Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = smart cities and data analytics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1889 KiB  
Article
Advancing Smart City Sustainability Through Artificial Intelligence, Digital Twin and Blockchain Solutions
by Ivica Lukić, Mirko Köhler, Zdravko Krpić and Miljenko Švarcmajer
Technologies 2025, 13(7), 300; https://doi.org/10.3390/technologies13070300 - 11 Jul 2025
Viewed by 337
Abstract
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business [...] Read more.
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business intelligence model automates Extract, Transform, Load (ETL) processes, enables real-time analytics, and secures data integrity and transparency through blockchain-enabled audit trails. By implementing the proposed solution, Smart City and public service providers can significantly improve operational efficiency, including a 15% reduction in costs and a 12% decrease in fuel consumption for waste management, as well as increased citizen engagement and transparency in Smart City governance. The digital twin component facilitated scenario simulations and proactive resource management, while the participatory governance module empowered citizens through transparent, immutable records of proposals and voting. This study also discusses technical, organizational, and regulatory challenges, such as data integration, scalability, and privacy compliance. The results indicate that the proposed approach offers a scalable and sustainable model for Smart City transformation, fostering citizen trust, regulatory compliance, and measurable environmental and social benefits. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

31 pages, 835 KiB  
Article
Enhancing Predictive Urban Planning in European Smart Cities Through AI-Driven Digital Twin Technology: A Case Study of Greece
by Dimitrios Kalfas, Stavros Kalogiannidis, Konstantinos Spinthiropoulos, Fotios Chatzitheodoridis and Evangelia Ziouziou
Urban Sci. 2025, 9(7), 267; https://doi.org/10.3390/urbansci9070267 - 10 Jul 2025
Viewed by 258
Abstract
This research aims to assess the contribution of artificial intelligence (AI)-driven digital twin technology in improving the predictive planning of European smart cities, particularly in Greece. It considers the effect of specific elements including simulation accuracy, real-time data processing, artificial intelligence tools, and [...] Read more.
This research aims to assess the contribution of artificial intelligence (AI)-driven digital twin technology in improving the predictive planning of European smart cities, particularly in Greece. It considers the effect of specific elements including simulation accuracy, real-time data processing, artificial intelligence tools, and system readiness on the urban planning process. Structured questionnaires were administered to 301 urban professionals working in smart cities across Greece, focusing on their perceptions of the impact of digital twin features on predictive urban planning effectiveness. Respondents were asked how crucial they found the different features of digital twins in actually improving predictive urban planning. Measurement data were described using the arithmetic mean, standard deviation, and coefficient of variation, while categorical data were described using frequency distribution tables and percentages. This study revealed that the simulation fidelity, available real-time data integration, artificial intelligence analytics, and results- oriented monitoring system maturity have a positive impact on the accuracy, speed, and flexibility of urban planning. Some of the respondents noted these features as very useful for the prediction of urban conditions and decision-making purposes. Nevertheless, some drawbacks related to the computational load and data flow were also revealed. AI-driven digital twins are useful for improving the effectiveness of urban planning. However, they encounter technical issues; therefore, seeking to focus on system maturity and data integration is necessary for their successful implementation. Cities should adopt advanced digital twin technologies and enhance the compatibility of data and maintain AI transparency for better urban planning results. Full article
Show Figures

Figure 1

29 pages, 1282 KiB  
Article
The Role of Business Models in Smart-City Waste Management: A Framework for Sustainable Decision-Making
by Silvia Krúpová, Gabriel Koman, Jakub Soviar and Martin Holubčík
Systems 2025, 13(7), 556; https://doi.org/10.3390/systems13070556 - 8 Jul 2025
Viewed by 218
Abstract
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research [...] Read more.
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research question investigates the role of innovative business models and sustainable decision-making frameworks in advancing smart waste management within urban environments. This research integrates three interrelated domains: business-model innovation, smart-city paradigms, and sustainability in waste management. Its novelty lies in synthesizing these domains, conducting a comparative analysis of best practices from leading European smart cities, and proposing a conceptual framework to guide sustainable decision-making. Methodologically, the study employs a systematic literature review, case-study analyses, and the synthesis of theoretical and empirical data. Key findings demonstrate that innovative business models—such as product-as-a-service, circular-economy approaches, and waste-as-a-service—substantially enhance the sustainability and operational efficiency of urban waste systems. However, many cities lack comprehensive strategies for integrating these models, highlighting the necessity for deliberate planning and active stakeholder engagement. Based on these insights, the study offers actionable recommendations for policymakers and urban managers to embed sustainable business models into smart-city waste infrastructures. These contributions aim to promote the development of resilient, efficient, and environmentally responsible waste-management systems in smart cities. Full article
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 250
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

28 pages, 1056 KiB  
Review
SDI-Enabled Smart Governance: A Review (2015–2025) of IoT, AI and Geospatial Technologies—Applications and Challenges
by Sofianos Sofianopoulos, Antigoni Faka and Christos Chalkias
Land 2025, 14(7), 1399; https://doi.org/10.3390/land14071399 - 3 Jul 2025
Viewed by 474
Abstract
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with [...] Read more.
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with IoT sensors, geospatial and 3D platforms, cloud computing and AI-powered analytics, enable real-time data-driven decision-making. The review identifies four key technology areas: IoT and sensor technologies, geospatial and 3D mapping platforms, cloud-based data infrastructures, and AI analytics that uniquely contribute to smart governance through improved monitoring, prediction, visualization, and automation. Opportunities include improved urban resilience, public service delivery, environmental monitoring and citizen engagement. However, challenges remain in terms of interoperability, data protection, institutional barriers and unequal access to technologies. To fully realize the potential of integrated SDIs in smart government, the report highlights the need for open standards, ethical frameworks, cross-sector collaboration and citizen-centric design. Ultimately, this synthesis provides a comprehensive basis for promoting inclusive, adaptive and accountable local governance systems through spatially enabled smart technologies. Full article
Show Figures

Graphical abstract

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 1 | Viewed by 439
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

32 pages, 3625 KiB  
Article
Artificial Intelligence for Smart Cities: A Comprehensive Review Across Six Pillars and Global Case Studies
by Joel John, Rayappa David Amar Raj, Maryam Karimi, Rouzbeh Nazari, Rama Muni Reddy Yanamala and Archana Pallakonda
Urban Sci. 2025, 9(7), 249; https://doi.org/10.3390/urbansci9070249 - 1 Jul 2025
Viewed by 694
Abstract
Rapid urbanization in the twenty-first century has significantly accelerated the adoption of artificial intelligence (AI) technologies to address growing challenges in governance, mobility, energy, and urban security. This paper explores how AI is transforming smart city infrastructure, analyzing more than 92 academic publications [...] Read more.
Rapid urbanization in the twenty-first century has significantly accelerated the adoption of artificial intelligence (AI) technologies to address growing challenges in governance, mobility, energy, and urban security. This paper explores how AI is transforming smart city infrastructure, analyzing more than 92 academic publications published between 2012 and 2024. Key AI applications ranging from predictive analytics in e-governance to machine learning models in renewable energy management and autonomous mobility systems are synthesized domain-wise throughout this study. This paper highlights the benefits of AI-enabled decision making, finds current implementation barriers, and discusses the associated ethical implications. Furthermore, it presents a research agenda that stresses data interoperability, transparency, and human–AI collaboration to steer upcoming advancements in smart urban ecosystems. Full article
Show Figures

Figure 1

22 pages, 1094 KiB  
Article
Smart Water Management: Governance Innovation, Technological Integration, and Policy Pathways Toward Economic and Ecological Sustainability
by Yongyu Dai, Zhengwei Huang, Naveed Khan and Muwaffaq Safiyanu Labbo
Water 2025, 17(13), 1932; https://doi.org/10.3390/w17131932 - 27 Jun 2025
Viewed by 550
Abstract
Smart water management (SWM) represents a transformative shift in urban water governance, integrating advanced digital technologies—including the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, and digital twin modeling—to enable real-time monitoring, predictive analytics, and adaptive decision-making. While drawing extensively on [...] Read more.
Smart water management (SWM) represents a transformative shift in urban water governance, integrating advanced digital technologies—including the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, and digital twin modeling—to enable real-time monitoring, predictive analytics, and adaptive decision-making. While drawing extensively on a structured literature review to build its theoretical foundation, this manuscript is primarily presented as a research paper that combines conceptual analysis with empirical insights derived from comparative case studies, rather than a standalone comprehensive review. A five-layer system architecture—encompassing data sensing, transmission, processing, intelligent analysis, and decision support—is introduced to evaluate how technological components interact across operational layers. The model is applied to two representative cases: Singapore’s Smart Water Grid and selected pilot programs in Chinese cities (Shenzhen, Hangzhou, Beijing). These cases are analyzed for their level of digital integration, policy alignment, and performance outcomes, offering insights into both mature and emerging smart water implementations. Findings indicate that the transition from manual to intelligent governance significantly enhances system performance and robustness, particularly in response to climate-induced disruptions. Despite benefits such as reduced non-revenue water and improved pollution control, challenges including high initial investment, data interoperability issues, and cybersecurity risks remain critical barriers to widespread adoption. Policy recommendations focus on establishing national standards, promoting cross-sectoral data sharing, encouraging public–private partnerships, and investing in workforce development to support the long-term sustainability and scalability of smart water initiatives. Full article
Show Figures

Figure 1

9 pages, 722 KiB  
Proceeding Paper
Enhancing Security and Privacy in IoT Data Streams: Real-Time Anomaly Detection for Threat Mitigation in Traffic Management
by Oumayma Berraadi, Hicham Gibet Tani and Mohamed Ben Ahmed
Comput. Sci. Math. Forum 2025, 10(1), 8; https://doi.org/10.3390/cmsf2025010008 - 16 Jun 2025
Viewed by 120
Abstract
The rapid expansion of IoT in smart cities has improved traffic management but increased security risks. Traditional IDS struggle with advanced threats, prompting adaptive solutions. This work proposes a framework combining machine learning (ML), Zero Trust Architecture (ZTA), and blockchain authentication. Supervised models [...] Read more.
The rapid expansion of IoT in smart cities has improved traffic management but increased security risks. Traditional IDS struggle with advanced threats, prompting adaptive solutions. This work proposes a framework combining machine learning (ML), Zero Trust Architecture (ZTA), and blockchain authentication. Supervised models (XGBoost, RF, SVM, LR) detect known anomalies, while a CNN Autoencoder identifies novel threats. Blockchain ensures identity integrity, and compromised devices are isolated automatically. Tests on the IoT-23 dataset demonstrate superior accuracy, fewer false positives, and better scalability than conventional methods. The integration of AI, Zero Trust, and blockchain significantly boosts IoT traffic system security and resilience. Full article
Show Figures

Figure 1

39 pages, 1190 KiB  
Review
The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities
by Elda Cina, Ersin Elbasi, Gremina Elmazi and Zakwan AlArnaout
Sustainability 2025, 17(11), 5148; https://doi.org/10.3390/su17115148 - 3 Jun 2025
Viewed by 2009
Abstract
As urban populations continue to rise, cities face mounting challenges related to infrastructure strain, resource management, and environmental degradation. Sustainable urban development has emerged as a crucial strategy to balance economic growth, social equity, and environmental preservation. In this context, artificial intelligence offers [...] Read more.
As urban populations continue to rise, cities face mounting challenges related to infrastructure strain, resource management, and environmental degradation. Sustainable urban development has emerged as a crucial strategy to balance economic growth, social equity, and environmental preservation. In this context, artificial intelligence offers transformative potential, particularly through predictive modeling, which enables data-driven decision making for more efficient and resilient urban planning. This paper explores the role of AI-powered predictive models in supporting sustainable urban development, focusing on key applications such as infrastructure optimization, energy management, environmental monitoring, and climate adaptation. The study reviews current practices and real-world examples, highlighting the benefits of predictive analytics in anticipating urban needs and mitigating future risks. It also discusses significant challenges, including data limitations, algorithmic bias, ethical concerns, and governance issues. The discussion emphasizes the importance of transparent, inclusive, and accountable AI frameworks to ensure equitable outcomes. In addition, the paper presents comparative insights from global smart city initiatives, illustrating how AI and IoT-based strategies are being applied in diverse urban contexts. By examining both the opportunities and limitations of AI in this domain, the paper offers insights into how cities can responsibly harness AI to advance sustainability goals. The findings underscore the need for interdisciplinary collaboration, ethical safeguards, and policy support to unlock AI’s full potential in shaping sustainable, smart cities. Full article
Show Figures

Figure 1

25 pages, 2726 KiB  
Article
Breaking Silos: A Systemic Portfolio Approach and Digital Tool for Collaborative Urban Decarbonisation
by Manuel Alméstar, Sara Romero-Muñoz and Nieves Mestre
Sustainability 2025, 17(11), 5145; https://doi.org/10.3390/su17115145 - 3 Jun 2025
Viewed by 727
Abstract
Urban decarbonisation requires governance models that overcome the fragmentation and rigidity of traditional urban planning. This article presents a systemic and digital framework for managing urban decarbonisation portfolios aligned with the EU Mission for Climate-Neutral and Smart Cities. Grounded in systems thinking and [...] Read more.
Urban decarbonisation requires governance models that overcome the fragmentation and rigidity of traditional urban planning. This article presents a systemic and digital framework for managing urban decarbonisation portfolios aligned with the EU Mission for Climate-Neutral and Smart Cities. Grounded in systems thinking and portfolio theory, this study develops an analytical taxonomy and an interactive digital tool to support strategic coordination, multistakeholder collaboration, and adaptive decision-making. The framework is empirically validated through the case of Madrid’s Climate City Contract, demonstrating its functionality and transferability. Using a mixed-method approach—combining co-creation workshops, interviews, document analysis, and iterative prototyping—this research maps interdependencies among projects, actors, and levers of change. The digital tool enables real-time visualisation of collaboration patterns, gaps, and synergies, enhancing strategic foresight and coordination capacity. Findings reveal that 75% of initiatives in Madrid’s CCC address climate adaptation, 80.36% are linked to knowledge generation, and key anchor projects serve as integrative hubs within the portfolio. This study concludes that the portfolio approach strengthens systemic innovation and reflexive governance by integrating digital infrastructures with collaborative planning processes. While challenges persist—including data integration, institutional capacity, and political dynamics—this research offers a replicable methodology for embedding mission-oriented strategies into urban governance. The digital portfolio emerges as a complementary governance tool that enhances transparency, organisational learning, and alignment across governance levels. Full article
Show Figures

Figure 1

48 pages, 6502 KiB  
Article
Environmental Data Analytics for Smart Cities: A Machine Learning and Statistical Approach
by Ali Suliman AlSalehy and Mike Bailey
Smart Cities 2025, 8(3), 90; https://doi.org/10.3390/smartcities8030090 - 28 May 2025
Viewed by 1623
Abstract
Effectively managing carbon monoxide (CO) pollution in complex industrial cities like Jubail remains challenging due to the diversity of emission sources and local environmental dynamics. This study analyzes spatiotemporal CO patterns and builds accurate predictive models using five years (2018–2022) of data from [...] Read more.
Effectively managing carbon monoxide (CO) pollution in complex industrial cities like Jubail remains challenging due to the diversity of emission sources and local environmental dynamics. This study analyzes spatiotemporal CO patterns and builds accurate predictive models using five years (2018–2022) of data from ten monitoring stations, combined with meteorological variables. Exploratory analysis revealed distinct diurnal and moderate weekly CO cycles, with prevailing northwesterly winds shaping dispersion. Spatial correlation of CO was low (average 0.14), suggesting strong local sources, unlike temperature (0.92) and wind (0.5–0.6), which showed higher spatial coherence. Seasonal Trend decomposition (STL) confirmed stronger seasonality in meteorological factors than in CO levels. Low wind speeds were associated with elevated CO concentrations. Key predictive features, such as 3-h rolling mean and median values of CO, dominated feature importance. Spatiotemporal analysis highlighted persistent hotspots in industrial areas and unexpectedly high levels in some residential zones. A range of models was tested, with ensemble methods (Extreme Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost)) achieving the best performance (R2>0.95) and XGBoost producing the lowest Root Mean Squared Error (RMSE) of 0.0371 ppm. This work enhances understanding of CO dynamics in complex urban–industrial areas, providing accurate predictive models (R2>0.95) and highlighting the importance of local sources and temporal patterns for improving air quality forecasts. Full article
Show Figures

Figure 1

36 pages, 7878 KiB  
Review
Research on Sustainable Building Development in the Context of Smart Cities: Based on CiteSpace, VOSviewer, and Bibliometrix
by Bola Chen, Xunrong Ye and Fuping Dai
Buildings 2025, 15(11), 1811; https://doi.org/10.3390/buildings15111811 - 25 May 2025
Viewed by 747
Abstract
Buildings play a pivotal role in the daily functioning of cities, and the development of smart cities is intricately linked to the sustainable development of architectural practices. However, existing reviews have predominantly concentrated on the development of smart cities, often overlooking the interdisciplinary [...] Read more.
Buildings play a pivotal role in the daily functioning of cities, and the development of smart cities is intricately linked to the sustainable development of architectural practices. However, existing reviews have predominantly concentrated on the development of smart cities, often overlooking the interdisciplinary complexities associated with integrating smart city technologies and sustainable building practices. This study systematically reviews 418 relevant papers from the Web of Science database, employing both quantitative and qualitative analytical methods to assess the current status and future trajectory of the field. Therefore, it bridges a significant gap in the existing literature. The findings underscore the contributions of technologies such as the Internet of Things (IoT), artificial intelligence, and big data in enhancing the sustainability of buildings within smart cities. The key areas of focus include energy management, smart building systems, and resource optimisation. Furthermore, the study identifies emerging research themes, such as smart city buildings, smart energy management, and digital twins, highlighting their potential to optimise building performance and foster sustainability within evolving urban systems. The keywords identified in the current body of research are categorised into six main areas: context, objectives, methods, artificial intelligence, emerging technologies, and opportunities and challenges. Research themes are seen to progress from “performance” to “building” and “sustainability” and from “city” to “city” and “sustainability”. Notably, themes such as “city”, “modelling”, and “design” have evolved into themes centred around the “Internet”. However, with the rapid expansion of digital technologies, scholars must also address several critical challenges, including data security and privacy protection, the complexity of cross-system data coordination, uncertainties in sustainable optimisation processes, and the ethical and societal implications of technology adoption. To ensure the successful and sustainable development of future urban smart buildings, it is essential to establish rigorous data security standards, harmonise technical protocols, implement effective global strategies, and prioritise ethical considerations. In addition, unmanned technologies and their associated systems offer valuable insights into the sustainability of buildings in smart cities. Finally, this study presents a comprehensive and systematic framework that provides invaluable insights for future strategic planning and technological advancements in the field. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

14 pages, 321 KiB  
Article
Enhancing Efficiency in Transportation Data Storage for Electric Vehicles: The Synergy of Graph and Time-Series Databases
by Marko Šidlovský and Filip Ravas
World Electr. Veh. J. 2025, 16(5), 269; https://doi.org/10.3390/wevj16050269 - 14 May 2025
Viewed by 452
Abstract
This article introduces a novel hybrid database architecture that combines graph and time-series databases to enhance the storage and management of transportation data, particularly for electric vehicles (EVs). This model addresses a critical challenge in modern mobility: handling large-scale, high-velocity, and highly interconnected [...] Read more.
This article introduces a novel hybrid database architecture that combines graph and time-series databases to enhance the storage and management of transportation data, particularly for electric vehicles (EVs). This model addresses a critical challenge in modern mobility: handling large-scale, high-velocity, and highly interconnected datasets while maintaining query efficiency and scalability. By comparing a naive graph-only approach with our hybrid solution, we demonstrate a significant reduction in query response times for large data contexts-up to 64% faster in the XL scenario. The scientific contribution of this research lies in its practical implementation of a dual-layer storage framework that aligns with FAIR data principles and real-time mobility needs. Moreover, the hybrid model supports complex analytics, such as EV battery health monitoring, dynamic route optimization, and charging behavior analysis. These capabilities offer a multiplier effect, enabling broader applications across urban mobility systems, fleet management platforms, and energy-aware transport planning. By explicitly considering the interconnected nature of transport and energy data, this work contributes to both carbon emission reduction and smart city efficiency on a global scale. Full article
Show Figures

Figure 1

22 pages, 5507 KiB  
Article
A Web-Based Application for Smart City Data Analysis and Visualization
by Panagiotis Karampakakis, Despoina Ioakeimidou, Periklis Chatzimisios and Konstantinos A. Tsintotas
Future Internet 2025, 17(5), 217; https://doi.org/10.3390/fi17050217 - 13 May 2025
Viewed by 966
Abstract
Smart cities are urban areas that use contemporary technology to improve citizens’ overall quality of life. These modern digital civil hubs aim to manage environmental conditions, traffic flow, and infrastructure through interconnected and data-driven decision-making systems. Today, many applications employ intelligent sensors for [...] Read more.
Smart cities are urban areas that use contemporary technology to improve citizens’ overall quality of life. These modern digital civil hubs aim to manage environmental conditions, traffic flow, and infrastructure through interconnected and data-driven decision-making systems. Today, many applications employ intelligent sensors for real-time data acquisition, leveraging visualization to derive actionable insights. However, despite the proliferation of such platforms, challenges like high data volume, noise, and incompleteness continue to hinder practical visual analysis. As missing data is a frequent issue in visualizing those urban sensing systems, our approach prioritizes their correction as a fundamental step. We deploy a hybrid imputation strategy combining SARIMAX, k-nearest neighbors, and random forest regression to address this. Building on this foundation, we propose an interactive web-based pipeline that processes, analyzes, and presents the sensor data provided by Basel’s “Smarte Strasse”. Our platform receives and projects environmental measurements, i.e., NO2, O3, PM2.5, and traffic noise, as well as mobility indicators such as vehicle speed and type, parking occupancy, and electric vehicle charging behavior. By resolving gaps in the data, we provide a solid foundation for high-fidelity and quality visual analytics. Built on the Flask web framework, the platform incorporates performance optimizations through Flask-Caching. Concerning the user’s dashboard, it supports interactive exploration via dynamic charts and spatial maps. This way, we demonstrate how future internet technologies permit the accessibility of complex urban sensor data for research, planning, and public engagement. Lastly, our open-source web-based application keeps reproducible, privacy-aware urban analytics. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Graphical abstract

Back to TopTop