hydrogel (SAP-2) became
rougher, flocs appeared, and the pore size increased before and after adsorption, as shown
in Figure 8C–H for hydrogels after the adsorption of Cu (II), Ni (II), and Cd (II), respectively.
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(D) Cu (II), (F) Ni (II), and (H) Cd (II), by SAP-2, respectively.
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2.3.2. EDS Analysis of Hydrogel after Adsorbing/Desorbing

EDS examined the surface of the hydrogel samples (SAP-2) during adsorbing/desorbing.
As can be seen from Figure 9, the original surface of the sample was mainly composed of C,
N, O, Si, Cl, and Al elements. The dotted distribution of C was similar to that of rough sur-
face areas in the tested (SAP-2) sample; this indicates the surface roughness of the hydrogel.
The distribution of O, Al, and Si elements was uniform, but the order of the copper, nickel,
and cadmium elements descended with an increase in the adsorbing/desorbing cycles,
as shown by the EDS scanning mapping images in Figure 9, and the chemical elements
remaining in the hydrogel (SAP-2) after the desorption of heavy metal ions for each cycle in
Table 2. This result agreed with the previous study [53].
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Figure 9. EDS scanning diagram of the original hydrogel SAP-2 after the desorption of (a) Cu (II),
(b) Ni (II), and (c) Cd (II) in addition to the EDS scanning diagram of the hydrogel SAP-2 after
desorption of the Cu (II), Ni (II), and Cd (II) in the first, second, and third cycles.

2.3.3. Adsorption/Desorption Capacity

The adsorption and desorption capacities of hydrogels such as SAP-1 and SAP-2
were measured using an atomic absorption spectrometer (AAS-7000) for cadmium (II),
copper (II), and nickel (II). The reason the hydrogels could adsorb all the elements under
study is their carboxyl, amine, and hydroxyl functionalities, which are grafted onto the
pullulan backbone through the addition of acrylic acid and acrylamide, which make these
hydrogels good adsorption candidates for heavy metal ions [54–60]. The best-adsorbed
metal ions were found to be Cd (II) and Cu (II) ions after 24 h; they were 190.72, 187.978,
146.9, and 154 (mg/g) respectively, which can be seen in Figures 4 and 10.
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Figure 10. Adsorption/desorption capacity of heavy metal ions by hydrogels SAP-1 and SAP-2.

Desorption studies were performed by immersing the hydrogel-carrying heavy metal
ions, such as cadmium (II), copper (II), and nickel (II), in 0.1 M HCl for 24 h. After 24 h, the
desorption rates of cadmium (II) and copper (II) ions were found to be 100.43, 113.68, 84.25,
and 96.05 mg/g, respectively, as seen in Figure 10. This study used hydrochloric acid to
adsorb/desorb metal ions without applying any external forces. The desorption of metal
ions can be enhanced using external forces such as heating. In addition, homogeneously
distributed active sites on the hydrogel pore surfaces lead to an increase in the absorption
capacity of the porous gels compared to the absence of a surfactant such as SDBS in the
gel [61], as (R2 of SAP-2 > R2 of SAP-1) and the error bar (%) is lower than that in SAP-1.
Therefore, in the HCL solution, the protons compete with metal ions for the carboxyl
groups, which are responsible for the easy desorption of metal ions. The ability of the
hydrogels prepared in this study to adsorb metal ions was compared with that of other
adsorbent hydrogels in the literature, as shown in Table 3.

Table 3. Comparison of the maximum adsorption capacities of metal ions by various adsorbent
hydrogels in the literature and this study.

Hydrogel Metal Ions Adsorption Capacity (mg/g) Ref.

Hydrogel–biochar composite Cd (II) 63.58 [62]

Cellulose hydrogel Cu (II) 52.30 [63]

Chitosan–PVA composite hydrogel Cu (II) 62.10 [64]

Pullulan-g-poly(AA-co-Aam) hydrogel Cd (II) 169.79 [43]

NaAlg-g-P(AA-co-AM) hydrogel, obtained
via SDBS micelle templating

Cd (II)
Ni (II)
Cu (II)

31.18
6.720
67.99

[46]

PUL-g-P(AA-co-AM) hydrogel
Cd (II)
Ni (II)
Cu (II)

146.90
126.75
154.00

This study

PUL-g-P(AA-co-AM) hydrogel, obtained via
SDBS micelle templating

Cd (II)
Ni (II)
Cu (II)

190.72
179.94
187.98

This study

2.3.4. Reusability

One of the most important advantages of the adsorbent is its reusability, which makes
it more cost-effective as it is able to remove most metal ions from wastewater. Hydrogels
were used for three adsorption-desorption cycles to remove heavy metal ions such as
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cadmium (II), nickel (II), and copper (II) [43]. Figure 11 shows the adsorption amounts of
heavy metal ions for three successive cycles, where the SAP-2 hydrogel was able to absorb
a variety of ions with a greater adsorption capacity than the SAP-1 hydrogel. Because the
SAP-2’s ability to swell is greater than that of SAP-1, the interaction of metal ions with
functional groups is easier compared to the interaction of metal ions with functional groups
in SAP-1. In addition, both hydrogels contain two monomers and have more functional
groups available to absorb and reuse different metal ions. In general, the prepared gels can
absorb copper (II) and cadmium (II) ions more than once, and better than nickel ions.
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Figure 11. Relationship between the ability of hydrogels to reusable heavy metal ions such as
copper (II), cadmium (II), and nickel (II) ions over three cycles.

3. Conclusions

Free radical polymerization was used to produce the prepared hydrogels in this study.
Many essential properties were used to determine the efficiency of the prepared hydrogels
in absorbing heavy metal ions from aqueous solutions, including Fourier transform infrared
spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H NMR), atomic absorption
spectroscopy, and field emission scanning electron microscopy (FE-SEM), to further un-
derstand the composition and properties of the hydrogels, in addition to conducting an
analysis of all models of absorption kinetics and choosing an appropriate model for the
behavior of the prepared gels. After conducting a study on the reuse of the adsorbent mate-
rial three times, it was found that the two gels are both good candidates for the adsorption
of heavy metal ions, but the SAP-2 hydrogel is better, especially for the adsorption of both
cadmium and copper ions. In general, the adsorption capacity of the prepared hydrogels
tends to decrease with an increase in the number of adsorption cycles, and the prepared
hydrogels have the ability to adsorb more than one metal ion.

4. Materials and Methods
4.1. Materials

To prepare the SAP-1 hydrogel, pullulan (PUL) and potassium persulfate, used
as an initiator, were supplied by (Sigma-Aldrich, Burlington, MA, USA). In contrast,
N,N-methylene bisacrylamide (MBA) was used to form crosslinks, and the monomers
used to prepare the gel, such as acrylic acid and acrylamide, were supplied by (Merck,
Darmstadt, Germany). Sodium dodecylbenzene sulfonate (SDBS) was used in the experi-
ment (Fangzheng Reagent Plant, Tianjin, China) to prepare the SAP-2 hydrogel. The mineral
salts used to prepare aqueous solutions to determine the absorbability of the prepared
hydrogels, such as cadmium acetate (II) dihydrate, copper (II) trihydrate, and nickel nitrate
(II) hexahydrate, were supplied by (Merck). Hydrochloric acid, used to desorb the heavy
metal ions loaded on hydrogels, was prepared using adsorption experiments developed by
Sigma-Aldrich.
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4.2. Preparation of the Hydrogels

The hydrogels used in the experiment were prepared as follows:
Preparing the gel SAP-1: The pullulan was dissolved with distilled water by placing

it in a round-bottomed flask. The flask was placed in an oil bath at 60 ◦C. Potassium
persulfate was added to the solution with continuous stirring for 10 min.

The crosslinker N,N-methylene bisacrylamide (MBA) was added to acrylic acid and
acrylamide monomers to form (pullulan-g-poly (AA-co-AAm)) according to the propor-
tions indicated in Table 4. The solution was left for 12 h in an oil bath; then, the hydrogel
was placed in distilled water to remove the soluble parts for 24 h in a shaker at room
temperature. The hydrogel was dried for 48 h under vacuum at 37 ◦C [43,46].

Table 4. The composition ratios of Pullulan-based hydrogels.

Samples Pullulan
Monomers MBA

(Crosslinker)
K2S2O8

(Initiator)
Surfactant

(SDBS)Acrylic Acid Acrylamide

SAP-1 17% 35% 35% 7% 6% -
SAP-2 17% 34% 34% 7% 6% 2%

Preparation of SAP-2 gel: The high-content anionic surfactant with cleaning, wetting,
foaming, emulsifying, and dispersing properties, such as (SDBS), according to the pro-
portions indicated in Table 1, was added immediately after dissolving the pullulan with
distilled water by placing it in a round-bottomed flask. Then, the same procedure was
repeated for the preparation of SAP-1 [43,46].

4.3. Characterization Techniques

A Fourier transform infrared (FT-IR) test (Shimadzu, Kyoto, Japan) with a range of
400–4000 cm−1 was conducted using KBr pellets to determine the chemical composition
of the prepared gels. The morphological properties of the samples’ surfaces were studied
using the Field Emission Scanning Electron Microscopes (FE-SEM) technique (Zeiss Model
ULTRA Plus, Jena, Germany). Hydrogen-1, nuclear magnetic resonance (1H NMR) (Bruker
BioSpin GmbH, Rheinstetten, Germany) was used to identify the functional aggregates of
hydrogels. An atomic absorption spectrometer (AAS-7000, Shimadzu, Kyoto, Japan) was
used to estimate the heavy metal ions remaining in the aqueous solution after the prepared
hydrogels adsorbed some of them.

4.4. Adsorption and Desorption of Metal Ions
4.4.1. Adsorption Experiments
Adsorption Capacity and Removal Efficiency

A study of adsorption experiments was conducted to determine the ability of the
prepared hydrogels to adsorb heavy metal ions such as cadmium acetate (II) dihydrate,
copper (II) trihydrate, and nickel (II) hexahydrate from their aqueous solutions. A total
of 0.02 g of dried hydrogels were dissolved in 2 mL of distilled water for 1 h at room
temperature and a shaker was used to increase the absorption process. A total of 100 mL of
the heavy metal ions presented above, with a concentration of 300 mg/L and a pH of 5.87,
5.76, and 5.34, respectively. A total of 10 mL of the above metal ion solutions was added to
the swollen hydrogels for 24 h at room temperature and they were placed on a shaker to
improve the absorption of the aqueous metal solutions. The experiments were repeated
three times for each metal ion, and the adsorption capacity was calculated according to the
following equation [65]:

qt =
C0−Ct

m
× V (1)

where (qt) is the adsorption capacity at time (t) (mg/g), m is the mass of hydrogel (g), V
is the volume of metal ion solution in L, and C0 and Ct are the initial concentration and
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the concentration at time (t) in mg/L, respectively. The adsorption uptake at equilibrium
(qe, mg/g) and removal efficiency (%) were calculated using the following equation [66]:

qe =
C0−Ct

m
× V (2)

Removal(%) =
C0−Ce

C0
× 100 (3)

where Ce is the equilibrium concentration (mg/L).

Kinetics Ions Adsorption

To determine the heavy metal ions’ adsorption efficiency by the hydrogels, the linear
form of pseudo-first-order and pseudo-second-order, respectively, are presented in the
following equations [34]:

log(qe − qt) = logqe −
K1

2.303
t (4)

t
qt

=
1

K2 q2
e
− t

qe
(5)

where K1 (min−1) and K2 (g.mg−1, min−1) are the adsorption rate constants of the pseudo-
first- and second-order models, respectively. To investigate the adsorption mechanism more
accurately, the intraparticle diffusion model can be used according to the Weber–Morris
kinetic model presented in the following equation [66]:

qt = Kidt0.5 + C (6)

where C is the intercept and Ki (mg g−1 min0.5) is the intra-particle diffusion rate constant.

4.4.2. Desorption Experiments

To detect the desorption of heavy metal ions loaded on hydrogels, experiments were
conducted on the adsorption of ions from aqueous solutions by hydrogels. The hydrogels
loaded with heavy metal ions were dried under vacuum for 24 h at 37 ◦C. Then, 10 mL
of hydrochloric acid was added at a concentration of 0.1 M. The hydrogels were then
placed in a shaker to increase the desorption of metal ions from the hydrogels for 24 h
at room temperature. The desorption of metal ions from the hydrogel was calculated
according to Equation (2). The desorption efficiency was also calculated according to the
following equation [34]:

Efficiency(%) =
Cd
Ca

× 100 (7)

where Cd and Ca are the desorbed and adsorbed metal amounts in mg/g, respectively.

4.4.3. Reusability Experiments

Adsorption experiments with heavy metal ions loaded on hydrogels were conducted
by repeating the adsorption–desorption cycles three times. The hydrogel loaded with ions
was immersed in the desorption medium (hydrochloric acid) for 24 h. The hydrogel was
filtered, washed with distilled water several times, dried in an oven, and reused for the
next cycle. Hydrochloric acid solutions loaded with heavy metal ions were sent to an
atomic absorption spectrometer (AAS-7000, Shimadzu, Kyoto, Japan) to determine the
ion concentration.
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