A Web-Based Application for Smart City Data Analysis and Visualization
Abstract
:1. Introduction
- A web-based application for thoughtful city data analysis and interactive visualization, combining a Python Flask backend and a JavaScript frontend via Plotly (v 1.58.5) and Leaflet (v 1.7.1).
- The integration of hybrid imputation methods, i.e., SARIMAX and k-NN, and random forest regression to ensure temporal consistency and cross-variable accuracy.
- An interactive map-based visualization component that supports spatial-temporal analysis through statistical aggregation, integrating privacy-aware design aligned with ethical data practices.
- Open-source (https://github.com/PanagiotisKara/Web-Based-Data-Analysis-and-Visualization, accessed on 20 April 2025) and flexible code to facilitate use by future researchers.
2. Related Work
Sensor Type | Data Output | Primary Applications |
---|---|---|
Air Quality Sensors | NO2, O3, CO, PM2.5, PM10 concentrations ( g/m3) | Pollution monitoring, emissions tracking, health risk alerts, environmental policy [5] |
Traffic and Mobility Sensors | Vehicle counts, speed, occupancy, pedestrian flow | Traffic optimization, congestion management, safety enforcement, flow analysis [6] |
Noise Sensors | Sound level (dB), frequency spectrum | Noise mapping, zoning compliance, quality-of-life assessment, urban planning [7] |
Parking and EV Sensors | Availability status, occupancy, energy transferred (kWh) | Optimizing parking space utilization and monitoring EV charging infrastructure [8] |
Weather Sensors | Temperature, humidity, wind, rainfall, UV index | Microclimate modeling, disaster preparedness, energy forecasting, agriculture support [9] |
Structural and Utility Sensors | Vibration, tilt, pressure, current/voltage, flow rates | Infrastructure health monitoring, predictive maintenance, utility management [11] |
3. Methodology: System Architecture and Design
3.1. Data Preprocessing
3.2. Data Analysis
3.3. Data Visualization
4. Experimental Protocol: System Implementation
4.1. Dataset Management and Description
4.1.1. Air Quality Metrics
- NO2 (Nitrogen dioxide), a major traffic-related pollutant emitted primarily by combustion engines. Tracking NO2 permits quantifying the vehicular impact on urban air quality.
- O3 (Ozone), a secondary pollutant formed through photochemical reactions. Monitoring ozone concentrations is vital in assessing smog formation and respiratory risk, particularly during warm seasons.
- PM2.5 (particulate matter) comprises fine airborne particles less than 2.5 microns in diameter, often linked to adverse health effects. Their measurement helps identify pollution peaks and assess long-term exposure patterns.
4.1.2. Traffic and Vehicle Data
- Vehicle counts register the number of vehicles passing through monitored zones, frequently broken down by type, e.g., cars, trucks, motorcycles.
- Speed measurements capture average and peak vehicle speeds, supporting traffic jam analysis and evaluating traffic control policies.
4.1.3. Sound Levels
- Decibel levels (dB) measure overall ambient sound intensity, typically sampled over time.
- Frequency bands advanced acoustic sensors break down noise by frequency to distinguish between sources such as traffic, construction, or natural elements.
4.1.4. Parking Data
- Occupancy and turnover incoming data determine how many parking spots are occupied and how long vehicles remain parked, enabling analysis of space turnover and availability trends. The monitored parking layout is illustrated in Figure 4, where the system tracks specific spaces using fixed camera coverage.
- Utilization patterns help detect peak usage periods and inform better management of limited parking infrastructure based on demand over time.
4.1.5. Electric Vehicle Charging Stations
- Charging session duration tracks the time each vehicle remains connected, which helps estimate availability and user behavior.
- Energy consumption (kWh) records energy transferred during each session, informing capacity planning and infrastructure scaling.
4.2. Data Layer
4.3. Frontend Interface and UX Design
5. Results
5.1. Interactive Visualization Features
5.2. Use Cases and Data-Driven Insights
5.3. Evaluation
5.4. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Urbanization by Continent 2025. Available online: https://www.statista.com/statistics/270860/urbanization-by-continent/ (accessed on 15 April 2025).
- Huda, N.U.; Ahmed, I.; Adnan, M.; Ali, M.; Naeem, F. Experts and intelligent systems for smart homes’ Transformation to Sustainable Smart Cities: A comprehensive review. Expert Syst. Appl. 2024, 238, 122380. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Gangwar, A.; Singh, S.; Mishra, R.; Prakash, S. The state-of-the-art in air pollution monitoring and forecasting systems using IoT, big data, and machine learning. Wirel. Pers. Commun. 2023, 130, 1699–1729. [Google Scholar] [CrossRef]
- Dmitrieva, E.; Pathani, A.; Pushkarna, G.; Acharya, P.; Rana, M.; Surekha, P. Real-Time Traffic Management in Smart Cities: Insights from the Traffic Management Simulation and Impact Analysis. BIO Web Conf. 2024, 86, 01098. [Google Scholar] [CrossRef]
- Aiello, L.M.; Schifanella, R.; Quercia, D.; Aletta, F. Chatty maps: Constructing sound maps of urban areas from social media data. R. Soc. Open Sci. 2016, 3, 150690. [Google Scholar] [CrossRef]
- Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 2014, 5, 1–55. [Google Scholar] [CrossRef]
- Mahmud, M.; Ali, M. Air quality monitoring using IoT and big data: A review. MDPI Electron. 2020, 9, 1453. [Google Scholar]
- Khare, S.; Singh, P.K. Smart city data analytics: A comprehensive review and future directions. Sensors 2022, 22, 1013. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Okafor, N.U.; Delaney, D.T. Missing data imputation on IoT sensor networks: Implications for on-site sensor calibration. IEEE Sensors J. 2021, 21, 22833–22845. [Google Scholar] [CrossRef]
- You, Y. Intelligent System Designs: Data-Driven Sensor Calibration & Smart Meter Privacy. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2022. [Google Scholar]
- Tonsager, L.; Ponder, J. Privacy Frameworks for Smart Cities. J. Law Mobil. 2022, 1. [Google Scholar]
- Fabrègue, B.F.; Bogoni, A. Privacy and security concerns in the smart city. Smart Cities 2023, 6, 586–613. [Google Scholar] [CrossRef]
- Kharakhash. Data visualization: Transforming complex data into actionable insights. Autom. Technol. Bus. Process. 2023, 15, 4–12. [Google Scholar]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.; Nelson, L.E. Helping CIOs understand “smart city” initiatives. Growth 2009, 17, 1–17. [Google Scholar]
- Singh, T.; Solanki, A.; Sharma, S.K.; Nayyar, A.; Paul, A. A decade review on smart cities: Paradigms, challenges and opportunities. IEEE Access 2022, 10, 68319–68364. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Kim, T.h.; Ramos, C.; Mohammed, S. Smart city and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Aslam, S.; Ullah, H.S. A comprehensive review of smart cities components, applications, and technologies based on internet of things. arXiv 2020, arXiv:2002.01716. [Google Scholar]
- Jo, J.H.; Jo, B.; Kim, J.H.; Choi, I. Implementation of iot-based air quality monitoring system for investigating particulate matter (Pm10) in subway tunnels. Int. J. Environ. Res. Public Health 2020, 17, 5429. [Google Scholar] [CrossRef]
- Myagmar-Ochir, Y.; Kim, W. A survey of video surveillance systems in smart city. Electronics 2023, 12, 3567. [Google Scholar] [CrossRef]
- Shamsuzzoha, A.; Nieminen, J.; Piya, S.; Rutledge, K. Smart city for sustainable environment: A comparison of participatory strategies from Helsinki, Singapore and London. Cities 2021, 114, 103194. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the Internet of Things: A survey. Comput. Commun. 2016, 83, 1–22. [Google Scholar] [CrossRef]
- Ullah, A.; Anwar, S.M.; Li, J.; Nadeem, L.; Mahmood, T.; Rehman, A.; Saba, T. Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intell. Syst. 2024, 10, 1607–1637. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Wang, Z.; Gao, F.; Xiong, Z. Understanding Urban Dynamics via Context-Aware Tensor Factorization with Neighboring Regularization. IEEE Trans. Knowl. Data Eng. 2020, 32, 2269–2283. [Google Scholar] [CrossRef]
- Pargoo, N.S.; Ghasemi, M.; Xia, S.; Turkcan, M.K.; Ehsan, T.; Zang, C.; Sun, Y.; Ghaderi, J.; Zussman, G.; Kostic, Z.; et al. The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications. arXiv 2024, arXiv:2411.19714. [Google Scholar]
- Gaur, A.; Scotney, B.; Parr, G.; McClean, S. Smart city architecture and its applications based on IoT. Procedia Comput. Sci. 2015, 52, 1089–1094. [Google Scholar] [CrossRef]
- Elavsky, F.; Nadolskis, L.; Moritz, D. Data navigator: An accessibility-centered data navigation toolkit. IEEE Trans. Vis. Comput. Graph. 2023, 30, 803–813. [Google Scholar] [CrossRef]
- Islam, M.A.; Sufian, M.A. Data analytics on key indicators for the city’s urban services and dashboards for leadership and decision-making. arXiv 2023, arXiv:2212.03081. [Google Scholar]
- Ma, M.; Bartocci, E.; Lifland, E.; Stankovic, J.A.; Feng, L. A Novel Spatial–Temporal Specification-Based Monitoring System for Smart Cities. IEEE Internet Things J. 2021, 8, 11793–11806. [Google Scholar] [CrossRef]
- Bellini, P.; Fanfani, M.; Nesi, P.; Pantaleo, G. Snap4City dashboard manager: A tool for creating and distributing complex and interactive dashboards with no or low coding. SoftwareX 2024, 26, 101729. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The evolution of the Internet of Things towards the Future Internet of Things. MDPI Future Internet 2017, 9, 41. [Google Scholar]
- Zheng, Y.; Wu, W.; Chen, Y.; Qu, H.; Ni, L. Visual Analytics in Urban Computing: An Overview. IEEE Trans. Big Data 2016, 2, 276–296. [Google Scholar] [CrossRef]
- Lindström, J.; Bosch, J. A review of the use of visualisation techniques in smart city applications. Technol. Forecast. Soc. Change 2021, 166, 120597. [Google Scholar]
- Graham, T. Barcelona is leading the fightback against smart city surveillance. Wired UK. 18 May 2018. Available online: https://www.wired.com/story/barcelona-decidim-ada-colau-francesca-bria-decode/ (accessed on 15 April 2025).
- Ordonez-Ante, L.; Van Seghbroeck, G.; Wauters, T.; Volckaert, B.; De Turck, F. Explora: Interactive Querying of Multidimensional Data in the Context of Smart Cities. Sensors 2020, 20, 2737. [Google Scholar] [CrossRef]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Nagy, M.; Kärkkäinen, T.; Kurnikov, A.; Ott, J. Bringing Modern Web Applications to Disconnected Networks. arXiv 2015, arXiv:1506.03108. [Google Scholar]
- Blanco, J.Z.; Lucrédio, D. A holistic approach for cross-platform software development. J. Syst. Softw. 2021, 179, 110985. [Google Scholar] [CrossRef]
- Bozdag, E.; Mesbah, A.; Van Deursen, A. A comparison of push and pull techniques for Ajax. In Proceedings of the 2007 9th IEEE International Workshop on Web Site Evolution, Paris, France, 5–6 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 15–22. [Google Scholar] [CrossRef]
- Khasnabish, S.; Burns, Z.; Couch, M.; Mullin, M.; Newmark, R.; Dykes, P.C. Best practices for data visualization: Creating and evaluating a report for an evidence-based fall prevention program. J. Am. Med. Informatics Assoc. 2020, 27, 308–314. [Google Scholar] [CrossRef]
- Fernandes, P.; Amaral, V. Web Application Architecture for Responsive and Scalable Interfaces. Sensors 2020, 20, 2520. [Google Scholar]
- Del Esposte, A.d.M.; Santana, E.F.; Kanashiro, L.; Costa, F.M.; Braghetto, K.R.; Lago, N.; Kon, F. Design and evaluation of a scalable smart city software platform with large-scale simulations. Future Gener. Comput. Syst. 2019, 93, 427–441. [Google Scholar] [CrossRef]
- Cirillo, F.; Solmaz, G.; Berz, E.L.; Bauer, M.; Cheng, B.; Kovacs, E. A Standard-Based Open Source IoT Platform: FIWARE. IEEE Internet Things Mag. 2019, 2, 12–18. [Google Scholar] [CrossRef]
- Kyle, C.; Niall, G.; Mihael, H.; Kacper, K.; Bertram, L.; Timothy, M.; Jarek, N.; Victoria, S.; Ian, T.; Thomas, T.; et al. Toward enabling reproducibility for data-intensive research using the Whole Tale platform. In Parallel Computing: Technology Trends; Aldinucci, M., Ed.; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Alam, M.; Khan, I.R. Application of AI in smart cities. In Industrial Transformation; Choudhury, B., Ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 61–86. [Google Scholar]
- Alam, T. Cloud-Based IoT Applications and Their Roles in Smart Cities. Smart Cities 2021, 4, 1196–1219. [Google Scholar] [CrossRef]
- PlanRadar. The Impact of Cloud Technology on the Future of Smart Cities. 2023. Available online: https://www.planradar.com/sa-en/how-cloud-technology-is-transforming-smart-cities/ (accessed on 10 April 2025).
- S & P Global. The Rise of AI-Powered Smart Cities. 2024. Available online: https://www.spglobal.com/en/research-insights/special-reports/ai-smart-cities (accessed on 18 April 2025).
- Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022. [Google Scholar]
- Jadhav, A.; Pramod, D.; Ramanathan, K. Comparison of performance of data imputation methods for numeric dataset. Appl. Artif. Intell. 2019, 33, 913–933. [Google Scholar] [CrossRef]
- Van Zoest, V.; Liu, X.; Ngai, E. Data quality evaluation, outlier detection and missing data imputation methods for IoT in smart cities. In Machine Intelligence and Data Analytics for Sustainable Future Smart Cities; Huang, G., Xu, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar]
- Agbo, B.; Al-Aqrabi, H.; Hill, R.; Alsboui, T. Missing data imputation in the Internet of Things sensor networks. Future Internet 2022, 14, 143. [Google Scholar] [CrossRef]
- Song, H.; Fu, Y.; Saket, B.; Stasko, J. Understanding the effects of visualizing missing values on visual data exploration. In Proceedings of the 2021 IEEE Visualization Conference (VIS 2021), New Orleans, LA, USA, 24–29 October 2021; pp. 161–165. [Google Scholar]
- Eid, M.M.; ElDahshan, K.; Abouali, A.H. Missing data in smart cities: An imputation algorithm based on sine/cosine optimization algorithm. In Proceedings of the 2024 International Conference on Computer and Applications (ICCA 2024), Cairo, Egypt, 17–19 December 2024; pp. 1–6. [Google Scholar]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Adhikari, D.; Jiang, W.; Zhan, J.; He, Z.; Rawat, D.B.; Aickelin, U.; Khorshidi, H.A. A comprehensive survey on imputation of missing data in internet of things. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Papastefanopoulos, V.; Linardatos, P.; Panagiotakopoulos, T.; Kotsiantis, S. Multivariate time-series forecasting: A review of deep learning methods in internet of things applications to smart cities. Smart Cities 2023, 6, 2519–2552. [Google Scholar] [CrossRef]
- Alharbi, F.R.; Csala, D. A seasonal autoregressive integrated moving average with exogenous factors (SARIMAX) forecasting model-based time series approach. Inventions 2022, 7, 94. [Google Scholar] [CrossRef]
- Batista, G.E.; Monard, M.C. A study of K-nearest neighbour as an imputation method. His 2002, 87, 48. [Google Scholar]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2011, 28, 112–118. [Google Scholar] [CrossRef]
- Aleryani, A.; Wang, W.; De La Iglesia, B. Multiple imputation ensembles (MIE) for dealing with missing data. SN Comput. Sci. 2020, 1, 134. [Google Scholar] [CrossRef]
- Crickard, P. III. Leaflet.js Essentials; Packt Publishing Ltd.: Birmingham, UK, 2014. [Google Scholar]
- Plotly Technologies Inc. Plotly.js—A JavaScript Graphing Library. 2025. Available online: https://plotly.com/javascript/ (accessed on 19 April 2025).
- Smart Strasse Basel Project Team. Kanton Basel-Stadt, “Smarte Strasse: Pilot Project for Smart Technologies in Traffic Management," Swiss Smart City Compass. 2023. Available online: https://www.swiss-smart-city-compass.com/en/use-cases/use-case/smarte-strasse.html (accessed on 15 March 2025).
- Smarte Strasse: AI-Based Noise Classification. Available online: https://data.bs.ch/explore/dataset/100170/information/?sort=timestamp (accessed on 25 August 2023).
- Ismagilova, E.; Hughes, L.; Rana, N.P.; Dwivedi, Y.K. Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework. Inf. Syst. Front. 2022, 24, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Ferreira, H.; Silva, N.; Pinto, R. Privacy-Preserving Smart Cities: A Review of Enabling Technologies and Policies. Sensors 2021, 21, 2308. [Google Scholar]
- European Data Protection Board. Guidelines 3/2019 on Processing of Personal Data Through Video Devices—Version 2.0. 2021. Available online: https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-32019-processing-personal-data-through-video_en (accessed on 15 April 2025).
Sensor–Pollutant | MAE | RMSE |
---|---|---|
A2Hard NO2 | 5.374 | 8.049 |
Feld NO2 | 4.794 | 6.746 |
G125 O3 | 4.922 | 6.083 |
G107 O3 | 4.699 | 5.865 |
StJohanns O3 | 4.515 | 5.707 |
A2Hard O3 | 4.301 | 5.653 |
G131 O3 | 4.534 | 5.598 |
Feld O3 | 3.807 | 4.945 |
StJohanns NO2 | 3.403 | 4.832 |
G131 NO2 | 3.178 | 4.689 |
G125 NO2 | 2.652 | 3.926 |
G107 NO2 | 2.508 | 3.783 |
G131 PM2.5 | 1.827 | 2.895 |
G125 PM2.5 | 1.781 | 2.580 |
Feld PM2.5 | 1.757 | 2.428 |
G107 PM2.5 | 1.729 | 2.372 |
A2Hard PM2.5 | 1.704 | 2.327 |
StJohanns PM2.5 | 1.667 | 2.302 |
Endpoint | Execution Time (s) | Memory Start (MB) | Memory Increase (MB) |
---|---|---|---|
get_spso_data | 0.01 | 165.12 | – |
get_echarging_data | 0.13 | 183.73 | 62.21 |
get_corr_matrix | 0.46 | 165.10 | 84.09 |
get_road_data | 0.66 | 165.04 | 135.11 |
get_vehicle_data | 2.69 | 165.11 | 419.95 |
get_soundHz_data | 8.67 | 180.53 | 419.28 |
get_parking_data | 0.51 | 388.28 | 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampakakis, P.; Ioakeimidou, D.; Chatzimisios, P.; Tsintotas, K.A. A Web-Based Application for Smart City Data Analysis and Visualization. Future Internet 2025, 17, 217. https://doi.org/10.3390/fi17050217
Karampakakis P, Ioakeimidou D, Chatzimisios P, Tsintotas KA. A Web-Based Application for Smart City Data Analysis and Visualization. Future Internet. 2025; 17(5):217. https://doi.org/10.3390/fi17050217
Chicago/Turabian StyleKarampakakis, Panagiotis, Despoina Ioakeimidou, Periklis Chatzimisios, and Konstantinos A. Tsintotas. 2025. "A Web-Based Application for Smart City Data Analysis and Visualization" Future Internet 17, no. 5: 217. https://doi.org/10.3390/fi17050217
APA StyleKarampakakis, P., Ioakeimidou, D., Chatzimisios, P., & Tsintotas, K. A. (2025). A Web-Based Application for Smart City Data Analysis and Visualization. Future Internet, 17(5), 217. https://doi.org/10.3390/fi17050217