Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = small interfering RNA (siRNA) delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2695 KB  
Review
C16-siRNAs in Focus: Development of ALN-APP, a Promising RNAi-Based Therapeutic for Alzheimer’s Disease
by Ricardo Titze-de-Almeida, Guilherme de Melo Oliveira Gomes, Tayná Cristina dos Santos and Simoneide Souza Titze-de-Almeida
Pharmaceuticals 2026, 19(1), 26; https://doi.org/10.3390/ph19010026 - 22 Dec 2025
Viewed by 603
Abstract
This review examines a small interfering RNA (siRNA) designed for intrathecal (IT) injection, which reduces the formation of amyloid beta precursor protein (APP), a critical factor in the pathology of Alzheimer’s disease (AD). The siRNA, designated ALN-APP, incorporates a 16-carbon chain (C16-siRNA) to [...] Read more.
This review examines a small interfering RNA (siRNA) designed for intrathecal (IT) injection, which reduces the formation of amyloid beta precursor protein (APP), a critical factor in the pathology of Alzheimer’s disease (AD). The siRNA, designated ALN-APP, incorporates a 16-carbon chain (C16-siRNA) to enhance its delivery to the central nervous system (CNS) while leveraging advancements in specificity and duration of action based on previously approved drugs by the Food and Drug Administration. The development of ALN-APP involved a comprehensive analysis of the optimal carbon chain length and its conjugation position to the siRNA. Preclinical studies conducted on male Sprague Dawley rats, mice, and non-human primates (NHPs) demonstrated the efficacy of ALN-APP. In rats, an IT injection of C16-siRNAs at a concentration of 30 mg/mL, delivering a dose of 0.9 mg, resulted in cranial distribution via cerebrospinal fluid and led to a 75% reduction in copper-zinc superoxide dismutase 1 (SOD1) mRNA levels. These effects were dose-dependent and persisted for three months across multiple brain regions. Furthermore, studies in NHPs indicated that soluble APP levels were reduced to below 25%, sustained for two months. In the cerebrovascular amyloid Nos2−/− (CVN) mouse model of AD, administration of 120 µg of siRNA via the intracerebroventricular route produced reductions in APP expression, with mRNA levels remaining suppressed for 60 days in the ventral cortex. Indeed, ALN-APP controlled neuropathology in 5xFAD mice by significantly reducing amyloid levels and brain neuroinflammation, with improved behaviors in the elevated plus maze. Following these promising results in animal models, ALN-APP advanced to a Phase 1 trial, designated ALN-APP-001, which assessed its safety and efficacy in 12 participants with early-onset Alzheimer’s disease (EOAD). Initial findings revealed a 55% reduction in soluble APPα and a 69% reduction in APPβ by day 15. These exploratory findings require further validation with larger cohorts and proper statistical analysis. In a subsequent cohort of 36 patients, administration of the 75 mg dose via IT injection led to mean reductions of 61.3% in soluble APPα (sAPPα) and 73.5% in soluble APPβ (sAPPβ) after one month. These silencing effects persisted for six months and were associated with important decreases in Aβ42 and Aβ40 levels. These results highlight the potential of ALN-APPs to address Alzheimer’s pathology while maintaining a favorable safety profile. Whether ALN-APP succeeds in further clinical trials, key challenges include ensuring accessibility and affordability due to treatment costs, the need for specialized intrathecal administration, and establishing infrastructure for large-scale production of siRNAs. In conclusion, advancements in ALN-APP represent a promising strategy to reduce beta-amyloid formation in AD, with substantial biomarker reductions suggesting potential disease-modifying effects. Continued development may pave the way for innovative treatments for neurodegenerative diseases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

32 pages, 1125 KB  
Review
Mesenchymal Stromal/Stem Cells (MSCs) in Cancer Therapy: Advanced Therapeutic Strategies Towards Future Clinical Translation
by Hanna Kucharczyk, Maciej Tarnowski and Marta Tkacz
Molecules 2025, 30(24), 4808; https://doi.org/10.3390/molecules30244808 - 17 Dec 2025
Viewed by 806
Abstract
Mesenchymal stromal/stem cells (MSCs) appear in many studies, and their utilization is a developing area of study. Scientists are investigating the abilities of MSCs and the possibilities of using them in anticancer therapies, as well as combining such therapies with those currently used [...] Read more.
Mesenchymal stromal/stem cells (MSCs) appear in many studies, and their utilization is a developing area of study. Scientists are investigating the abilities of MSCs and the possibilities of using them in anticancer therapies, as well as combining such therapies with those currently used clinically. This article provides an overview of MSC-based therapeutic strategies, assessing their potential in the context of cancer treatment. These are engineering or biotechnological approaches that utilize the natural properties of MSCs in a targeted and therapeutically effective manner. The review focuses on innovative methods such as genetic modifications to express desired therapeutic molecules, highlighting their potential applications in clinical practice. Innovative strategies include modifications to express anticancer proteins, miRNA (microRNA), siRNA (small interfering RNA), lncRNA (long non-coding RNA), and circRNA (circular RNA) that induce specific effects, as well as the delivery of therapeutic genes and oncolytic viruses. However, further studies are required to address the existing impediments, which are also discussed in this review. A major challenge in the clinical application of MSCs is their bidirectional role, an issue that remains a central focus of current research and is examined in this article. Full article
Show Figures

Graphical abstract

32 pages, 1788 KB  
Review
Luteinizing Hormone-Releasing Hormone (LHRH)-Targeted Treatment in Ovarian Cancer
by Pallavi Nayak, Michela Varani, Anna Giorgio, Giuseppe Campagna, Donatella Caserta and Alberto Signore
Int. J. Mol. Sci. 2025, 26(24), 11884; https://doi.org/10.3390/ijms262411884 - 9 Dec 2025
Viewed by 738
Abstract
Ovarian cancer remains one of the most lethal gynecologic malignancies and requires more effective and targeted treatment strategies. Luteinizing hormone-releasing hormone (LHRH), or gonadotropin-releasing hormone (GnRH), receptors are expressed in approximately 80% of ovarian tumors, representing a promising target for targeted drug delivery. [...] Read more.
Ovarian cancer remains one of the most lethal gynecologic malignancies and requires more effective and targeted treatment strategies. Luteinizing hormone-releasing hormone (LHRH), or gonadotropin-releasing hormone (GnRH), receptors are expressed in approximately 80% of ovarian tumors, representing a promising target for targeted drug delivery. This narrative review aimed to explore the development and advancements of LHRH-receptor targeted therapies in ovarian cancer. A bibliographic search was performed using PubMed, Scopus, Google Scholar, and Web of Science. The search strategy included studies on LHRH-peptide drug delivery systems and LHRH-conjugate nanosystems. Literature search covered in vitro studies, preclinical models, and ongoing clinical trials from 2000 to 2025. A total of 19 studies were included for peptide-drug delivery, and 30 studies were included for LHRH-conjugated nanosystems. Overall findings demonstrated enhanced preclinical efficacy, achieving ~50–80% tumor-growth inhibition and 2–4-fold higher cellular uptake, alongside reduced systemic toxicity. Early clinical studies, although limited, reported an overall response/disease-control rate of approximately 50%, supporting improved tumor accumulation of drugs, small interfering RNA (siRNA), and diagnostic agents. Ovarian cancer-specific therapy, targeting LHRH receptors, represents a promising strategy to enhance therapeutic outcomes. Further efforts in preclinical and clinical research are essential to refine personalized treatments and integrate them with a combination of therapies. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Fourth Edition)
Show Figures

Figure 1

26 pages, 9041 KB  
Article
Biocompatible Copolymerized Gold Nanoclusters: Anti-TNF-α siRNA Binding, Cellular Uptake, Cytotoxicity, Oxidative Stress and Cell Cycle Effects In Vitro
by Jananee Padayachee and Moganavelli Singh
Biomimetics 2025, 10(12), 812; https://doi.org/10.3390/biomimetics10120812 - 4 Dec 2025
Viewed by 412
Abstract
Small interfering RNAs (siRNAs) have emerged as a powerful tool in the treatment of aggressive cancers. By exploiting and mimicking the natural gene regulation mechanism of RNA interference (RNAi), they allow for sequence-specific silencing of aberrant genes. siRNA-mediated knockdown of the inflammatory cytokine [...] Read more.
Small interfering RNAs (siRNAs) have emerged as a powerful tool in the treatment of aggressive cancers. By exploiting and mimicking the natural gene regulation mechanism of RNA interference (RNAi), they allow for sequence-specific silencing of aberrant genes. siRNA-mediated knockdown of the inflammatory cytokine tumour necrosis factor-alpha (TNF-α) presents a novel therapy for triple-negative breast cancer (TNBC). This study investigated the potential of novel biomimetic glutathione-synthesised gold nanoclusters (AuNCs) as siRNA delivery vehicles. AuNCs were functionalized with biocompatible chitosan and polyethene glycol, and their interactions with siRNAs were investigated through binding studies. In vitro cytotoxicity and cellular uptake were conducted in the human breast cancer (MCF-7), TNBC (MDA-MB-231), and embryonic kidney (HEK293) cells, while the effect of anti-TNF-α siRNA nanocomplexes on biological processes, such as oxidative stress, apoptosis, and cell cycle distribution, was investigated using flow cytometry. UV–visible and Fourier transform infrared spectroscopy, as well as transmission electron microscopy, confirmed the synthesis and functionalization of the AuNCs. Functionalized AuNCs (FAuNC) effectively bound and condensed siRNA and protected against nuclease degradation. AuNCs facilitated efficient cellular uptake and were well-tolerated in vitro. Anti-TNF-α siRNA treatment of the MDA-MB-231 cells increased apoptosis and oxidative stress levels, and affected cell cycle distribution. Although the overall knockdown was low, these FAuNCs exhibited favorable physicochemical characteristics, low cytotoxicity and good cellular uptake in vitro, warranting further optimisation for improved delivery of therapeutic siRNAs. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 5th Edition)
Show Figures

Graphical abstract

23 pages, 6819 KB  
Article
Pomegranate and Cherry Leaf Extracts as Stabilizers of Magnetic Hydroxyapatite Nanocarriers for Nucleic Acid Delivery
by Hina Inam, Simone Sprio, Federico Pupilli, Marta Tavoni and Anna Tampieri
Int. J. Mol. Sci. 2025, 26(23), 11562; https://doi.org/10.3390/ijms262311562 - 28 Nov 2025
Viewed by 409
Abstract
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by [...] Read more.
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by external magnetic fields, thus improving delivery efficiency and reducing off-target effects. In addition, magnetic nanoparticles offer a novel nanoplatform for theranostic applications, integrating siRNA delivery with magnetic resonance imaging and magnetic hyperthermia for synergistic diagnostic and therapeutic advantages. The present work reports the development of a novel platform based on biomimetic magnetic nanoparticles made of Fe(II)/Fe(III)-doped apatite (FeHA) nucleated and grown in the presence of cherry and pomegranate leaf extracts to enhance the colloidal stability and make it suitable for nucleic acid delivery under the guidance of magnetic fields. This approach allowed the obtention of FeHA suspension with increased negative zeta potential leading to very good stability. In addition, the functionalization with natural extracts conferred antioxidant properties also favoring the maintenance of the Fe(III)/Fe(II) ratio in the apatitic structure, inducing the superparamagnetic properties. To evaluate the delivery capability of the system, a model GAPDH-targeting siRNA molecule was employed. Its interaction with the nanoplatform was characterized by assessing loading capacity and release kinetics, which were further interpreted using mathematical modeling to elucidate the underlying release mechanisms. Full article
(This article belongs to the Special Issue The Role of Natural Products in Treating Human Diseases)
Show Figures

Figure 1

29 pages, 941 KB  
Review
Nanoparticles Used for the Delivery of RNAi-Based Therapeutics
by Tianrui Ren, Liang Ma, Ping Fu and Chuyue Zhang
Pharmaceutics 2025, 17(11), 1502; https://doi.org/10.3390/pharmaceutics17111502 - 20 Nov 2025
Cited by 1 | Viewed by 1806
Abstract
RNA interference (RNAi) offers programmable, sequence-specific silencing via small interfering RNA (siRNA) and microRNA (miRNA), but clinical translation hinges on overcoming instability, immunogenicity, and inefficient endosomal escape. This review synthesizes advances in non-viral nanocarriers—liposomes, polymeric nanoparticles, and extracellular vesicles (EVs)—that stabilize nucleic acids, [...] Read more.
RNA interference (RNAi) offers programmable, sequence-specific silencing via small interfering RNA (siRNA) and microRNA (miRNA), but clinical translation hinges on overcoming instability, immunogenicity, and inefficient endosomal escape. This review synthesizes advances in non-viral nanocarriers—liposomes, polymeric nanoparticles, and extracellular vesicles (EVs)—that stabilize nucleic acids, tune biodistribution, and enable organ- and cell-selective delivery. We highlight design levers that now define the field: ligand-guided targeting, stimuli-responsive release, biomimicry and endogenous carriers, and rational co-delivery with small molecules. Across major disease areas—cancer and cardiovascular, respiratory, and urological disorders—these platforms achieve tissue-selective uptake (e.g., macrophages, endothelium, and myocardium), traverse physiological barriers (including the blood–brain barrier and fibrotic stroma), and remodel hostile microenvironments or immune programs to enhance efficacy while maintaining favorable safety profiles. Early clinical studies reflect this diversity, spanning targeted nanoparticles, local drug depots, exosome and cellular carriers, and inhaled formulations, e.g., and converge on core phase-I endpoints (safety, maximum tolerated dose, pharmacokinetics/pharmacodynamics, and early activity). Looking ahead, priorities include good manufacturing practice scale, consistent manufacture—especially for EVs; more efficient loading and cargo control; improved endosomal escape and biodistribution; and rigorous, long-term safety evaluation with standardized, head-to-head benchmarking. Emerging directions such as in vivo EVs biogenesis, theragnostic integration, and data-driven formulation discovery are poised to accelerate translation. Collectively, nanoparticle-enabled RNAi has matured into a versatile, clinically relevant toolkit for precise gene silencing, positioning the field to deliver next-generation therapies across diverse indications. Full article
Show Figures

Figure 1

19 pages, 3173 KB  
Article
Anti-Angiogenic RNAi-Based Treatment of Endometriosis in a Rat Model Using CXCR4-Targeted Peptide Nanoparticles
by Anna Egorova, Svetlana Freund, Iuliia Krylova, Anastasia Kislova and Anton Kiselev
Int. J. Mol. Sci. 2025, 26(21), 10582; https://doi.org/10.3390/ijms262110582 - 30 Oct 2025
Viewed by 769
Abstract
Endometriosis is a common gynecological condition that affects fertility in many women of reproductive age worldwide. This multifaceted disease exhibits a pathogenesis characterized by hormonal and immune system dysregulations, alongside increased angiogenic activity within the peritoneum. The aberrant proliferation of endometrial tissue outside [...] Read more.
Endometriosis is a common gynecological condition that affects fertility in many women of reproductive age worldwide. This multifaceted disease exhibits a pathogenesis characterized by hormonal and immune system dysregulations, alongside increased angiogenic activity within the peritoneum. The aberrant proliferation of endometrial tissue outside the uterus is associated with vascularization in ectopic endometriotic lesions. Consequently, RNA interference (RNAi)-based angiogenic therapies targeting the VEGFA gene present a promising strategy for the treatment of endometriosis. To ensure the efficacy of RNAi-based therapy, it is critical to develop carriers capable of precisely delivering small interfering RNA (siRNA) to target cells. Additionally, the instability of polyplexes in vivo must be regarded as a pivotal aspect influencing the success of non-viral delivery. In this study, we introduce ternary polyplexes comprising siRNA and a carrier derived from an arginine–histidine-rich peptide, which is further coated with a glutamate–histidine-rich polymer modified using an SDF-1 chemokine-derived ligand for targeting CXCR4-expressing cells. The physicochemical characteristics of the siRNA-polyplexes, along with cellular toxicity and GFP gene silencing efficacy, were assessed in vitro. The anti-angiogenic potential of anti-VEGFA siRNA-polyplexes was evaluated by measuring the size of endometrial lesions, conducting immunohistochemical staining, and analyzing VEGFA gene expression. For in vivo experiment, a rat model of endometriosis induced by subcutaneous auto-transplantation of uterine tissue was utilized. A significant reduction in the growth of endometriotic implants and silencing of VEGFA gene expression was observed when compared to the saline-treated control group. The results of this study strongly suggest that the developed ternary polyplexes have significant potential as an efficient tool for the development of anti-angiogenic RNAi-based therapies for endometriosis. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

17 pages, 982 KB  
Review
The Role of Gene Therapy and RNA-Based Therapeutic Strategies in Diabetes
by Mustafa Tariq Khan, Reem Emad Al-Dhaleai, Sarah M. Alayadhi, Zainab Alhalwachi and Alexandra E. Butler
Int. J. Mol. Sci. 2025, 26(21), 10264; https://doi.org/10.3390/ijms262110264 - 22 Oct 2025
Viewed by 1770
Abstract
Gene therapy and RNA (ribonucleic acid)-based therapeutic strategies have emerged as promising alternatives to conventional diabetes treatments, significantly expanding the therapeutic landscape using viral and non-viral vectors, and RNA modalities such as mRNA (messenger ribonucleic acid), siRNA (small interfering ribonucleic acid) and miRNA [...] Read more.
Gene therapy and RNA (ribonucleic acid)-based therapeutic strategies have emerged as promising alternatives to conventional diabetes treatments, significantly expanding the therapeutic landscape using viral and non-viral vectors, and RNA modalities such as mRNA (messenger ribonucleic acid), siRNA (small interfering ribonucleic acid) and miRNA (micro ribonucleic acid). Recent advancements in these fields have led to notable preclinical successes and ongoing clinical trials, yet they are accompanied by debates over safety, efficacy and ethical considerations that underscore the complexity of clinical translation. This review offers a comprehensive analysis of the underlying mechanisms by which these treatments target diabetes, critically evaluating the fundamental concepts and mechanistic insights that form their basis, while highlighting current research gaps, such as the challenges in long-term stability and efficient delivery of RNA-based therapies, and potential adverse effects associated with gene therapy techniques. By synthesizing diverse perspectives and controversies, the review outlines future directions and interdisciplinary approaches aimed at overcoming existing hurdles, ultimately setting the stage for innovative, personalized diabetes management and addressing the broader clinical and regulatory implications of these emerging therapeutic strategies. Full article
Show Figures

Figure 1

19 pages, 1224 KB  
Article
Loop-Structured PEG-Lipoconjugate Enhances siRNA Delivery Mediated by Liner-PEG Containing Liposomes
by Daniil V. Gladkikh, Elena V. Shmendel, Darya M. Makarova, Mikhail A. Maslov, Marina A. Zenkova and Elena L. Chernolovskaya
Molecules 2025, 30(20), 4127; https://doi.org/10.3390/molecules30204127 - 19 Oct 2025
Viewed by 793
Abstract
Therapeutics involving small interfering RNA (siRNA) have enormous potential for treating a number of diseases, but their effective delivery to target cells remains a major challenge. We studied the influence of the structure and combination of targeted (folate conjugated, F13) and shield lipoconjugates [...] Read more.
Therapeutics involving small interfering RNA (siRNA) have enormous potential for treating a number of diseases, but their effective delivery to target cells remains a major challenge. We studied the influence of the structure and combination of targeted (folate conjugated, F13) and shield lipoconjugates (P1500, diP1500) on the ability of cationic liposomal formulations based on the 2X3-DOPE system to deliver siRNA into cells in vitro and in vivo. The loop-structured PEG lipoconjugate equipped with two hydrophobic anchor groups (diP1500) demonstrated superior performance across multiple evaluation criteria. The F13/diP1500 composition maintained a compact particle size (126.0 ± 23.0 nm), while F13/P1500 with the same PEG chain equipped with one anchor group maintained an increased particle size of 241.8 ± 65.7 nm. Most critically, F13/diP1500 preserved substantial positive surface charges (21.6–30.5 mV) across all N/P ratios, demonstrating superior ability in avoid the “PEG dilemma”, whereas F13/P1500 suffered substantial charge neutralization (3.9–9.1 mV). Competitive inhibition with free folate confirmed receptor-mediated cellular accumulation of siRNA mediated by F13 containing liposomal compositions. In vivo biodistribution revealed statistically significant circulation advantages: DSPE-PEG2000/diP1500 achieved the highest plasma concentration at 15 min (1.84 ± 0.01 pmol/mL), representing the first direct in vivo comparison of compositions with PEG lipoconjugates of the same length, but formed different structures in the liposomes due to the presence of one or two anchor groups. Our findings provide critical insights for the rational design of targeted liposomal delivery systems, highlighting the importance of balanced optimization between folate targeting functionality and PEG shielding for effective siRNA delivery both in vitro and in vivo. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Graphical abstract

25 pages, 1071 KB  
Review
Therapeutic Advances in Targeting the Amyloid-β Pathway for Alzheimer’s Disease
by Beiyu Zhang, Yunan Li, Huan Li, Xinai Shen and Zheying Zhu
Brain Sci. 2025, 15(10), 1101; https://doi.org/10.3390/brainsci15101101 - 13 Oct 2025
Viewed by 2614
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions aiming to reduce Aβ production, aggregation, or downstream toxicity. This review first outlines the historical development of the Aβ hypothesis and the two major APP processing pathways (α-cleavage and β-cleavage), highlighting the role of biomarkers in early diagnosis, patient stratification, and regulatory approval. We then summarize the development and clinical outcomes of anti-Aβ small-molecule drugs, including β-secretase inhibitors, γ-secretase modulators, Aβ aggregation inhibitors, receptor/synapse modulators, and metabolic or antioxidant modalities. We further review the progression of biologic therapies, with a particular focus on monoclonal antibodies, vaccines, and emerging gene-silencing strategies, such as small interfering RNA (siRNA) and antisense oligonucleotides. Finally, we discuss future perspectives, including next-generation biologics, multi-target approaches, optimized delivery platforms, and early-prevention strategies. Collectively, these efforts underscore both the challenges and opportunities in translating anti-Aβ therapies into meaningful clinical benefits for patients with AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

29 pages, 1315 KB  
Review
Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies
by Mohammed S. Abdel-Raziq Hassan, Cheng Zhong, Fatma Hassan and S. Kevin Li
Pharmaceutics 2025, 17(10), 1326; https://doi.org/10.3390/pharmaceutics17101326 - 13 Oct 2025
Cited by 1 | Viewed by 2287
Abstract
Recent advances in molecular biology have led to the development of RNA-based therapeutics, offering significant promise for treating various eye diseases. Current RNA therapeutics include RNA aptamers, antisense oligonucleotides (ASOs), small interfering RNA (siRNA), and messenger RNA (mRNA) that can target specific genetic [...] Read more.
Recent advances in molecular biology have led to the development of RNA-based therapeutics, offering significant promise for treating various eye diseases. Current RNA therapeutics include RNA aptamers, antisense oligonucleotides (ASOs), small interfering RNA (siRNA), and messenger RNA (mRNA) that can target specific genetic and molecular pathways involved in eye disorders. In addition to their potential in therapy, RNA technologies have also provided tools for mechanistic studies to improve the understanding of eye diseases, expanding the possibilities of RNA-based treatments. Despite the utility of RNA in studying eye disease mechanisms and its potential in disease treatment, only a few RNA-based therapies have been approved for posterior eye diseases. This paper reviews RNA interference and related ocular delivery and posterior eye diseases, focusing on the use of RNA aptamers, siRNA, short hairpin RNA (shRNA), and microRNA (miRNA). Approaches using RNA to advance our understanding of eye diseases and disease treatments, particularly in the posterior segment of the eye, are discussed. It is concluded that RNA therapeutics offer a novel approach to treating a variety of eye diseases by targeting their molecular causes. siRNA, shRNA, miRNA, and ASO can directly silence disease-driving genes, while RNA aptamers bind to specific targets. Although many RNA-based therapies are still in experimental stages, they hold promise for conditions such as age-related macular degeneration (AMD), diabetic macular edema (DME), glaucoma, and inherited retinal disorders. Effective delivery methods and long-term safety are key challenges that need to be addressed for these treatments to become widely available. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Targeted Delivery of VEGF-siRNA to Glioblastoma Using Orientation-Controlled Anti-PD-L1 Antibody-Modified Lipid Nanoparticles
by Ayaka Matsuo-Tani, Makoto Matsumoto, Takeshi Hiu, Mariko Kamiya, Longjian Geng, Riku Takayama, Yusuke Ushiroda, Naoya Kato, Hikaru Nakamura, Michiharu Yoshida, Hidefumi Mukai, Takayuki Matsuo and Shigeru Kawakami
Pharmaceutics 2025, 17(10), 1298; https://doi.org/10.3390/pharmaceutics17101298 - 4 Oct 2025
Cited by 1 | Viewed by 1644
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional antibody conjugation can impair antigen recognition and complicate manufacturing. This study aimed to establish a modular Fc-binding peptide (FcBP)-mediated post-insertion strategy to enable PD-L1-targeted delivery of VEGF-siRNA via LNPs for GBM therapy. Methods: Preformed VEGF-siRNA-loaded LNPs were functionalized with FcBP–lipid conjugates, enabling non-covalent anchoring of anti-PD-L1 antibodies through Fc interactions. Particle characteristics were analyzed using dynamic light scattering and encapsulation efficiency assays. Targeted cellular uptake and VEGF gene silencing were evaluated in PD-L1-positive GL261 glioma cells. Anti-tumor efficacy was assessed in a subcutaneous GL261 tumor model following repeated intratumoral administration using tumor volume and bioluminescence imaging as endpoints. Results: FcBP post-insertion preserved LNP particle size (125.2 ± 1.3 nm), polydispersity, zeta potential, and siRNA encapsulation efficiency. Anti-PD-L1–FcBP-LNPs significantly enhanced cellular uptake (by ~50-fold) and VEGF silencing in PD-L1-expressing GL261 cells compared to controls. In vivo, targeted LNPs reduced tumor volume by 65% and markedly suppressed bioluminescence signals without inducing weight loss. Final tumor weight was reduced by 63% in the anti-PD-L1–FcBP–LNP group (656.9 ± 125.4 mg) compared to the VEGF-siRNA LNP group (1794.1 ± 103.7 mg). The FcBP-modified LNPs maintained antibody orientation and binding activity, enabling rapid functionalization with targeting antibodies. Conclusions: The FcBP-mediated post-insertion strategy enables site-specific, modular antibody functionalization of LNPs without compromising physicochemical integrity or antibody recognition. PD-L1-targeted VEGF-siRNA delivery demonstrated potent, selective anti-tumor effects in GBM murine models. This platform offers a versatile approach for targeted nucleic acid therapeutics and holds translational potential for treating GBM. Full article
Show Figures

Graphical abstract

15 pages, 1290 KB  
Article
Successful Delivery of Small Non-Coding RNA Molecules into Human iPSC-Derived Lung Spheroids in 3D Culture Environment
by Anja Schweikert, Chiara De Santi, Xi Jing Teoh, Frederick Lee Xin Yang, Enya O’Sullivan, Catherine M. Greene, Killian Hurley and Irene K. Oglesby
Biomedicines 2025, 13(10), 2419; https://doi.org/10.3390/biomedicines13102419 - 3 Oct 2025
Viewed by 1167
Abstract
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. [...] Read more.
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. Here, we aim to provide an efficient method to transfect small RNAs (such as microRNAs and small interfering RNAs, i.e., siRNAs) into human induced pluripotent stem cell (iPSC)-derived 3D lung spheroids, specifically alveolar type II epithelial cells (iAT2) and basal cell (iBC) spheroids. Methods: Transfection of iAT2 spheroids within 3D Matrigel ‘in situ’, whole spheroids released from Matrigel or spheroids dissociated to single cells was explored via flow cytometry using a fluorescently labelled siRNA. Validation of the transfection method was performed in iAT2 and iBC spheroids using siRNA and miRNA mimics and measurement of specific target expression post-transfection. Results: Maximal delivery of siRNA was achieved in serum-free conditions in whole spheroids released from the Matrigel, followed by whole spheroids ‘in situ’. ‘In situ’ transfection of SFTPC-siRNA led to a 50% reduction in the SFTPC mRNA levels in iAT2 spheroids. Transfection of miR-29c mimic and miR-21 pre-miR into iAT2 and iBC spheroids, respectively, led to significant miRNA overexpression, together with a significant decrease in protein levels of the miR-29 target FOXO3a. Conclusions: This study demonstrates successful transfection of iPSC-derived lung spheroids without disruption of their 3D structure using a simple and feasible approach. Further development of these methods will facilitate functional studies in iPSC-derived spheroids utilizing small RNAs. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 1583 KB  
Article
An RNAi Therapy That Attenuates Multi-Organ Viremia and Improves Animal Survival in a Lethal EMCV Challenge Model
by Yaxin Zhang, Jiayu Yue, Bei Wu, Jingying Xie, Jiying Xu, Wenqing Gao, Ruofei Feng and Adi Idris
Viruses 2025, 17(9), 1240; https://doi.org/10.3390/v17091240 - 14 Sep 2025
Viewed by 879
Abstract
Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen that infects many animals with mild symptoms. However, swine is the most receptive host and causes acute and lethal myocarditis and/or encephalitis, and induces sudden death in piglets. There are currently no approved antivirals against [...] Read more.
Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen that infects many animals with mild symptoms. However, swine is the most receptive host and causes acute and lethal myocarditis and/or encephalitis, and induces sudden death in piglets. There are currently no approved antivirals against EMCV. In recent years, antiviral therapies based on small interfering RNA (siRNA) have been rapidly developed as effective alternative therapies. In this study, we designed siRNAs targeting highly conserved regions in the EMCV genome coinciding with VP2 and 3C genes. We show that these siRNAs were non-immunostimulatory and significantly inhibited EMCV replication in vitro. The siRNAs were then complexed in liposomes before testing in a lethal EMCV mouse model in vivo. Both prophylactic and therapeutic intravenous delivery of siRNAs ameliorated viral infection in multiple organs and improved animal survival. This is the first demonstration of the use of a liposomal delivery platform to deliver highly conserved anti-EMCV siRNAs for EMCV antiviral therapy in vivo. Full article
(This article belongs to the Special Issue Antiviral Development for Emerging and Re-Emerging Viruses)
Show Figures

Figure 1

21 pages, 2186 KB  
Review
Knocking on Cells’ Door: Strategic Approaches for miRNA and siRNA in Anticancer Therapy
by Massimo Serra, Alessia Buccellini and Mayra Paolillo
Int. J. Mol. Sci. 2025, 26(17), 8703; https://doi.org/10.3390/ijms26178703 - 6 Sep 2025
Cited by 1 | Viewed by 2553
Abstract
Metastasis is the main cause of failure in anticancer therapies, and is frequently related to poor prognosis for patients. The true challenge in extending cancer patient life expectancy, eventually managing cancer as a chronic disease with periodic but controllable relapses, relies on the [...] Read more.
Metastasis is the main cause of failure in anticancer therapies, and is frequently related to poor prognosis for patients. The true challenge in extending cancer patient life expectancy, eventually managing cancer as a chronic disease with periodic but controllable relapses, relies on the development of effective therapeutic strategies specifically targeting key mechanisms involved in the metastatic cascade. Traditional chemotherapy with alkylating agents, microtubule inhibitors, and antimetabolites has shown limited efficacy against metastatic cells, largely due to the emergence of chemoresistant populations that undergo epithelial-to-mesenchymal transition (EMT), promoting the colonization of distant organs and sustaining metastatic progression. This scenario has spurred significant efforts to identify small molecules and biologics capable of interfering with specific steps in the metastatic process. In this review, we provide an overview of recent advances involving small interfering RNAs (siRNAs) and microRNAs (miRNAs) in cancer therapy. Although most of these agents are still under investigation and have not yet been approved for clinical use, insights into their development stage offer valuable information to identify new targets in the ongoing fight against metastasis. Particular emphasis is placed on the role of chemical modifications applied to siRNAs, such as backbone, sugar, terminal, base, and conjugation changes, and how these factors influence their stability, immunogenicity, and targeting precision. By integrating these aspects into the discussion, this review provides a focused and up-to-date resource for researchers in medicinal chemistry, drug delivery, and pharmaceutical formulation, where molecular design plays a critical role in therapeutic success. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Oncology)
Show Figures

Graphical abstract

Back to TopTop