The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities
Abstract
:1. Introduction
2. Overview of Sustainable Urban Development
3. AI in Predictive Modeling
3.1. What Is Predictive Modeling?
3.2. Importance in Urban Development
3.3. AI Techniques Used in Predictive Modeling
3.3.1. Machine Learning in Predictive Modeling
3.3.2. Deep Learning (DL) for Complex Urban Data
3.3.3. Reinforcement Learning (RL) for Dynamic Urban Systems
3.3.4. Comparative Analysis of AI Techniques in Urban Predictive Modeling
- ML is best suited for structured data analysis, such as predicting real estate trends or classifying urban zones, due to its interpretability and efficiency.
- DL outperforms traditional ML in processing unstructured data (images, videos, sensor streams), making it ideal for smart surveillance and environmental monitoring.
- RL is optimal for real-time decision making in dynamic environments, such as traffic optimization, but requires significant computational resources.
3.3.5. Large Language Modeling in Urban Development
3.4. AI Sub-Areas in Urban Development
3.5. Case Studies and Real-World Applications
3.5.1. Singapore’s Smart Nation Initiative
3.5.2. Barcelona’s IoT-Driven Urban Planning
3.5.3. Comparative Insights
- 1.
- Comparative Framework for AI Techniques
- Structured data: Traditional ML methods are most effective (e.g., housing price prediction).
- Unstructured data: DL models are ideal (e.g., traffic video surveillance).
- Real-time control and decision making: RL performs best (e.g., smart energy management systems).
- 2.
- Evaluation Metrics for Case Studies
4. Key Applications of AI in Sustainable Urban Development
4.1. Smart Infrastructure Planning
4.2. Energy Efficiency and Management
4.3. Environmental Monitoring and Climate Adaptation
4.4. Waste and Resource Management
5. Challenges in Implementing AI-Powered Predictive Models
- Investment in IoT sensors, smart meters, and satellite monitoring improves real-time, high-resolution data collection.
- Implementing standardized data protocols and open data policies to improve interoperability and encourage collaboration among stakeholders.
- Processes for data validation and cleaning are emphasized to ensure that the data fed into AI models is accurate and trustworthy.
6. Opportunities for Future Development in AI-Powered Urban Development
7. Comprehensive Case Studies of Global Smart City Initiatives
7.1. Singapore
7.2. Copenhagen
7.3. NEOM Saudi Arabia
7.4. Barcelona
8. Discussion
8.1. Scalability and Contextual Adaptation of AI in Sustainable Urban Development
8.2. Addressing Challenges in Implementing AI-Powered Predictive Models for Sustainable Urban Development
8.3. Ensuring Accountability in AI-Driven Urban Decision Making
8.4. Minimizing the Environmental Footprint of AI Technologies
8.5. Leveraging Opportunities in AI-Powered Predictive Models for Better Urban Performance
9. Conclusions
Funding
Conflicts of Interest
References
- United Nations World Population Prospects 2024: Summary of Results. 2024. Available online: https://desapublications.un.org/publications/world-population-prospects-2024-summary-results (accessed on 1 January 2025).
- Energy Technology Perspectives 2024—Analysis. Available online: https://www.iea.org/reports/energy-technology-perspectives-2024 (accessed on 5 December 2024).
- Dempsey, N.; Bramley, G.; Power, S.; Brown, C. The Social Dimension of Sustainable Development: Defining Urban Social Sustainability. Sustain. Dev. 2011, 19, 289–300. [Google Scholar] [CrossRef]
- Faruque Hossain, M. Sustainable Development for Mass Urbanization; Elsevier: Amsterdam, The Netherlands, 2019; p. 382. [Google Scholar]
- Gakaev, R.A. Problems of Ecology and Safety of the Urban Environment; AIP Publishing: Melville, NY, USA, 2022; Volume 2657. [Google Scholar]
- Mutambik, I. Unlocking the Potential of Sustainable Smart Cities: Barriers and Strategies. Sustainability 2024, 16, 5061. [Google Scholar] [CrossRef]
- Williams, K. Sustainable Cities: Research and Practice Challenges. Int. J. Urban Sustain. Dev. 2009, 1, 128–132. [Google Scholar] [CrossRef]
- Haas, J.; Furberg, D.; Ban, Y. Satellite Monitoring of Urbanization and Environmental Impacts—A Comparison of Stockholm and Shanghai. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 138–149. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart Sustainable Cities of the Future: An Extensive Interdisciplinary Literature Review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Angelidou, M. The Role of Smart City Characteristics in the Plans of Fifteen Cities. J. Urban Technol. 2017, 24, 3–28. [Google Scholar] [CrossRef]
- Ranapurwala, S.I.; Cavanaugh, J.E.; Young, T.; Wu, H.; Peek-Asa, C.; Ramirez, M.R. Public Health Application of Predictive Modeling: An Example from Farm Vehicle Crashes. Inj. Epidemiol. 2019, 6, 31. [Google Scholar] [CrossRef]
- McMahon, J.E.; Craig, A.; Cameron, I. Transformative Predictive Modelling in the Business of Health: Harnessing Decision Trees for Strategic Insights and Enhanced Operational Efficiency. In Service-Oriented Computing—ICSOC 2023 Workshops: AI-PA, ASOCA, SAPD, SQS, SSCOPE, WESOACS and Satellite Events, Rome, Italy, 28 November–1 December 2023, Revised Selected Papers; Monti, F., Plebani, P., Moha, N., Paik, H., Barzen, J., Ramachandran, G., Bianchini, D., Tamburri, D.A., Mecella, M., Eds.; Springer Nature: Singapore, 2024; pp. 49–61. [Google Scholar]
- Ravi, V.K.; Cheruku, S.R. AI and Machine Learning in Predictive Data Architecture. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 10, 95–116. [Google Scholar]
- Xie, S.; Lawniczak, A.T. Estimating Major Risk Factor Relativities in Rate Filings Using Generalized Linear Models. Int. J. Financ. Stud. 2018, 6, 84. [Google Scholar] [CrossRef]
- Revathy, G.; Thangavel, M.; Senthilvadivu, S.; Savithri, M.C. Enabling Smart Cities: AI-Powered Prediction Models for Urban Traffic Optimization. In Proceedings of the 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL), Nashville, TN, USA, 18–20 February 2025; pp. 904–908. [Google Scholar]
- Balakrishnan, T.S.; Krishnan, P.; Ebenezar, U.S.; Mohammed Nizarudeen, M.; Kamal, N. Machine Learning for Climate Change Impact Assessment and Adaptation Planning. In Proceedings of the 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, Pune, India, 22–23 March 2024; pp. 1–6. [Google Scholar]
- Schneider, T.; Dorst, T.; Schnur, C.; Goodarzi, P.; Schütze, A. Influence of Data Quality, Domain Shift, and Measurement Uncertainty on the Prediction Quality of Smart Sensor Systems. Tech. Mess. 2023, 90, 33–36. [Google Scholar] [CrossRef]
- Huang, A.; Liu, Y.; Chen, T.; Zhou, Y.; Sun, Q.; Chai, H.; Yang, Q. StarFL: Hybrid Federated Learning Architecture for Smart Urban Computing. ACM Trans. Intell. Syst. Technol. 2021, 12, 43. [Google Scholar] [CrossRef]
- Sanchez, T.W.; Brenman, M.; Ye, X. The Ethical Concerns of Artificial Intelligence in Urban Planning. J. Am. Plan. Assoc. 2025, 91, 294–307. [Google Scholar] [CrossRef]
- Goodman, B.; Flaxman, S. European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”. AI Mag. 2017, 38, 50–57. [Google Scholar] [CrossRef]
- Turvey, R.A. Urban Planning and Sustainable Cities. Int. J. Sustain. Soc. 2019, 11, 139–161. [Google Scholar] [CrossRef]
- Bera, S. Sustainable Urban Development: Meaning and Significance. Galore Int. J. Appl. Sci. Humanit. 2020, 4, 29–33. [Google Scholar]
- Roggema, R. The Future of Sustainable Urbanism: Society-Based, Complexity-Led, and Landscape-Driven. Sustainability 2017, 9, 1442. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain Sci 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Satterthwaite, D. A New Urban Agenda? Environ. Urban. 2016, 28, 3–12. [Google Scholar] [CrossRef]
- Deviney, A.V.; Bhadha, J.H.; Crane, L.; Cuchiara, M.; Delanthamajalu, S.; Gatiboni, L.; Guzman, S.M.; Hendren, C.O.; Marshall, A.-M.; Morrison, E. The Urban Nature Indexes; International Union for Conservation of Nature: Gland, Switzerland, 2023; ISBN 978-2-8317-2237-5. [Google Scholar]
- Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ibrahim, S.A. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network: Summary for City Leaders. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Solecki, W.D., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. xvii–xlii. ISBN 978-1-316-60333-8. [Google Scholar]
- Fainstein, S.S. The Just City; Cornell University Press: Ithaca, NY, USA, 2010; ISBN 978-0-8014-4655-9. [Google Scholar]
- Qi, J.; Mazumdar, S.; Vasconcelos, A.C. Understanding the Relationship between Urban Public Space and Social Cohesion: A Systematic Review. Int. J. Com. WB 2024, 7, 155–212. [Google Scholar] [CrossRef]
- World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/assets/WUP2018-Report.pdf (accessed on 19 February 2025).
- Atlas of Urban Expansion. Available online: https://www.lincolninst.edu/publications/books/atlas-urban-expansion/ (accessed on 20 February 2025).
- Angel, S. Urban Expansion: Theory, Evidence and Practice. Build. Cities 2023, 4, 124–138. [Google Scholar] [CrossRef]
- World Cities Report 2024 Cities and Climate Action; UN-Habitat, Ed.; United Nations Human Settlements Programme (UN-Habitat); UN-Habitat: Nairobi, Kenya, 2024; ISBN 978-92-1-133395-4. [Google Scholar]
- Ali, M.A.; Kamraju, M. The Role of Community Participation in Sustainable Integrated Water Resources Management: Challenges, Opportunities, and Current Perspectives. In Integrated Management of Water Resources in India: A Computational Approach: Optimizing for Sustainability and Planning; Yadav, A.K., Yadav, K., Singh, V.P., Eds.; Springer: Cham, Switzerland, 2024; pp. 325–344. ISBN 978-3-031-62079-9. [Google Scholar]
- Aivazidou, E.; Banias, G.; Lampridi, M.; Vasileiadis, G.; Anagnostis, A.; Papageorgiou, E.; Bochtis, D. Smart Technologies for Sustainable Water Management: An Urban Analysis. Sustainability 2021, 13, 13940. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-Driven Smart Sustainable Cities of the Future: Urban Computing and Intelligence for Strategic, Short-Term, and Joined-up Planning. Comput. Urban Sci. 2021, 1, 8. [Google Scholar] [CrossRef]
- Abid, M.T.; Aljarrah, N.; Shraa, T.; Alghananim, H.M. Forecasting and Managing Urban Futures: Machine Learning Models and Optimization of Urban Expansion. Asian J. Civ. Eng. 2024, 25, 4673–4682. [Google Scholar] [CrossRef]
- Cheng, J.; Li, K.; Liang, Y.; Sun, L.; Yan, J.; Wu, Y. Rethinking Urban Mobility Prediction: A Multivariate Time Series Forecasting Approach. IEEE Trans. Intell. Transp. Syst. 2025, 26, 2543–2557. [Google Scholar] [CrossRef]
- Kumar, V.; Agrawal, S. Urban Modelling and Forecasting of Landuse Using SLEUTH Model. Int. J. Environ. Sci. Technol. 2023, 20, 6499–6518. [Google Scholar] [CrossRef]
- Bastos, D.; Fernández-Caballero, A.; Pereira, A.; Rocha, N.P. Smart City Applications to Promote Citizen Participation in City Management and Governance: A Systematic Review. Informatics 2022, 9, 89. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A. Enabling Cognitive Smart Cities Using Big Data and Machine Learning: Approaches and Challenges. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef]
- Tsalikidis, N.; Mystakidis, A.; Koukaras, P.; Ivaškevičius, M.; Morkūnaitė, L.; Ioannidis, D.; Fokaides, P.A.; Tjortjis, C.; Tzovaras, D. Urban Traffic Congestion Prediction: A Multi-Step Approach Utilizing Sensor Data and Weather Information. Smart Cities 2024, 7, 233–253. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, D.; Liu, J.; Li, X. Analysis of Taxi Demand and Traffic Influencing Factors in Urban Core Area Based on Data Field Theory and GWR Model: A Case Study of Beijing. Sustainability 2024, 16, 7386. [Google Scholar] [CrossRef]
- Executive Summary—Empowering Urban Energy Transitions—Analysis. Available online: https://www.iea.org/reports/empowering-urban-energy-transitions/executive-summary (accessed on 12 April 2025).
- Biswal, B.; Deb, S.; Datta, S.; Ustun, T.S.; Cali, U. Review on Smart Grid Load Forecasting for Smart Energy Management Using Machine Learning and Deep Learning Techniques. Energy Rep. 2024, 12, 3654–3670. [Google Scholar] [CrossRef]
- Zhang, Q. Housing Price Prediction Based on Multiple Linear Regression. Sci. Program. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.; Xu, P. Deep Learning-Based Approach for Optimizing Urban Commercial Space Expansion Using Artificial Neural Networks. Appl. Sci. 2024, 14, 3845. [Google Scholar] [CrossRef]
- Li, Z.; Chen, B.; Wu, S.; Su, M.; Chen, J.M.; Xu, B. Deep Learning for Urban Land Use Category Classification: A Review and Experimental Assessment. Remote Sens. Environ. 2024, 311, 114290. [Google Scholar] [CrossRef]
- Skoropad, V.N.; Deđanski, S.; Pantović, V.; Injac, Z.; Vujičić, S.; Jovanović-Milenković, M.; Jevtić, B.; Lukić-Vujadinović, V.; Vidojević, D.; Bodolo, I. Dynamic Traffic Flow Optimization Using Reinforcement Learning and Predictive Analytics: A Sustainable Approach to Improving Urban Mobility in the City of Belgrade. Sustainability 2025, 17, 3383. [Google Scholar] [CrossRef]
- Ge, S.; Ye, P.; Zhang, R.; Zhou, M.; Dong, H.; Wang, F.-Y. LLM-Driven Cognitive Modeling for Personalized Travel Generation. IEEE Trans. Comput. Soc. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Movahedi, M.; Choi, J. The Crossroads of LLM and Traffic Control: A Study on Large Language Models in Adaptive Traffic Signal Control. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1701–1716. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T.; Yuan, Y.; Huang, Z.; Chen, X.; Zhang, B.; Zhang, X.; Wang, Z. LLM-Enhanced Framework for Building Domain-Specific Lexicon for Urban Power Grid Design. Appl. Sci. 2025, 15, 4134. [Google Scholar] [CrossRef]
- Salierno, G.; Leonardi, L.; Cabri, G. Generative AI and Large Language Models in Industry 5.0: Shaping Smarter Sustainable Cities. Encyclopedia 2025, 5, 30. [Google Scholar] [CrossRef]
- Kalyuzhnaya, A.; Mityagin, S.; Lutsenko, E.; Getmanov, A.; Aksenkin, Y.; Fatkhiev, K.; Fedorin, K.; Nikitin, N.O.; Chichkova, N.; Vorona, V.; et al. LLM Agents for Smart City Management: Enhancing Decision Support Through Multi-Agent AI Systems. Smart Cities 2025, 8, 19. [Google Scholar] [CrossRef]
- Moraga, Á.; de Curtò, J.; de Zarzà, I.; Calafate, C.T. AI-Driven UAV and IoT Traffic Optimization: Large Language Models for Congestion and Emission Reduction in Smart Cities. Drones 2025, 9, 248. [Google Scholar] [CrossRef]
- Yuan, X.; Li, H.; Ota, K.; Dong, M. Generative Inference of Large Language Models in Edge Computing: An Energy Efficient Approach. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 27–31 May 2024; pp. 244–249. [Google Scholar]
- Rana, A.; Chauhan, R.; Sajwan, V.S.; Devliyal, S.; Gupta, S. Implementation of Internet of Things in Building Smart Cities. In Proceedings of the 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, 24 January 2024; pp. 1–8. [Google Scholar]
- Marasinghe, R.; Yigitcanlar, T.; Mayere, S.; Washington, T.; Limb, M. Computer Vision Applications for Urban Planning: A Systematic Review of Opportunities and Constraints. Sustain. Cities Soc. 2024, 100, 105047. [Google Scholar] [CrossRef]
- Cai, M. Natural Language Processing for Urban Research: A Systematic Review. Heliyon 2021, 7, e06322. [Google Scholar] [CrossRef] [PubMed]
- Ogunkan, D.V.; Ogunkan, S.K. Exploring Big Data Applications in Sustainable Urban Infrastructure: A Review. Urban Gov. 2025, 5, 54–68. [Google Scholar] [CrossRef]
- Sipahi, E.B.; Saayi, Z. The World’s First “Smart Nation” Vision: The Case of Singapore. Smart Cities Reg. Dev. (SCRD) J. 2024, 8, 41–58. [Google Scholar] [CrossRef]
- Veloso, Á.; Fonseca, F.; Ramos, R. Insights from Smart City Initiatives for Urban Sustainability and Contemporary Urbanism. Smart Cities 2024, 7, 3188–3209. [Google Scholar] [CrossRef]
- Ferreira Dos Santos, J.P.; De Matos, C.A.; Groznik, A. The Role of Artificial Intelligence in Smart City Systems Usage: Drivers, Barriers, and Behavioural Outcomes. Technol. Soc. 2025, 81, 102867. [Google Scholar] [CrossRef]
- Harry, R. The City of Portland Reduces Travel Times at Maine’s Busiest Intersection by 20%. Available online: https://www.traffictechnologytoday.com/news/congestion-reduction/the-city-of-portland-reduces-travel-times-at-maines-busiest-intersection-by-20.html (accessed on 12 April 2025).
- Rapid Flow Technologies: A. Available online: https://www.pghtech.org/news-and-publications/rapid-flow-technologies-a-surtrac-to-smart-cities (accessed on 12 April 2025).
- Hosen, M.M.; Sabbir, M.M.U.; Hossain, M.I.; Sunny, M.A.U. Leveraging AI And Sensor Technologies for Real-Time Structural Health Monitoring of In-Service Bridges. FAET 2025, 2, 135–163. [Google Scholar] [CrossRef]
- Miah, M.S.U.; Sulaiman, J.; Islam, M.I.; Masuduzzaman, M.; Lipu, M.S.H.; Nugraha, R. Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13. arXiv 2023, arXiv:2304.03997. [Google Scholar]
- DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. Available online: https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/ (accessed on 12 April 2025).
- Dimara, A.; Tzitziou, G.; Papaioannou, A.; Krinidis, S.; Anagnostopoulos, C.-N.; Ioannidis, D.; Tzovaras, D. Appliance Maintenance Behaviors and Sustainability: A European Household Perspective Analysis. Resour. Conserv. Recycl. 2024, 210, 107835. [Google Scholar] [CrossRef]
- IBM Research Launches Project “Green Horizon” To Help China Deliver on Ambitious Energy and Environmental Goals. Available online: https://www.pollutiononline.com/doc/ibm-research-launches-china-deliver-on-ambitious-energy-and-environmental-goals-0001 (accessed on 12 April 2025).
- IBM Expands Green Horizons Initiative Globally to Address Pressing Environmental and Pollution Challenges. Available online: https://uk.newsroom.ibm.com/2015-Dec-09-IBM-Expands-Green-Horizons-Initiative-Globally-To-Address-Pressing-Environmental-and-Pollution-Challenges (accessed on 10 April 2025).
- How We Are Using AI for Reliable Flood Forecasting at a Global Scale. Available online: https://blog.google/technology/ai/google-ai-global-flood-forecasting/ (accessed on 12 April 2025).
- Brunn, M. Smart Sensors Reduce Costs for Waste Collection by 20%. Available online: https://www.recycling-magazine.com/2021/08/09/smart-sensors-reduce-costs-for-waste-collection-by-20/ (accessed on 12 April 2025).
- Fang, B.; Yu, J.; Chen, Z.; Osman, A.I.; Farghali, M.; Ihara, I.; Hamza, E.H.; Rooney, D.W.; Yap, P.-S. Artificial Intelligence for Waste Management in Smart Cities: A Review. Env. Chem. Lett. 2023, 21, 1959–1989. [Google Scholar] [CrossRef]
- AMP Robotics Announces Largest Deployment of AI Guided Robots for the Recycling Industry | AMP. Available online: https://ampsortation.com/articles/denver-september-29-2019amp-robotics-corp-amp-a-pi?utm_source=chatgpt.com (accessed on 12 April 2025).
- Artificial Intelligence for Recycling: AMP Robotics. Available online: https://www.ellenmacarthurfoundation.org/circular-examples/artificial-intelligence-for-recycling-amp-robotics (accessed on 12 April 2025).
- Allam, Z.; Dhunny, Z.A. On Big Data, Artificial Intelligence and Smart Cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Sun, D. Discrimination and Prediction of Traffic Congestion States of Urban Road Network Based on Spatio-Temporal Correlation. IEEE Access 2020, 8, 3330–3342. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Fan, C.; Mostafavi, A.; Hu, X. Towards Fairness-Aware Disaster Informatics: An Interdisciplinary Perspective. IEEE Access 2020, 8, 201040–201054. [Google Scholar] [CrossRef]
- Cui, L.; Xie, G.; Qu, Y.; Gao, L.; Yang, Y. Security and Privacy in Smart Cities: Challenges and Opportunities. IEEE Access 2018, 6, 46134–46145. [Google Scholar] [CrossRef]
- Turhan, C.; Alkan, N.; Çeter, A.E.; Özbey, M.F. The Relation between Occupant’s Mood State and Thermal Sensation. In Proceedings of the CLIMA 2022 Conference, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, H.; Zghoul, A.; Jaradat, S. Mood State and Human Evaluation of the Thermal Environment Using Virtual Settings. Indoor Built Environ. 2021, 30, 70–86. [Google Scholar] [CrossRef]
- Ashokkumar, C.; Kumari, D.A.; Gopikumar, S.; Anuradha, N.; Krishnan, R.S.; Sakthidevi, I. Urban Traffic Management for Reduced Emissions: AI-Based Adaptive Traffic Signal Control. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; pp. 1609–1615. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. ITU J. ICT Discov. 2017, 1, 39–48. [Google Scholar]
- Napisa, K.; Mababangloob, G.R.; Lubag, M.; Concepcion II, R.; Redillas, M.M. Explainable and Interpretable Artificial Intelligence as a Service for Green Smart Cities and Communities. In Proceedings of the 2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Palawan, Philippines, 19–23 November 2023; pp. 1–5. [Google Scholar]
- Le, N.-T.; Thai, N.-T.; Bui, C.V. Advancing Urban Development through Vision-Language Models: Applications and Challenges of Satellite Imagery Analysis. In Proceedings of the 2024 9th International Conference on Applying New Technology in Green Buildings (ATiGB), Danang, Vietnam, 30–31 August 2024; pp. 184–188. [Google Scholar]
- Yao, J. Elevating Urban Tourism: Data-Driven Insights and AI-Powered Personalization with Large Language Models Brilliance. In Proceedings of the 2023 IEEE 3rd International Conference on Social Sciences and Intelligence Management (SSIM), Taichung, Taiwan, 15–17 December 2023; pp. 138–143. [Google Scholar]
- Makanadar, A.; Shahane, S. Urban Mobility: Leveraging AI, Machine Learning, and Data Analytics for Smart Transportation Planning- A Case Study on New York City. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–6. [Google Scholar]
- Sultana, F.; Bhardwaj, R.; Kumar, R.N.; Gaur, R.; Shankar, S.P.; Bharadwaj, A. Smart Traffic Management System for Efficient Mobility and Emergency Response. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; Volume 1, pp. 1–5. [Google Scholar]
- Wang, H.; Saito, M.; Liu, J.; Shimamoto, S. Comprehensive Analysis of Traffic Operation for On-Street Parking Based on the Urban Road Network. IEEE Access 2024, 12, 125643–125653. [Google Scholar] [CrossRef]
- Di Febbraro, A.; Giglio, D.; Sacco, N. A Deterministic and Stochastic Petri Net Model for Traffic-Responsive Signaling Control in Urban Areas. IEEE Trans. Intell. Transp. Syst. 2016, 17, 510–524. [Google Scholar] [CrossRef]
- Zhou, Z.; Lin, S.; Du, W.; Liang, H. Integration of Regional Demand Management and Signals Control for Urban Traffic Networks. IEEE Access 2019, 7, 20235–20248. [Google Scholar] [CrossRef]
- Rauniyar, A.; Berge, T.; Kuijpers, A.; Litzinger, P.; Peeters, B.; Gils, E.V.; Kirchhoff, N.; Håkegård, J.E. NEMO: Real-Time Noise and Exhaust Emissions Monitoring for Sustainable and Intelligent Transportation Systems. IEEE Sens. J. 2023, 23, 25497–25517. [Google Scholar] [CrossRef]
- Thangavel, K.; Spiller, D.; Sabatini, R.; Marzocca, P.; Esposito, M. Near Real-Time Wildfire Management Using Distributed Satellite System. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Berkani, S.; Gryech, I.; Ghogho, M.; Guermah, B.; Kobbane, A. Data Driven Forecasting Models for Urban Air Pollution: MoreAir Case Study. IEEE Access 2023, 11, 133131–133142. [Google Scholar] [CrossRef]
- Liu, F.; Li, X. Integrating AI Deep Reinforcement Learning with Evolutionary Algorithms for Advanced Threat Detection in Smart City Energy Management. IEEE Access 2024, 12, 177103–177118. [Google Scholar] [CrossRef]
- Kumar Mohanty, P.; Hemant Kumar Reddy, K.; Panigrahy, S.K.; Sinha Roy, D. Leveraging Generative and Explainable AI for Electric Vehicle Energy Toward Sustainable, Consumer-Centric Transportation. IEEE Access 2024, 12, 143721–143732. [Google Scholar] [CrossRef]
- Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-Enabled Water Distribution Systems—A Comparative Technological Review. IEEE Access 2022, 10, 101042–101070. [Google Scholar] [CrossRef]
- Alcaraz, O.; Berenguer, A.; Tomás, D.; Celdrán-Bernabeu, M.A.; Mazón, J.-N. Augmenting Retail Data with Open Data for Smarter Tourism Destinations. IEEE Access 2024, 12, 153154–153170. [Google Scholar] [CrossRef]
- Kumi, S.; Snow, C.; Lomotey, R.K.; Deters, R. Uncovering Concerns of Citizens Through Machine Learning and Social Network Sentiment Analysis. IEEE Access 2024, 12, 94885–94913. [Google Scholar] [CrossRef]
- Ghosh, T.; Saha, R.; Roy, A.; Misra, S.; Raghuwanshi, N.S. AI-Based Communication-as-a-Service for Network Management in Society 5.0. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4030–4041. [Google Scholar] [CrossRef]
- Al-Mushayt, O.S. Automating E-Government Services with Artificial Intelligence. IEEE Access 2019, 7, 146821–146829. [Google Scholar] [CrossRef]
- Talley, J.W. Disaster Management in the Digital Age. IBM J. Res. Dev. 2020, 64, 1:1–1:5. [Google Scholar] [CrossRef]
- Sultana, T.; Wahid, K.A. IoT-Guard: Event-Driven Fog-Based Video Surveillance System for Real-Time Security Management. IEEE Access 2019, 7, 134881–134894. [Google Scholar] [CrossRef]
- Basthikodi, M.; Vidya, B.; Pinto, E.M.; Basith, M.; Rao, S.A. AI-based Automated Framework for Crime Detection and Crowd Management. In Proceedings of the 2024 Second International Conference on Advances in Information Technology (ICAIT), Karnataka, India, 24–27 July 2024; Volume 1, pp. 1–6. [Google Scholar]
- Taimoor, N.; Rehman, S. Reliable and Resilient AI and IoT-Based Personalised Healthcare Services: A Survey. IEEE Access 2022, 10, 535–563. [Google Scholar] [CrossRef]
- Kumar, B.; Rajput, N.; Yagnam, N. An Innovative Internet of Things (IoT) Computing-Based Health Monitoring System With the Aid of Machine Learning Approach. In Proceedings of the 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 14–16 December 2022; pp. 1756–1760. [Google Scholar]
- Ahmad, I.; Asghar, Z.; Kumar, T.; Li, G.; Manzoor, A.; Mikhaylov, K.; Shah, S.A.; Höyhtyä, M.; Reponen, J.; Huusko, J.; et al. Emerging Technologies for Next Generation Remote Health Care and Assisted Living. IEEE Access 2022, 10, 56094–56132. [Google Scholar] [CrossRef]
- Alsinglawi, B.S.; Alnajjar, F.; Alorjani, M.S.; Al-Shari, O.M.; Munoz, M.N.; Mubin, O. Predicting Hospital Stay Length Using Explainable Machine Learning. IEEE Access 2024, 12, 90571–90585. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Y.; Shi, L. Autonomous Mobile Clinics: Empowering Affordable Anywhere, Anytime Healthcare Access. IEEE Eng. Manag. Rev. 2022, 50, 147–154. [Google Scholar] [CrossRef]
- Khattak, F.K.; Subasri, V.; Krishnan, A.; Pou-Prom, C.; Akinli-Kocak, S.; Dolatabadi, E.; Pandya, D.; Seyyed-Kalantari, L.; Rudzicz, F. MLHOps: Machine Learning Health Operations. IEEE Access 2025, 13, 20374–20412. [Google Scholar] [CrossRef]
- Wolniak, R.; Stecuła, K. Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities 2024, 7, 1346–1389. [Google Scholar] [CrossRef]
- Allam, Z.; Newman, P. Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities 2018, 1, 4–25. [Google Scholar] [CrossRef]
- Ortega-Fernández, A.; Martín-Rojas, R.; García-Morales, V.J. Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability. Sustainability 2020, 12, 7860. [Google Scholar] [CrossRef]
- UNDP. Artificial Intelligence Readiness Assessment (AIRA) 2024; GovTech: Thimphu, Bhutan, 2024. [Google Scholar]
- Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Das, D.; Kwek, B. AI and Data-Driven Urbanism: The Singapore Experience. Digit. Geogr. Soc. 2024, 7, 100104. [Google Scholar] [CrossRef]
- Singapore Government Agency Land Transport Authority (LTA) | Industry & Innovations. Available online: https://www.lta.gov.sg/content/ltagov/en/industry_innovations.html#technologies (accessed on 20 March 2025).
- Elassy, M.; Al-Hattab, M.; Takruri, M.; Badawi, S. Intelligent Transportation Systems for Sustainable Smart Cities. Transp. Eng. 2024, 16, 100252. [Google Scholar] [CrossRef]
- Aimsun. Singapore: Technology Trial for Real-Time Traffic Simulation and Prediction. 2019. Available online: https://www.aimsun.com/uncategorized/singapore-trial/ (accessed on 24 May 2025).
- Hassebo, A.; Tealab, M. Global Models of Smart Cities and Potential IoT Applications: A Review. IoT 2023, 4, 366–411. [Google Scholar] [CrossRef]
- Urban Redevelopment Authority Smart Planning. Available online: https://www.ura.gov.sg/Corporate/Planning/Our-Planning-Process/Smart-Planning?utm_source=chatgpt.com (accessed on 20 March 2025).
- OECD. Observatory of Public Sector Innovation (OPSI). Virtual Singapore—Singapore’s Virtual Twin. 2024. Available online: https://oecd-opsi.org/innovations/virtual-twin-singapore/ (accessed on 24 May 2025).
- Smart Nation; Digital Government Office. National Artificial Intelligence Strategy; Digital Government Office: Singapore, 2019; pp. 1–45. [Google Scholar]
- Singapore’s National Water Agency PUB Appoints SP Services to Install Singapore’s First 300,000 Smart Water Meters. Available online: http://www.pub.gov.sg/Resources/News-Room/PressReleases/2021/04/PUB-appoints-SP-Services-to-install-Singapore (accessed on 20 March 2025).
- GovTech. Big Push for AI Proves Fruitful and Useful. Available online: https://www.tech.gov.sg/media/technews/big-push-for-ai-proves-fruitful-and-useful/ (accessed on 20 March 2025).
- Seng, C.E. Singapore’s Smart Nation Program—Enablers and Challenges. In Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE); IEEE Press: Kongsberg, Norway, 2016; pp. 1–5. [Google Scholar]
- Negrello, M. Designing with Nature Climate-Resilient Cities: A Lesson from Copenhagen. In Proceedings of the Technological Imagination in the Green and Digital Transition; Arbizzani, E., Cangelli, E., Clemente, C., Cumo, F., Giofrè, F., Giovenale, A.M., Palme, M., Paris, S., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 853–862. [Google Scholar]
- Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Brears, R.C. Copenhagen Becoming a Blue-Green City Through Blue-Green Infrastructure. In Blue and Green Cities: The Role of Blue-Green Infrastructure in Managing Urban Water Resources; Brears, R.C., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 115–132. ISBN 978-3-031-41393-3. [Google Scholar]
- American Society of Landscape Architects the Copenhagen Cloudburst Formula: A Strategic Process for Planning and Designing Blue-Green Interventions | 2016 ASLA Professional Awards. Available online: https://www.asla.org/2016awards/171784.html (accessed on 20 March 2025).
- Amer, S.B.; Bramstoft, R.; Balyk, O.; Nielsen, P.S. Modelling the Future Low-Carbon Energy Systems—Case Study of Greater Copenhagen, Denmark. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 21–32. [Google Scholar] [CrossRef]
- Copenhagen Solutions Lab. Energy Optimization of Buildings Using Artificial Intelligence. Available online: https://cphsolutionslab.dk/en/news/signaturprojekt-energioptimering-vha-ai-kopier (accessed on 20 March 2025).
- Eltved, M.; Breyer, N.; Ingvardson, J.B.; Nielsen, O.A. Impacts of Long-Term Service Disruptions on Passenger Travel Behaviour: A Smart Card Analysis from the Greater Copenhagen Area. Transp. Res. Part C Emerg. Technol. 2021, 131, 103198. [Google Scholar] [CrossRef]
- Wolniak Smart Mobility in Smart City—Copenhagen and Barcelona Comparision. Int. J. Sustain. Energy Plan. Manag. 2023, 2023, 680–697. [CrossRef]
- Braun, T.; Fung, B.C.M.; Iqbal, F.; Shah, B. Security and Privacy Challenges in Smart Cities. Sustain. Cities Soc. 2018, 39, 499–507. [Google Scholar] [CrossRef]
- Hassan, O. Artificial Intelligence, Neom and Saudi Arabia’s Economic Diversification from Oil and Gas. Political Q. 2020, 91, 222–227. [Google Scholar] [CrossRef]
- Yusuf, N.; Abdulmohsen, D. Saudi Arabia’s NEOM Project as a Testing Ground for Economically Feasible Planned Cities: Case Study. Sustainability 2023, 15, 608. [Google Scholar] [CrossRef]
- Al-sayed, A.; Al-shammari, F.; Alshutayri, A.; Aljojo, N.; Aldhahri, E.; Abouola, O. The Smart City-Line in Saudi Arabia: Issue and Challenges. Postmod. Open. 2022, 13, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Allouz, M.; Aljaafreh, M. Applied Ai In Neom Construction Projects: The Potential Impact of AI in Enhancing Projects Success. Acta Inform. Malays. 2024, 8, 32–44. [Google Scholar] [CrossRef]
- Alam, T.; Khan, M.A.; Gharaibeh, N.K.; Gharaibeh, M.K. Big Data for Smart Cities: A Case Study of NEOM City, Saudi Arabia. In Smart Cities: A Data Analytics Perspective; Khan, M.A., Algarni, F., Quasim, M.T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 215–230. ISBN 978-3-030-60922-1. [Google Scholar]
- NEOM. NEOM Investment Fund Invests USD 100M in Pony.Ai. Available online: https://www.neom.com/en-us/newsroom/neom-investment-fund-invests-in-pony-ai (accessed on 20 March 2025).
- Garcia, E.; Calvet, L.; Carracedo, P.; Serrat, C.; Miró, P.; Peyman, M. Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting. Appl. Sci. 2024, 14, 4432. [Google Scholar] [CrossRef]
- Grau-Escolano, J.; Bassolas, A.; Vicens, J. Cycling into the Workshop: E-Bike and m-Bike Mobility Patterns for Predictive Maintenance in Barcelona’s Bike-Sharing System. EPJ Data Sci. 2024, 13, 48. [Google Scholar] [CrossRef]
- Dias, G.M.; Bellalta, B.; Oechsner, S. Predicting Occupancy Trends in Barcelona’s Bicycle Service Stations Using Open Data. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 439–445. [Google Scholar]
- Nieuwenhuijsen, M.; de Nazelle, A.; Pradas, M.C.; Daher, C.; Dzhambov, A.M.; Echave, C.; Gössling, S.; Iungman, T.; Khreis, H.; Kirby, N.; et al. The Superblock Model: A Review of an Innovative Urban Model for Sustainability, Liveability, Health and Well-Being. Environ. Res. 2024, 251, 118550. [Google Scholar] [CrossRef]
- Kuguoglu, B.K.; van der Voort, H.; Janssen, M. The Giant Leap for Smart Cities: Scaling Up Smart City Artificial Intelligence of Things (AIoT) Initiatives. Sustainability 2021, 13, 12295. [Google Scholar] [CrossRef]
- Santilli, P. Singapore Best Practices in Intelligence Smart City Applications—Strategic Consortium of Intelligence Professionals (SCIP). Available online: https://www.scip.org/news/647788/Singapore-Best-Practices-in-Intelligence-Smart-City-Applications.htm (accessed on 23 May 2025).
- Mohsen, B.M. AI-Driven Optimization of Urban Logistics in Smart Cities: Integrating Autonomous Vehicles and IoT for Efficient Delivery Systems. Sustainability 2024, 16, 11265. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times; Association for Computing Machinery: New York, NY, USA, 2011; pp. 282–291. [Google Scholar]
- Dai, Y.; Hasanefendic, S.; Bossink, B. A Systematic Literature Review of the Smart City Transformation Process: The Role and Interaction of Stakeholders and Technology. Sustain. Cities Soc. 2024, 101, 105112. [Google Scholar] [CrossRef]
- Vrabie, C. Artificial Intelligence Promises to Public Organizations and Smart Cities. In Proceedings of the Digital Transformation; Maślankowski, J., Marcinkowski, B., Rupino da Cunha, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–14. [Google Scholar]
- Carey, N. Smart, Wireless Help for Smart Cities. Control Eng. 2020, 67, 21. [Google Scholar]
- Badidi, E. Towards a Message Broker Based Platform for Real-Time Streaming of Urban IoT Data; Springer: Berlin/Heidelberg, Germany, 2019; Volume 859, pp. 39–49. [Google Scholar]
- Neis, P.; Warch, D.; Hoppe, M. Testing and Evaluation of Low-Cost Sensors for Developing Open Smart Campus Systems Based on IoT. Sensors 2023, 23, 8652. [Google Scholar] [CrossRef]
- Hoffmann, J.; Otero, B.G. Demystifying the Role of Data Interoperability in the Access and Sharing Debate. J. Intellect. Prop. Inf. Technol. E-Commer. Law 2020, 11, 252–273. [Google Scholar] [CrossRef]
- Hurst, W.; Montañez, C.A.C.; Shone, N. Time-Pattern Profiling from Smart Meter Data to Detect Outliers in Energy Consumption. IoT 2020, 1, 92–108. [Google Scholar] [CrossRef]
- Fraefel, M.; Haller, S.; Gschwend, A. Big Data in the Public Sector. Linking Cities to Sensors. In Electronic Government; Springer: Cham, Switzerland, 2017; Volume 10428 LNCS, pp. 276–286. [Google Scholar]
- Floridi, L. Establishing the Rules for Building Trustworthy AI. In Ethics, Governance, and Policies in Artificial Intelligence; Springer: Cham, Switzerland, 2021; Volume 144, pp. 41–45. [Google Scholar]
- Bansal, R. Challenges in Large Language Model Development and AI Ethics. In Challenges in Large Language Model Development and AI Ethics; IGI Global: Hershey, PA, USA, 2024; pp. 25–81. [Google Scholar]
- Firmansyah, G.; Bansal, S.; Walawalkar, A.M.; Kumar, S.; Chattopadhyay, S. The Future of Ethical AI. In Challenges in Large Language Model Development and AI Ethics; IGI Global: Hershey, PA, USA, 2024; pp. 145–177. [Google Scholar]
- Singh, B.P.; Joshi, A. Ethical Considerations in AI Development. In The Ethical Frontier of AI and Data Analysis; IGI Global: Hershey, PA, USA, 2024; pp. 156–179. [Google Scholar]
- Augusto, C.; Olivero, M.A.; Moran, J.; Morales, L.; De La Riva, C.; Aroba, J.; Tuya, J. Test-Driven Anonymization in Health Data: A Case Study on Assistive Reproduction. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence Testing (AITest), Oxford, UK, 3–6 August 2020; pp. 81–82. [Google Scholar]
- Kulkarni, M.S.; Naik, H.L.; Bharathi, S.V. Textual Analysis of Privacy Policies to Understand the Effect of GDPR. In Proceedings of the 2023 2nd International Conference on Futuristic Technologies (INCOFT), Karnataka, India, 24–26 November 2023. [Google Scholar]
- Heimes, R. Global InfoSec and Breach Standards. IEEE Secur. Priv. 2016, 14, 68–72. [Google Scholar] [CrossRef]
- Tong, S.; Li, S. Explainable Artificial Intelligence for Urban Planning: Challenges, Solutions, and Future Trends from a New Perspective. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 779–787. [Google Scholar] [CrossRef]
- Balkır, E.; Kiritchenko, S.; Nejadgholi, I.; Fraser, K.C. Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models. In Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022), Online, 14 July 2022; Association for Computational Linguistics: Seattle, WA, USA; pp. 80–92. [Google Scholar]
- Ren, Z.-T.; Zhang, R. Incentive Mechanism Analysis for Government to Regulate Public-Private Partnerships in Infrastructure Administration. In Proceedings of the 2009 International Conference on Management Science and Engineering, Moscow, Russia, 14–16 September 2009; pp. 2179–2183. [Google Scholar]
- Demertzis, K.; Tsiknas, K.; Taketzis, D.; Skoutas, D.N.; Skianis, C.; Iliadis, L.; Zoiros, K.E. Communication Network Standards for Smart Grid Infrastructures. Network 2021, 1, 132–145. [Google Scholar] [CrossRef]
- Wala, J. Transparency and Trust: Evaluating XAI for Critical Infrastructure Systems—A Comprehensive Analysis. In Advances in Information Technology in Civil and Building Engineering; Springer: Cham, Switzerland, 2025; Volume 629 LNCE, pp. 3–14. [Google Scholar]
- de Zoeten, M.; Ernst, C.-P.H.; Rothlauf, F. A Matter of Trust: How Trust in AI-Based Systems Changes During Interaction. In Proceedings of the Americas Conference on Information Systems, Ciudad de, Panamá, Panamá, 10–12 August 2023. [Google Scholar]
- Singh, J.; Rani, S.; Srilakshmi, G. Towards Explainable AI: Interpretable Models for Complex Decision-Making. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024. [Google Scholar]
- Alim, S.; Polak, J. Public-Private Partnerships for Future Urban Infrastructure. Proc. Inst. Civ. Eng. Manag. Procure. Law 2016, 169, 150–158. [Google Scholar] [CrossRef]
- Gorelick, J.; Walmsley, N. The Greening of Municipal Infrastructure Investments: Technical Assistance, Instruments, and City Champions. Green Financ. 2020, 2, 114–134. [Google Scholar] [CrossRef]
- Cappellaro, G.; Mele, V.; Ansari, S. Bridging Global Mandates and Local Realities: Intermediary Clusters and Interorganizational Collaboration for International Development. Organ. Stud. 2025, 46, 157–185. [Google Scholar] [CrossRef]
- Algorithmic Impact Assessment Tool. Available online: https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai/algorithmic-impact-assessment.html (accessed on 22 May 2025).
- EU Artificial Intelligence Act: Up-to-Date Developments and Analyses of the EU AI Act. Available online: https://artificialintelligenceact.eu/ (accessed on 24 May 2025).
- AI Risk Management Framework. NIST 2021. Available online: https://www.nist.gov/itl/ai-risk-management-framework (accessed on 24 May 2025).
- Artificial Intelligence Register | City of Helsinki Artificial Intelligence Register 2020. Available online: https://ai.hel.fi/en/ai-register/ (accessed on 24 May 2025).
- Mitchell, M.; Wu, S.; Zaldivar, A.; Barnes, P.; Vasserman, L.; Hutchinson, B.; Spitzer, E.; Raji, I.D.; Gebru, T. Model Cards for Model Reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency, New York, NY, USA, 29–31 January 2019; pp. 220–229. [Google Scholar]
- New York City Automated Decision Systems Task Force Report. Available online: https://www.nyc.gov/assets/adstaskforce/downloads/pdf/ADS-Report-11192019.pdf (accessed on 24 May 2025).
- Admin What Is DECODE? Available online: https://www.decodeproject.eu/what-decode (accessed on 22 May 2025).
- Kuchtíková, N.; Maryska, M. Eco-Friendly Ai: Balancing Innovation with Environmental Responsibility; Trauner Verlag: Linz, Austria, 2024; pp. 445–453. [Google Scholar]
- Walsh, P.; Bera, J.; Sharma, V.S.; Kaulgud, V.; Rao, R.M.; Ross, O. Sustainable AI in the Cloud: Exploring Machine Learning Energy Use in the Cloud. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), Melbourne, Australia, 15–19 November 2021; pp. 265–266. [Google Scholar]
- Lagani, G.; Falchi, F.; Gennaro, C.; Amato, G. AIMH Lab for a Susteinable Bio-Inspired AI. In Proceedings of the Ital-IA 2023: 3rd National Conference on Artificial Intelligence, Pisa, Italy, 29–31 May 2023; Volume 3486, pp. 575–584. [Google Scholar]
- Misan, S.; Orciuolo, P.; Beebeejaun, R.; Bosich, D.; Chiandone, M.; Sulligoi, G. Healing AI Mental Health to Slash Energy Consumption and Carbon Emissions. In Proceedings of the 2024 AEIT International Annual Conference (AEIT), Trento, Italy, 25–27 September 2024. [Google Scholar]
- Manikandan, S.; Kaviya, R.S.; Shreeharan, D.H.; Subbaiya, R.; Vickram, S.; Karmegam, N.; Kim, W.; Govarthanan, M. Artificial Intelligence-Driven Sustainability: Enhancing Carbon Capture for Sustainable Development Goals—A Review. Sustain. Dev. 2025, 33, 2004–2029. [Google Scholar] [CrossRef]
- Cai, B.; Feng, Y.; Wang, X.; Quddus, M. Highly Accurate Deep Learning Models for Estimating Traffic Characteristics from Video Data. Appl. Sci. 2024, 14, 8664. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, S.; Zhang, H.; Hu, X. A Real-Time Multiple Vehicle Tracking Method for Traffic Congestion Identification. KSII Trans. Internet Inf. Syst. 2016, 10, 2483–2503. [Google Scholar] [CrossRef]
- Bawaneh, M.; Simon, V. Performance Evaluation of Traffic Congestion Detection Algorithms in Real-Life Scenarios. In Proceedings of the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), Sarajevo, Bosnia Herzegovina, 16–18 March 2022; pp. 1–8. [Google Scholar]
- Kunjir, S.N.; Patil, S.S.; Hingane, B.S.; Pagariya, J.A.; Rashid, M. Managing Smart Urban Transportation with the Integration of Big Data Analytic Platform. In Proceedings of the 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 14–16 September 2023; pp. 1807–1811. [Google Scholar]
- Hoseinzadeh, N.; Liu, Y.; Han, L.D.; Brakewood, C.; Mohammadnazar, A. Quality of Location-Based Crowdsourced Speed Data on Surface Streets: A Case Study of Waze and Bluetooth Speed Data in Sevierville, TN. Comput. Environ. Urban Syst. 2020, 83, 101518. [Google Scholar] [CrossRef]
- Poornimathi, K.; Deepak Kumar, A.; Srinithi, A. ROUTESENSE—An AI Powered Solution to Car Pooling Systems. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; pp. 1168–1174. [Google Scholar]
- Domingo, D.; Palka, G.; Hersperger, A.M. Effect of Zoning Plans on Urban Land-Use Change: A Multi-Scenario Simulation for Supporting Sustainable Urban Growth. Sustain. Cities Soc. 2021, 69, 102833. [Google Scholar] [CrossRef]
- Klug, S.; Hayashi, Y. Urban Sprawl and Local Infrastructure in Japan and Germany. J. Infrastruct. Syst. 2012, 18, 232–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Schnabel, M.A. Form-Based Code in Parametric Modelling for Continuous Urban Design. In Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia: Living Systems and Micro-Utopias: Towards Continuous Designing, CAADRIA 2016, Mebourne, Australia, 30 March–2 April 2016; pp. 33–42. [Google Scholar]
- Bedi, J.; Toshniwal, D. Deep Learning Framework to Forecast Electricity Demand. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Gopal, J.N.; Madhu, B.; Somu, S.; Anand, A.J. Explainable AI (XAI) for Energy Demand Forecasting. In Neural Networks and Graph Models for Traffic and Energy Systems; IGI Global: Hershey, PA, USA, 2025; pp. 115–138. [Google Scholar]
- Anitha, R.; Siva Prasad, G.; Senthil, M.; Sarfaraz Ahmed, A.; Raja, L.; Vijayakumar, S.D. Artificial Intelligent Based Cost Optimized Smart Energy Distribution and Management. In Proceedings of the 2024 International Conference on Emerging Research in Computational Science (ICERCS), Coimbatore, India, 12–14 December 2024. [Google Scholar]
- Arun, M.; Barik, D.; Chandran, S.S.R.; Praveenkumar, S.; Tudu, K. Economic, Policy, Social, and Regulatory Aspects of AI-Driven Smart Buildings. J. Build. Eng. 2025, 99, 111666. [Google Scholar] [CrossRef]
- Aribas, E.; Daglarli, E. Transforming Personalized Travel Recommendations: Integrating Generative AI with Personality Models. Electronics 2024, 13, 4751. [Google Scholar] [CrossRef]
- Huang, L.; Liu, C.; Peng, W. Recommendation System of Tourist Attractions Based on Artificial Intelligence Algorithm. In Proceedings of the 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), Jabalpur, India, 6–7 April 2024; pp. 1175–1179. [Google Scholar]
- Sharma, V. AI in Hospitality and Tourism Promotion: Opportunities and Challenges. In Impact of AI and Tech-Driven Solutions in Hospitality and Tourism; IGI Global: Hershey, PA, USA, 2024; pp. 43–65. ISBN 979-836936757-5. [Google Scholar]
- Siva Sankar, A.; Nirmal Kumar, K.; Dinesh, S.M.; Abhishek, S.; Anjali, T. Intelligent Trip Planning with Integrated Street View: A Seamless AI-Driven Approach. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023. [Google Scholar]
- Colding, J.; Nilsson, C.; Sjöberg, S. Smart Cities for All? Bridging Digital Divides for Socially Sustainable and Inclusive Cities. Smart Cities 2024, 7, 1044–1059. [Google Scholar] [CrossRef]
- Nápoles, V.M.P.; Páez, D.G.; Penelas, J.L.E.; Pérez, O.G.; de Pablos, F.M.; Gil, R.M. Social Inclusion in Smart Cities. In Handbook of Smart Cities; Springer: Cham, Switzerland, 2021; pp. 469–514. [Google Scholar]
- Algarni, M. Deploying Artificial Intelligence for Optimized Flood Forecasting and Mitigation. In Proceedings of the 2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), Giza, Egypt, 4–7 December 2023. [Google Scholar]
- Maheswari, E.A.P.; Mernisi, F.A.; Sidharta, S.; Puspitasari, C. Harnessing Artificial Intelligence for Effective Coastal Flood Disaster Management: A Systematic Literature Review. In Proceedings of the 2024 International Conference on Information Management and Technology (ICIMTech), Bali, Indonesia, 28–29 August 2024; pp. 530–535. [Google Scholar]
- Kaufmann, M. AI in Policing and Law Enforcement. In Handbook on Public Policy and Artificial Intelligence; Edward Elgar Publishing: Cheltenham, UK, 2024; pp. 295–306. [Google Scholar]
- Sandhu, A.; Fussey, P. The ‘Uberization of Policing’? How Police Negotiate and Operationalise Predictive Policing Technology. Polic. Soc. 2021, 31, 66–81. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Valasik, M.; Mohler, G.O. Does Predictive Policing Lead to Biased Arrests? Results From a Randomized Controlled Trial. Stat. Public Policy 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Ardabili, B.R.; Pazho, A.D.; Noghre, G.A.; Neff, C.; Bhaskararayuni, S.D.; Ravindran, A.; Reid, S.; Tabkhi, H. Understanding Policy and Technical Aspects of AI-Enabled Smart Video Surveillance to Address Public Safety. Comput. Urban Sci. 2023, 3, 21. [Google Scholar] [CrossRef]
- Punia, M.; Choudhary, A.; Agarwal, S.; Shukla, V. Ethical Considerations and Legal Frameworks for Biometric Surveillance Systems: The Intersection of AI, Soft Biometrics, and Human Surveillance. In Cryptology and Network Security with Machine Learning; Springer: Singapore, 2024; Volume 918, pp. 659–674. [Google Scholar]
- Singh, B.; Kaunert, C. AI in Healthcare: Social-Legal Impact and Innovations in Digital Hospitals and mHealth. In AI for Humanitarianism: Fostering Social Change Through Emerging Technologies; CRC Press: Boca Raton, FL, USA, 2025; pp. 79–91. [Google Scholar]
- Zeng, D.; Cao, Z.; Neill, D.B. Artificial Intelligence–Enabled Public Health Surveillance—From Local Detection to Global Epidemic Monitoring and Control. In Artificial Intelligence in Medicine: Technical Basis and Clinical Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 437–453. [Google Scholar]
- Park, Y.; Yang, S. Predicting Patient Movement Patterns with Cognitive Insight. In Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Lisbon, Portugal, 3–6 December 2024; pp. 7110–7112. [Google Scholar]
- Ingole, P.; Baviskar, P.R.; Ghuge, M.; Dakhare, B.S.; Dongre, Y.; Dubey, P. Optimizing Resource Allocation in Hospitals Using Predictive Analytics and Information Systems. J. Inf. Syst. Eng. Manag. 2025, 10, 400–415. [Google Scholar]
- Li, D.; Zhang, R.; Chen, C.; Huang, Y.; Wang, X.; Yang, Q.; Zhu, X.; Zhang, X.; Hao, M.; Shui, L. Developing a Capsule Clinic—A 24-Hour Institution for Improving Primary Health Care Accessibility: Evidence from China. JMIR Med. Inform. 2023, 11, e41212. [Google Scholar] [CrossRef] [PubMed]
- Toll, K.; Moullin, J.C.; Andrew, S.; Williams, A.; Varhol, R.; Carey, T.A.; Robinson, S. Enhancing the Implementation of Provider-to-Provider Telehealth in Rural and Remote Areas: A Mixed Methods Study Protocol. Digit. Health 2024, 10, 20552076241242790. [Google Scholar] [CrossRef]
- Amjad, A.; Kordel, P.; Fernandes, G. A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence. Sustainability 2023, 15, 6655. [Google Scholar] [CrossRef]
AI Technique | Application | Advantages | Limitations |
---|---|---|---|
Machine Learning | Housing price prediction | High accuracy, interpretability | Requires large datasets |
Deep Learning | Traffic surveillance | Handles unstructured data (images) | Computationally expensive |
Reinforcement Learning | Smart traffic lights | Adapts in real-time | Complex implementation |
IoT | Air quality monitoring | Real-time data collection | Security vulnerabilities |
Computer Vision | Pedestrian detection | Improves urban safety | High hardware costs |
Dimension | Evaluation Metrics | AI Techniques |
---|---|---|
Accuracy | Predictive performance (e.g., MAE, F1-score, precision) | - DL > ML > RL for complex data (e.g., images, time-series). |
Scalability | Ability to handle large datasets or city-wide deployments | - IoT and big data analytics excel in scalability. |
Interpretability | Ease of understanding model decisions (critical for policymaking) | - ML models (e.g., regression) are more interpretable than DL. |
Resource Intensity | Computational power, training data, and infrastructure requirements | - DL and RL are resource-intensive; IoT requires hardware but is less computation-heavy. |
Adaptability | Flexibility to dynamic urban environments (e.g., real-time traffic changes) | - RL excels (e.g., traffic lights); IoT adapts via real-time data streams. |
Cost Efficiency | Implementation and maintenance costs | - ML is cost-effective; DL and IoT have higher upfront costs. |
Metric | Singapore | Barcelona |
---|---|---|
Traffic Efficiency | 25% reduction in delays (AI-driven GLIDE system). | N/A (focus on waste/water). |
Energy Savings | Optimized grid distribution (Open Electricity Market). | N/A |
Waste Management | N/A | 30% cost savings (smart bins). |
Water Conservation | N/A | 25% reduction in wastage (IoT sensors). |
Public Safety | Predictive policing (e.g., SSL for crime hotspots). | N/A |
Implementation Cost | High (large-scale AI integration). | Moderate (IoT-focused). |
Scalability | High (replicable in megacities). | Moderate (requires sensor infrastructure). |
Challenge | Description | References |
---|---|---|
Data Quality | AI models require vast amounts of high-quality data for accurate predictions. However, in the context of urban planning, datasets often suffer from issues such as incompleteness, inconsistency, and temporal gaps. | Yang et al. [79] |
Security and Privacy | AI systems used in urban environments often depend on data collected from sensors, surveillance systems, and IoT devices. These technologies raise significant ethical and privacy concerns, as individuals may not always consent to or be aware of how their data are being used. | Cui et al. [80] |
Psychological Impact | AI systems in intelligent buildings could benefit from incorporating real-time mood assessments, potentially through wearable sensors or behavioral analyses, to adjust environmental controls dynamically. However, implementing such systems necessitates careful consideration of privacy, consent, and ethical data usage to ensure occupant trust and well-being. | Turhan et al. [81] Ibrahim et al. [82] |
Methodology Bias | Models trained on biased datasets can perpetuate or exacerbate inequities in urban systems, such as housing allocation, traffic management, and resource distribution. | Chen et al., [78] Ashokkumar et al. [83] |
Legacy System | Most urban planning departments rely on legacy systems that are not compatible with advanced AI tools, making integration a daunting task. Additionally, stakeholders often require training to utilize AI technologies effectively, which can strain already limited resources. | Allam et al. [77] |
Transparency | The lack of transparency in many AI systems, especially DL models, undermines their acceptance and trust among stakeholders. These “black box” models often fail to provide interpretable insights into their decision making processes, limiting their usefulness in participatory urban planning. | Samek et al. [84] |
Resources | Implementing AI systems in urban planning requires significant resources, including financial investment, technical infrastructure, and skilled personnel. | Chen et al. [78] |
Opportunities | Field | References |
---|---|---|
Transportation | Traffic management | Ashokkumar et al. [83] Makanadar et al. [88] Sultana et al. [89] Chen et al. [78] |
Optimization | Wang et al. [90] Febbraro et al. [91] Zhou et al. [92] | |
Planning | Monitoring | Rauniyar et al. [93] Berkani et al. [95] Thangavel et al. [94] |
Energy | Liu et al. [96] Mohanty et al. [97] Velayudhan et al. [98] | |
Personalized Services | Smart tourism | Alcaraz et al. [99] Kumi et al. [100] |
Citizen services | Ghosh et al. [101] Al-Mushayt et al. [102] | |
Safety and Security | Disaster management | Talley et al. [103] Yang et al. [79] |
Crime management | Sultana et al. [104] Basthikodi et al. [105] | |
Health | Health services | Taimoor et al. [106] Kumar et al. [107] Ahmad et al. [108] |
Hospital management | Alsinglawi et al. [109] Liu et al. [110] Khattak et al. [111] |
City | AI Models | Application Summary |
---|---|---|
Singapore | Machine Learning Algorithms Digital Twins Predictive Modeling Geospatial Analytics | Urban mobility prediction, real-time traffic simulation, digital twin-based urban planning, and smart utility management |
Copenhagen | Predictive Models Real-Time Sensors AI Energy Optimization Tools (Balmorel) Copenhagen Solution Lab | Climate risk and flood prediction, municipal energy optimization, and integrated urban analytics |
NEOM | Adaptive Scheduling Algorithms AI Drones with Sensors Digital Twins Predictive Maintenance AI | AI-driven construction management, real-time monitoring, resource optimization, and sustainable transport planning |
Barcelona | ARIMA XGBoost Random Forest Survival Analysis (Machine Learning) | Traffic forecasting, predictive maintenance for bikes, occupancy prediction, and water pipe failure prevention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cina, E.; Elbasi, E.; Elmazi, G.; AlArnaout, Z. The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities. Sustainability 2025, 17, 5148. https://doi.org/10.3390/su17115148
Cina E, Elbasi E, Elmazi G, AlArnaout Z. The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities. Sustainability. 2025; 17(11):5148. https://doi.org/10.3390/su17115148
Chicago/Turabian StyleCina, Elda, Ersin Elbasi, Gremina Elmazi, and Zakwan AlArnaout. 2025. "The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities" Sustainability 17, no. 11: 5148. https://doi.org/10.3390/su17115148
APA StyleCina, E., Elbasi, E., Elmazi, G., & AlArnaout, Z. (2025). The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities. Sustainability, 17(11), 5148. https://doi.org/10.3390/su17115148