Nanoparticles Used for the Delivery of RNAi-Based Therapeutics
Abstract
1. Introduction
2. Methods: Search Strategy and Selection Criteria
3. Nanocarriers for Delivering RNAi-Based Therapeutics
3.1. Liposomes
3.2. Polymeric Nanoparticles
3.3. Extracellular Vesicle
4. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics Against Cancer
4.1. siRNA-Based Cancer Therapeutics
4.1.1. siRNA-Based Cancer Therapeutics via Liposomes
4.1.2. siRNA-Based Cancer Therapeutics via Polymeric Nanoparticles
4.1.3. siRNA-Based Cancer Therapeutics via Exosomes and Other Extracellular Vesicles
4.2. miRNA-Based Cancer Therapeutics
4.2.1. miRNA-Based Cancer Therapeutics via Liposomes
4.2.2. miRNA-Based Cancer Therapeutics via Polymeric Nanoparticles
4.2.3. miRNA-Based Cancer Therapeutics via Exosomes and Other Extracellular Vesicles
5. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics Against Cardiovascular Disease
5.1. siRNA-Based Therapeutics for Cardiovascular Disease
5.2. miRNA-Based Therapeutics for Cardiovascular Disease
6. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics Against Respiratory Disease
6.1. siRNA-Based Therapeutics for Respiratory Diseases
6.2. miRNA-Based Therapeutics for Respiratory Disease
7. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics Against Urological Disease
8. Clinical Translation and Application
8.1. siRNA Therapeutics in Clinical Trials
8.2. miRNA Therapeutics in Clinical Trials
9. Approved siRNA-Based Therapies
10. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| RNAi | RNA interference |
| miRNA | microRNA |
| siRNA | small interfering RNA |
| MTD | maximum tolerated dose |
| PK/PD | pharmacokinetics/pharmacodynamics |
| GMP | good manufacturing practice |
| RISC | RNA-induced silencing complex |
| RES | reticuloendothelial system |
| CARPA | complement activation-related pseudoallergy |
| PRRs | pattern recognition receptors |
| RIG-I | retinoic acid-inducible gene I |
| MDA5 | melanoma differentiation-associated gene 5 |
| NADs | nucleic acid drugs |
| CRISPR | clustered regularly interspaced short palindromic repeats |
| LNPs | lipid nanoparticles |
| BBB | blood–brain barrier |
| NSCLC | non-small cell lung cancer |
| ROS | reactive oxygen species |
| RNPs | ribonucleoprotein complexes |
| BRBP1 | brown rice bran powder1 |
| EMT | epithelial-mesenchymal transition |
| PROTACs | proteolysis targeting chimeras |
| PNPs | polymeric nanoparticles |
| ECM | extracellular matrix |
| HCC | hepatocellular carcinoma |
| TNBC | triple-negative breast cancer |
| PEG | polyethylene glycol |
| VEGF | vascular endothelial growth factor |
| PEAL | mPEG-PLGA-PLL |
| PDAC | pancreatic ductal adenocarcinoma |
| TME | tumor microenvironment |
| PEI/PPI | polyethylenimine/polypropylenimine |
| TAMs | tumor-associated macrophages |
| EGFR | epidermal growth factor receptor |
| cPLA2 | cytoplasmic phospholipase A2 |
| PDX | patient-derived xenograft |
| PTRF | polymerase 1 and transcript release factor |
| PPM1D | mutation of p53-induced protein phosphatase 1 |
| DIPG | diffuse intrinsic pontine gliomas |
| DARS-AS1 | delivery of aspartyl-tRNA synthetase-antisense RNA 1 |
| MAPK/ERK | mitogen-activated protein kinase/extracellular signal-regulated kinase |
| HCR | hybridization chain reaction |
| TPP | triphenylphosphine |
| AMPK | 5′-adenosine monophosphate-activated protein kinase |
| MSCs | mesenchymal stromal cells |
| GSC | glioblastoma stem cell |
| MACC1 | metastasis-associated in colon cancer 1 |
| CRC | colorectal cancer |
| EpCAM | epithelial cell adhesion molecule |
| RAGE | receptor for advanced glycation end products |
| EGCG | Co-encapsulating epigallocatechin-3-gallate |
| LVEF | left ventricular ejection fraction |
| BMSC | bone marrow mesenchymal stem cell |
| hAMSC | human Amniotic Mesenchymal Stem Cell |
| VSMC | vascular smooth muscle cell |
| COPD | chronic obstructive pulmonary disease |
| DLTs | dose-limiting toxicities |
| RP2D | recommended phase 2 dose |
| CTCL/MF | cutaneous T-cell lymphoma/mycosis fungoides |
| CLL | chronic lymphocytic leukemia |
| DLBCL | diffuse large B-cell lymphoma |
| ATLL | adult T-cell leukemia/lymphoma |
| NTA | nanoparticle tracking analysis |
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Ambros, V. The Functions of Animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a Bidentate Ribonuclease in the Initiation Step of RNA Interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Zhang, Z.; Conniot, J.; Amorim, J.; Jin, Y.; Prasad, R.; Yan, X.; Fan, K.; Conde, J. Nucleic Acid-Based Therapy for Brain Cancer: Challenges and Strategies. J. Control. Release 2022, 350, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J. Complement Activation-Related Pseudoallergy: A New Class of Drug-Induced Acute Immune Toxicity. Toxicology 2005, 216, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene Glycol (PEG): The Nature, Immunogenicity, and Role in the Hypersensitivity of PEGylated Products. J. Control. Release 2022, 351, 215–230. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for Imaging and Therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef]
- Judge, A.D.; Sood, V.; Shaw, J.R.; Fang, D.; McClintock, K.; MacLachlan, I. Sequence-Dependent Stimulation of the Mammalian Innate Immune Response by Synthetic siRNA. Nat. Biotechnol. 2005, 23, 457–462. [Google Scholar] [CrossRef]
- Ayadi, L.; Galvanin, A.; Pichot, F.; Marchand, V.; Motorin, Y. RNA Ribose Methylation (2′-O-Methylation): Occurrence, Biosynthesis and Biological Functions. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2019, 1862, 253–269. [Google Scholar] [CrossRef]
- Giudice, J.; Brauer, D.D.; Zoltek, M.; Vázquez-Maldonado, A.L.; Dadina, N.; Kelly, M.; Schepartz, A. The Biophysical Requirements That Govern the Efficient Endosomal Escape of Designed Mini-Proteins. Nat. Chem. 2025, 17, 1227–1235. [Google Scholar] [CrossRef]
- Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal Escape Pathways for Delivery of Biologicals. J. Control. Release 2011, 151, 220–228. [Google Scholar] [CrossRef]
- Vermeulen, L.M.P.; Brans, T.; De Smedt, S.C.; Remaut, K.; Braeckmans, K. Methodologies to Investigate Intracellular Barriers for Nucleic Acid Delivery in Non-Viral Gene Therapy. Nano Today 2018, 21, 74–90. [Google Scholar] [CrossRef]
- Bangham, A.D.; Horne, R.W. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope. J. Mol. Biol. 1964, 8, 660-IN10. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef]
- Abla, K.K.; Zahwi, M.; El-Lakany, S.A.; Karam, M. Advances in siRNA-Loaded Liposomes for Lung Cancer: Challenges and Future Perspectives. Int. J. Biol. Macromol. 2025, 319, 145461. [Google Scholar] [CrossRef]
- Purohit, M.P.; Yu, B.J.; Roy, K.S.; Xiang, Y.; Ewbank, S.N.; Azadian, M.M.; Hart, A.R.; Muwanga, G.P.B.; Martinez, P.J.; Wang, J.B.; et al. Acoustically Activatable Liposomes as a Translational Nanotechnology for Site-Targeted Drug Delivery and Noninvasive Neuromodulation. Nat. Nanotechnol. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Wang, J.; Wang, G.; Su, Z.; Li, Y.; Chen, Y.; Meng, J.; Yao, Y.; Wang, L.; Wilkens, S.; et al. Chimeric Nanobody-Decorated Liposomes by Self-Assembly. Nat. Nanotechnol. 2024, 19, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Wang, E.; Yang, H.; Zhao, T.; Wang, Q.; Zhang, Z.; Song, Y.; Liu, X. Reprogramming Mitochondrial Metabolism and Epigenetics of Macrophages via miR-10a Liposomes for Atherosclerosis Therapy. Nat. Commun. 2025, 16, 9117. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, H.; Sun, L.; Nurzat, Y.; Qin, H.; Zhao, Z.; Liu, D.; Zheng, S.; Wang, L.; Fu, Y.; et al. Neuron-Targeted ROS-Responsive Liposomes for Puerarin Delivery Remodel Ischemic Microenvironment via Microglial Modulation and Neurovascular Regeneration. J. Nanobiotechnol. 2025, 23, 677. [Google Scholar] [CrossRef]
- Xiong, L.; Chen, S.; Li, S.; He, D.; Wang, Y.; Zhang, Q.; He, Z.; Li, M.; He, Q. ATP-Responsive Tumor Targeted Lipid Nanoparticle for Enhanced siRNA Delivery and Improved Treatment Efficacy in Melanoma. J. Control. Release 2025, 382, 113622. [Google Scholar] [CrossRef]
- Lin, Y.; Li, M.; Luo, Z.; Meng, Y.; Zong, Y.; Ren, H.; Yu, X.; Tan, X.; Liu, F.; Wei, T.; et al. Tissue-Specific mRNA Delivery and Prime Editing with Peptide-Ionizable Lipid Nanoparticles. Nat. Mater. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cao, Y.; Xu, Y.; Li, R.; Xu, X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol. Biosci. 2024, 24, e2300238. [Google Scholar] [CrossRef] [PubMed]
- Fornaguera, C.; Torres-Coll, A.; Olmo, L.; Garcia-Fernandez, C.; Guerra-Rebollo, M.; Borrós, S. Engineering Oncogene-Targeted Anisamide-Functionalized pBAE Nanoparticles as Efficient Lung Cancer Antisense Therapies. RSC Adv. 2023, 13, 29986–30001. [Google Scholar] [CrossRef]
- Gu, X.-R.; Tai, Y.-F.; Liu, Z.; Zhang, X.-Y.; Liu, K.; Zhou, L.-Y.; Yin, W.-J.; Deng, Y.-X.; Kong, D.-L.; Midgley, A.C.; et al. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv. Healthc. Mater. 2024, 13, e2304675. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Chen, Y.; Sheng, C.; Xiao, T.; Jiang, B.; Xu, X.; Cui, S.; Shen, W.; Zheng, X.; Guo, X.; Chen, X.; et al. Ultrasound-Guided Functionalized Extracellular Vesicles for Visualized, Controlled, and Efficient Renal Delivery for Enhanced Kidney Repair. Adv. Healthc. Mater. 2025, 14, e2404719. [Google Scholar] [CrossRef]
- Peng, F.; Chen, X.; Wu, L.; He, J.; Li, Z.; Hong, Q.; Zhao, Q.; Qian, M.; Wang, X.; Shen, W.; et al. Nitric Oxide-Primed Engineered Extracellular Vesicles Restore Bioenergetics in Acute Kidney Injury via Mitochondrial Transfer. Theranostics 2025, 15, 5499–5517. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, Y.; Chen, X.; Midgley, A.C.; Wang, Z.; Zhu, D.; Wu, J.; Chen, P.; Wu, L.; Wang, X.; et al. Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS Nano 2020, 14, 12133–12147. [Google Scholar] [CrossRef]
- Goyal, A.; Afzal, M.; Goyal, K.; Ganesan, S.; Kumari, M.; Sunitha, S.; Dash, A.; Saini, S.; Rana, M.; Gupta, G.; et al. MSC-Derived Extracellular Vesicles: Precision miRNA Delivery for Overcoming Cancer Therapy Resistance. Regen. Ther. 2025, 29, 303–318. [Google Scholar] [CrossRef]
- Wallen, M.; Aqil, F.; Spencer, W.; Gupta, R.C. Milk/Colostrum Exosomes: A Nanoplatform Advancing Delivery of Cancer Therapeutics. Cancer Lett. 2023, 561, 216141. [Google Scholar] [CrossRef]
- Veider, F.; Haddadzadegan, S.; Sanchez Armengol, E.; Laffleur, F.; Kali, G.; Bernkop-Schnürch, A. Inhibition of P-Glycoprotein-Mediated Efflux by Thiolated Cyclodextrins. Carbohydr. Polym. 2024, 327, 121648. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Z.; Zhao, Y.; Fan, F.; Xiong, W.; Song, S.; Yin, Y.; Hu, J.; Yang, K.; Yang, L.; et al. Mononuclear Phagocyte System Blockade Using Extracellular Vesicles Modified with CD47 on Membrane Surface for Myocardial Infarction Reperfusion Injury Treatment. Biomaterials 2021, 275, 121000. [Google Scholar] [CrossRef]
- Fu, X.; Shi, Y.; Gu, Z.; Zang, H.; Li, L.; Wang, Q.; Wang, Y.; Zhao, X.; Wu, H.; Qiu, S.; et al. Immunotherapeutic Hydrogel for Co-Delivery of STAT3 siRNA Liposomes and Lidocaine Hydrochloride for Postoperative Comprehensive Management of NSCLC in a Single Application. Asian J. Pharm. Sci. 2024, 19, 100925. [Google Scholar] [CrossRef]
- Du, J.; Que, Z.; Aihaiti, A.; Zhai, M.; Zhang, Z.; Shao, Y.; Zhang, Y.; Miao, F.; Shen, Y.; Chen, X.; et al. Co-Delivery of SN38 and MEF2D-siRNA via tLyp-1-Modified Liposomes Reverses PD-L1 Expression Induced by STING Activation in Hepatocellular Carcinoma. Colloids Surf. B Biointerfaces 2025, 245, 114318. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Q.; Xu, F.; Yao, T. Enhanced Anti-Tumor Therapy for Hepatocellular Carcinoma via Sorafenib and KIAA1199-siRNA Co-Delivery Liposomes. Saudi Pharm. J. 2024, 32, 102153. [Google Scholar] [CrossRef]
- Wang, G.; Lu, H.; Pan, Y.; Qi, Y.; Huang, Y. Ultrasound-Sensitive Targeted Liposomes as a Gene Delivery System for the Synergistic Treatment of Hepatocellular Carcinoma. Small Weinh. Bergstr. Ger. 2024, 20, e2406182. [Google Scholar] [CrossRef]
- Nai, J.; Zhang, J.; Li, J.; Li, H.; Yang, Y.; Yang, M.; Wang, Y.; Gong, W.; Li, Z.; Li, L.; et al. Macrophage Membrane- and cRGD-Functionalized Thermosensitive Liposomes Combined with CPP to Realize Precise siRNA Delivery into Tumor Cells. Mol. Ther. Nucleic Acids 2022, 27, 349–362. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, J.; Yu, D.; Liu, Y.; Song, D.; Tian, K.; Chen, H.; Ye, Q.; Wang, X.; Xu, T.; et al. Polymer-Locking Fusogenic Liposomes for Glioblastoma-Targeted siRNA Delivery and CRISPR-Cas Gene Editing. Nat. Nanotechnol. 2024, 19, 1869–1879. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, Y.-K.; Lee, H.; Choi, D.-H.; Rhee, K.-J.; Kim, H.S.; Seo, J.-B. Sonoporation with Echogenic Liposomes: The Evaluation of Glioblastoma Applicability Using In Vivo Xenograft Models. Pharmaceutics 2025, 17, 509. [Google Scholar] [CrossRef]
- Li, D.; Liu, D.; Wang, Y.; Sun, Q.; Sun, R.; Zhang, J.; Hong, X.; Huo, R.; Zhang, S.; Cui, C. Multifunctional Liposomes Co-Encapsulating Epigallocatechin-3-Gallate (EGCG) and miRNA for Atherosclerosis Lesion Elimination. Nanoscale Adv. 2023, 6, 221–232. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Li, Y.; Li, X.; Yang, G.; Li, M.; Xie, Y.; Su, W.; Wu, J.; Jia, L.; et al. Cationic Liposomes Co-Deliver Chemotherapeutics and siRNA for the Treatment of Breast Cancer. Eur. J. Med. Chem. 2022, 233, 114198. [Google Scholar] [CrossRef]
- Flores-Colón, M.; Rivera-Serrano, M.; Peterson-Peguero, E.A.; Vivas-Rivera, P.E.; Valiyeva, F.; Vivas-Mejía, P.E. Synthesis and Biological Evaluation of Herceptin-Conjugated Liposomes Loaded with Lipocalin-2 siRNA for the Treatment of Inflammatory Breast Cancer. Pharmaceuticals 2025, 18, 1053. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, Y.; Qian, K.; Yang, P.; Zhou, L.; Xu, M.; Sheng, D.; Wang, T.; Li, Y.; Yang, X.; et al. siRNA-Encapsulated Biomimetic Liposomes Effectively Inhibit Tumor Cells’ Hexosamine Biosynthesis Pathway for Attenuating Hyaluronan Barriers to Pancreatic Cancer Chemotherapy. ACS Nano 2025, 19, 7928–7947. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, Y.; Wang, J.; Gu, M.; Wang, Y.; Zhang, X.; Zhang, Y.; Yu, W.; Liu, Y.; Yuan, W.-E.; et al. Co-Delivery of PROTAC and siRNA via Novel Liposomes for the Treatment of Malignant Tumors. J. Colloid Interface Sci. 2025, 678, 896–907. [Google Scholar] [CrossRef]
- Molinar, C.; Tannous, M.; Meloni, D.; Cavalli, R.; Scomparin, A. Current Status and Trends in Nucleic Acids for Cancer Therapy: A Focus on Polysaccharide-Based Nanomedicines. Macromol. Biosci. 2023, 23, e2300102. [Google Scholar] [CrossRef]
- Kandasamy, G.; Maity, D. Current Advancements in Self-Assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf. B Biointerfaces 2023, 221, 113002. [Google Scholar] [CrossRef]
- Qiao, M.; Zeng, C.; Liu, C.; Lei, Z.; Liu, B.; Xie, H. The Advancement of siRNA-Based Nanomedicine for Tumor Therapy. Nanomedicine 2024, 19, 1841–1862. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, F.; Su, H.; Liu, X.; Ren, Q.; Huang, F.; Ye, W.; Zhao, M.; Zhao, Y.; Zhao, J.; et al. Construction of Degradable and Amphiphilic Triblock Polymer Carriers for Effective Delivery of siRNA. Macromol. Biosci. 2022, 22, e2200232. [Google Scholar] [CrossRef]
- Karlsson, J.; Tzeng, S.Y.; Hemmati, S.; Luly, K.M.; Choi, O.; Rui, Y.; Wilson, D.R.; Kozielski, K.L.; Quiñones-Hinojosa, A.; Green, J.J. Photocrosslinked Bioreducible Polymeric Nanoparticles for Enhanced Systemic siRNA Delivery as Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2009768. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Weiskirchen, S.; Grassi, C.; Scaggiante, B.; Grassi, M.; Tierno, D.; Biasin, A.; Truong, N.H.; Minh, T.D.; Cemazar, M.; et al. Recent Advances in Optimizing siRNA Delivery to Hepatocellular Carcinoma Cells. Expert Opin. Drug Deliv. 2025, 22, 729–745. [Google Scholar] [CrossRef]
- Rodponthukwaji, K.; Pingrajai, P.; Jantana, S.; Taya, S.; Duangchan, K.; Nguyen, K.T.; Srisawat, C.; Punnakitikashem, P. Epigallocatechin Gallate Potentiates the Anticancer Effect of AFP-siRNA-Loaded Polymeric Nanoparticles on Hepatocellular Carcinoma Cells. Nanomaterials 2023, 14, 47. [Google Scholar] [CrossRef]
- Punuch, K.; Wongwan, C.; Jantana, S.; Somboonyosdech, C.; Rodponthukwaji, K.; Kunwong, N.; Nguyen, K.T.; Sirivatanauksorn, V.; Sirivatanauksorn, Y.; Srisawat, C.; et al. Study of siRNA Delivery via Polymeric Nanoparticles in Combination with Angiogenesis Inhibitor for The Treatment of AFP-Related Liver Cancer. Int. J. Mol. Sci. 2022, 23, 12666. [Google Scholar] [CrossRef]
- Sader, D.; Zlotver, I.; Moya, S.; Calabrese, G.C.; Sosnik, A. Doubly Self-Assembled Dermatan Sulfate/Chitosan Nanoparticles for Targeted siRNA Delivery in Cancer Therapy. J. Colloid Interface Sci. 2025, 680, 763–775. [Google Scholar] [CrossRef]
- Camorani, S.; Tortorella, S.; Agnello, L.; Spanu, C.; d’Argenio, A.; Nilo, R.; Zannetti, A.; Locatelli, E.; Fedele, M.; Comes Franchini, M.; et al. Aptamer-Functionalized Nanoparticles Mediate PD-L1 siRNA Delivery for Effective Gene Silencing in Triple-Negative Breast Cancer Cells. Pharmaceutics 2022, 14, 2225. [Google Scholar] [CrossRef]
- Jin, M.; Hou, Y.; Quan, X.; Chen, L.; Gao, Z.; Huang, W. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice. Int. J. Nanomed. 2021, 16, 5479–5494. [Google Scholar] [CrossRef]
- Chen, C.; Guo, Q.; Fu, H.; Yu, J.; Wang, L.; Sun, Y.; Zhang, J.; Duan, Y. Asynchronous Blockade of PD-L1 and CD155 by Polymeric Nanoparticles Inhibits Triple-Negative Breast Cancer Progression and Metastasis. Biomaterials 2021, 275, 120988. [Google Scholar] [CrossRef]
- Casadidio, C.; Fens, M.H.A.M.; Fliervoet, L.A.L.; Censi, R.; Vermonden, T. Injectable Thermosensitive Hydrogel for Local and Controlled Delivery of siRNA-STAT3 Polyplexes to Treat Advanced-Stage Ovarian Cancer. J. Control. Release 2025, 384, 113890. [Google Scholar] [CrossRef] [PubMed]
- Rehman, U.; Parveen, N.; Sheikh, A.; Abourehab, M.A.S.; Sahebkar, A.; Kesharwani, P. Polymeric Nanoparticles-siRNA as an Emerging Nano-Polyplexes against Ovarian Cancer. Colloids Surf. B Biointerfaces 2022, 218, 112766. [Google Scholar] [CrossRef]
- Spadea, A.; Tirella, A.; Rios de la Rosa, J.M.; Lallana, E.; Mehibel, M.; Telfer, B.; Tirelli, N.; Lawrence, M.J.; Williams, K.J.; Stratford, I.J.; et al. Targeting Hypoxia-Inducible Factor-1α in Pancreatic Cancer: siRNA Delivery Using Hyaluronic Acid-Displaying Nanoparticles. Pharmaceutics 2024, 16, 1286. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Ang, H.L.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Hushmandi, K.; Delfi, M.; Khan, H.; Ashrafizadeh, M.; et al. Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021, 10, 3348. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Luan, Y.; Tang, S.; Abazarikia, A.; Dong, R.; Caffrey, T.C.; Hollingsworth, M.A.; Oupicky, D.; Kim, S.-Y. Uncovering Tumor-Promoting Roles of Activin A in Pancreatic Ductal Adenocarcinoma. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2023, 10, e2207010. [Google Scholar] [CrossRef]
- Arista-Romero, M.; Cascante, A.; Fornaguera, C.; Borrós, S. Role of Survivin in Bladder Cancer: Issues to Be Overcome When Designing an Efficient Dual Nano-Therapy. Pharmaceutics 2021, 13, 1959. [Google Scholar] [CrossRef]
- Walther, M.; Jenke, R.; Aigner, A.; Ewe, A. Efficient Polymeric Nanoparticles for RNAi in Macrophage Reveal Complex Effects on Polarization Markers upon Knockdown of STAT3/STAT6. Eur. J. Pharm. Biopharm. 2024, 197, 114232. [Google Scholar] [CrossRef]
- Lin, S.; Jing, H.; Du, X.; Yang, X.; Wang, J. Optimization of Lipid Assisted Polymeric Nanoparticles for siRNA Delivery and Cancer Immunotherapy. Biomater. Sci. 2024, 12, 2057–2066. [Google Scholar] [CrossRef]
- Huang, H.; Yi, X.; Wei, Q.; Li, M.; Cai, X.; Lv, Y.; Weng, L.; Mao, Y.; Fan, W.; Zhao, M.; et al. Edible and Cation-Free Kiwi Fruit Derived Vesicles Mediated EGFR-Targeted siRNA Delivery to Inhibit Multidrug Resistant Lung Cancer. J. Nanobiotechnol. 2023, 21, 41. [Google Scholar] [CrossRef]
- Asfiya, R.; Paramanantham, A.; Premnath, R.; McCully, G.; Yousuf, F.; Goetz, G.; Srivastava, A. Engineered Extracellular Vesicles for Tumor-Targeted Delivery of Therapeutic siRNA for Lung Cancer Therapy. ACS Biomater. Sci. Eng. 2025, 11, 4206–4218. [Google Scholar] [CrossRef]
- Zhan, Q.; Yi, K.; Cui, X.; Li, X.; Yang, S.; Wang, Q.; Fang, C.; Tan, Y.; Li, L.; Xu, C.; et al. Blood Exosomes-Based Targeted Delivery of cPLA2 siRNA and Metformin to Modulate Glioblastoma Energy Metabolism for Tailoring Personalized Therapy. Neuro-Oncology 2022, 24, 1871–1883. [Google Scholar] [CrossRef]
- Shan, S.; Chen, J.; Sun, Y.; Wang, Y.; Xia, B.; Tan, H.; Pan, C.; Gu, G.; Zhong, J.; Qing, G.; et al. Functionalized Macrophage Exosomes with Panobinostat and PPM1D-siRNA for Diffuse Intrinsic Pontine Gliomas Therapy. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2022, 9, e2200353. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Taghavi-Farahabadi, M.; Hashemi, S.M.; Ghanbarian, H.; Noorbakhsh, F.; Mousavizadeh, K.; Mojtabavi, N.; Rezaei, N. Dual Checkpoint Inhibition in M2 Macrophages via Anti-PD-L1 and siRNA-Loaded M1-Exosomes: Enhancing Tumor Immunity through RNA-Targeting Strategies. Eur. J. Pharmacol. 2025, 990, 177271. [Google Scholar] [CrossRef]
- Miao, C.; Huang, G.; Wen, Y.; He, Y.; Bai, P.; Yan, W.; Li, L.; Li, C.; Wei, A.; Wen, J. M1 Macrophage-Derived Extracellular Vesicles Loaded with CX3CR1 siRNA for the Treatment of Pancreatic Cancer. ACS Appl. Mater. Interfaces 2025, 17, 40226–40236. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Sawada, K.; Kobayashi, M.; Oi, Y.; Oride, T.; Kinose, Y.; Kodama, M.; Hashimoto, K.; Kimura, T. Patient-Derived Exosomes as siRNA Carriers in Ovarian Cancer Treatment. Cancers 2024, 16, 1482. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Yu, T.; Liu, J.; Chai, X.; Yin, D.; Zhang, C. CL4-Modified Exosomes Deliver lncRNA DARS-AS1 siRNA to Suppress Triple-Negative Breast Cancer Progression and Attenuate Doxorubicin Resistance by Inhibiting Autophagy. Int. J. Biol. Macromol. 2023, 250, 126147. [Google Scholar] [CrossRef]
- Ferreira, D.; Santos-Pereira, C.; Costa, M.; Afonso, J.; Yang, S.; Hensel, J.; McAndrews, K.M.; Longatto-Filho, A.; Fernandes, R.; Melo, J.B.; et al. Exosomes Modified with Anti-MEK1 siRNA Lead to an Effective Silencing of Triple Negative Breast Cancer Cells. Biomater. Adv. 2023, 154, 213643. [Google Scholar] [CrossRef]
- Cipu, R.-I.; Stănişteanu, M.-L.; Andrei, M.-A.; Banciu, D.D.; Banciu, A. Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes. J. Funct. Biomater. 2024, 15, 298. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Sun, S.; Gao, Y.; Yang, Z.; Dong, H.; Zhang, X. Mitochondria-Targeted Polymeric Liposomes for Pre-miRNA Imaging and Gene Therapy. Anal. Chem. 2025, 97, 17251–17260. [Google Scholar] [CrossRef]
- Dogheim, G.; Chinnam, S.; Amralla, M.T. Lipid Nanoparticles as a Platform for miRNA and siRNA Delivery in Hepatocellular Carcinoma. Curr. Drug Deliv. 2024, 22, 837–861. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Zhu, L.; You, L.; Tong, H.; Meng, H.; Sheng, J.; Jin, J. Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy. Biomolecules 2024, 14, 83. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, M.; Jiao, M.; Yan, C.; Xu, S.; Du, Q.; Morsch, M.; Yin, J.; Shi, B. Polymeric Nanoparticle Mediated Inhibition of miR-21 with Enhanced miR-124 Expression for Combinatorial Glioblastoma Therapy. Biomaterials 2021, 276, 121036. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Fang, J.-Y.; Hsiao, C.-Y.; Lee, C.-W.; Alshetaili, A.; Lin, Z.-C. Dual Cell-Penetrating Peptide-Conjugated Polymeric Nanocarriers for miRNA-205-5p Delivery in Gene Therapy of Cutaneous Squamous Cell Carcinoma. Acta Biomater. 2025, 196, 332–349. [Google Scholar] [CrossRef]
- Borchardt, H.; Ewe, A.; Morawski, M.; Weirauch, U.; Aigner, A. miR24-3p Activity after Delivery into Pancreatic Carcinoma Cell Lines Exerts Profound Tumor-Inhibitory Effects through Distinct Pathways of Apoptosis and Autophagy Induction. Cancer Lett. 2021, 503, 174–184. [Google Scholar] [CrossRef]
- Elmahboub, Y.; Albash, R.; Magdy William, M.; Rayan, A.H.; Hamed, N.O.; Ousman, M.S.; Raslan, N.A.; Mosallam, S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024, 29, 1614. [Google Scholar] [CrossRef]
- de Rezende, C.P.; de Lima Alves, D.; de Almeida Chuffa, L.G.; Pires de Campos Zuccari, D.A. Extracellular Vesicles and miRNA-Based Therapies in Triple-Negative Breast Cancer: Advances and Clinical Perspectives. Extracell. Vesicles Circ. Nucleic Acids 2025, 6, 54–71. [Google Scholar] [CrossRef]
- Chen, M.; Choi, H.K.; Goldston, L.L.; Hou, Y.; Jiang, C.; Lee, K.-B. Advanced Cancer Liquid Biopsy Platform for miRNA Detection in Extracellular Vesicles Using CRISPR/Cas13a and Gold Nanoarrays. ACS Nano 2025, 19, 31438–31456. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, W.; Han, X.; Xu, M.; Wang, Z.; Shi, M.; Shi, Y.; Yu, Y. Modified Bone Marrow Mesenchymal Stem Cells Derived Exosomes Loaded with MiRNA Ameliorates Non-Small Cell Lung Cancer. J. Cell. Mol. Med. 2024, 28, e70115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Xu, J.; Wang, Y.; Yang, Y.; Wang, W.; Gu, A.; Han, B.; Shurin, G.V.; Zhong, R.; et al. Schwann Cell-Derived Exosomes Promote Lung Cancer Progression via miRNA-21-5p. Glia 2024, 72, 692–707. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.F.; Hossain, A.; Momin, E.N.; Hasan, I.; Singh, S.; Adachi, S.; Gumin, J.; Ledbetter, D.; Yang, J.; Long, L.; et al. Tumor-Specific Polycistronic miRNA Delivered by Engineered Exosomes for the Treatment of Glioblastoma. Neuro-Oncology 2024, 26, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Shin, S.; Kang, S.-M.; Jung, I.; Ryu, S.; Noh, S.; Choi, S.-J.; Jeong, J.; Lee, B.Y.; Kim, K.-S.; et al. Reprogramming of T Cell-Derived Small Extracellular Vesicles Using IL2 Surface Engineering Induces Potent Anti-Cancer Effects through miRNA Delivery. J. Extracell. Vesicles 2022, 11, e12287. [Google Scholar] [CrossRef]
- Choi, B.-J.; Lee, D.; Park, J.H.; Hong, T.H.; Kim, O.-H.; Lee, S.C.; Kim, K.-H.; Choi, H.J.; Kim, S.-J. Innovative Therapeutic Delivery of Metastasis-Associated in Colon Cancer 1-Suppressing miRNA Using High Transmembrane 4 L6 Family Member 5-Targeting Exosomes in Colorectal Cancer Mouse Models. Int. J. Mol. Sci. 2024, 25, 9232. [Google Scholar] [CrossRef]
- Liu, F.; Ai, F.; Tang, A.; Yang, Z.; Li, Z.; Liu, S. Macrophage-Derived Exosomes Promoted the Development and Stemness of Inflammatory Bowel Disease-Related Colorectal Cancer via Nuclear Paraspeckle Assembly Transcript 1-Mediated miRNA-34a-5p/Phosphoprotein Enriched in Astrocytes 15 Axis. Inflamm. Bowel Dis. 2025, 31, 524–538. [Google Scholar] [CrossRef]
- Yu, L.; Sui, B.; Fan, W.; Lei, L.; Zhou, L.; Yang, L.; Diao, Y.; Zhang, Y.; Li, Z.; Liu, J.; et al. Exosomes Derived from Osteogenic Tumor Activate Osteoclast Differentiation and Concurrently Inhibit Osteogenesis by Transferring COL1A1-Targeting miRNA-92a-1-5p. J. Extracell. Vesicles 2021, 10, e12056. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.-H.; Chiou, Y.-E.; Zeng, W.-Z.; Chen, M.-H.; Pang, S.-T. Hsa-miRNA-16-5p Of Urinary Exosomes A Reliable Biosignature Effective For Prostate Cancer Screening. Int. J. Nanomed. 2025, 20, 9291–9300. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Fan, G.; Wang, Q.; Zhu, Y.; Zhu, H.; Chang, J.; Wang, Z.; Zhan, S.; Hua, X.; She, D.; et al. In Vivo Self-Assembly and Delivery of VEGFR2 siRNA-Encapsulated Small Extracellular Vesicles for Lung Metastatic Osteosarcoma Therapy. Cell Death Dis. 2023, 14, 626. [Google Scholar] [CrossRef]
- Du, J.; Shao, Y.; Hu, Y.; Chen, Y.; Cang, J.; Chen, X.; Pei, W.; Miao, F.; Shen, Y.; Muddassir, M.; et al. Multifunctional Liposomes Enable Active Targeting and Twinfilin 1 Silencing to Reverse Paclitaxel Resistance in Brain Metastatic Breast Cancer. ACS Appl. Mater. Interfaces 2021, 13, 23396–23409. [Google Scholar] [CrossRef]
- Sánchez-Meza, L.V.; Bello-Rios, C.; Eloy, J.O.; Gómez-Gómez, Y.; Leyva-Vázquez, M.A.; Petrilli, R.; Bernad-Bernad, M.J.; Lagunas-Martínez, A.; Medina, L.A.; Serrano-Bello, J.; et al. Cationic Liposomes Carrying HPV16 E6-siRNA Inhibit the Proliferation, Migration, and Invasion of Cervical Cancer Cells. Pharmaceutics 2024, 16, 880. [Google Scholar] [CrossRef]
- Tang, M.; Sakasai, S.; Onishi, H.; Kawano, K.; Hattori, Y. Effect of PEG Anchor in PEGylation of Folate-Modified Cationic Liposomes with PEG-Derivatives on Systemic siRNA Delivery into the Tumor. J. Drug Target. 2023, 31, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Shabana, A.M.; Xu, B.; Schneiderman, Z.; Ma, J.; Chen, C.C.; Kokkoli, E. Targeted Liposomes Encapsulating miR-603 Complexes Enhance Radiation Sensitivity of Patient-Derived Glioblastoma Stem-Like Cells. Pharmaceutics 2021, 13, 1115. [Google Scholar] [CrossRef]
- Du, H.; Ma, Y.; Wang, X.; Zhang, J.; Zhu, L.; Guan, G.; Pan, S.; Zhang, Y.; Wang, J.; Liu, Z. Therapeutic Suppression of Atherosclerotic Burden and Vulnerability via Dll4 Inhibition in Plaque Macrophages Using Dual-Targeted Liposomes. ACS Appl. Bio Mater. 2024, 7, 7219–7232. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Bai, X.; Yang, X.; Wang, L.; Lu, Y.; Zhu, L.; Zhao, Y.; Cheng, W.; Shu, M.; Mei, Q.; et al. VCAM-1-Binding Peptide Targeted Cationic Liposomes Containing NLRP3 siRNA to Modulate LDL Transcytosis as a Novel Therapy for Experimental Atherosclerosis. Metabolism 2022, 135, 155274. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Yang, H.; Zhao, M.; Liu, Y.; Zhao, R.; Li, Z.; Sun, M. PEG-Modified Nano Liposomes Co-Deliver Apigenin and RAGE-siRNA to Protect Myocardial Ischemia Injury. Int. J. Pharm. 2024, 649, 123673. [Google Scholar] [CrossRef]
- Kim, H.; Mun, D.; Kang, J.-Y.; Lee, S.-H.; Yun, N.; Joung, B. Improved Cardiac-Specific Delivery of RAGE siRNA Within Small Extracellular Vesicles Engineered to Express Intense Cardiac Targeting Peptide Attenuates Myocarditis. Mol. Ther. Nucleic Acids 2021, 24, 1024–1032. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Mun, D.; Park, M.; Yoo, G.; Kim, H.; Yun, N.; Joung, B. Injured Cardiac Tissue-Targeted Delivery of TGFβ1 siRNA by FAP Aptamer-Functionalized Extracellular Vesicles Promotes Cardiac Repair. Int. J. Nanomed. 2025, 20, 2575–2592. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, Y.; Tan, X.; Zhang, G.; Xu, A.; Fan, H.; Yu, F.; Qin, Z.; Song, Y.; Jiang, Y.; et al. Targeted Delivery of Exosome-Derived miRNA-185-5p Inhibitor via Liposomes Alleviates Apoptosis and Cuproptosis in Dilated Cardiomyopathy. Int. J. Nanomed. 2025, 20, 9407–9425. [Google Scholar] [CrossRef] [PubMed]
- Dhoble, S.; Patravale, V.; Weaver, E.; Lamprou, D.A.; Patravale, T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int. J. Pharm. 2022, 621, 121792. [Google Scholar] [CrossRef]
- Ma, C.; Yang, Z.; Wang, J.; She, H.; Tan, L.; Ye, Q.; Wang, F.; Feng, X.; Mo, X.; Liu, K.; et al. Exosomes miRNA-499a-5p Targeted CD38 to Alleviate Anthraquinone Induced Cardiotoxicity: Experimental Research. Int. J. Surg. 2024, 110, 1992–2006. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, T.; Shi, P.; Gao, Y.; Pang, X. Exosomes Derived from Human Amniotic Mesenchymal Stem Cells Promotes Angiogenesis in hUVECs by Delivering Novel miRNA N-194. Mol. Med. Camb. Mass 2025, 31, 173. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.-Y.; Lv, X.-R.; Gu, H.-B.; Li, H.; Shan, B.-S. Involvement of miRNA-204 Carried by the Exosomes of Macrophages in the AT2 Receptor-Mediated Improvement of Vascular Calcification. Cell. Mol. Life Sci. 2025, 82, 165. [Google Scholar] [CrossRef]
- Park, H.-J.; Hoffman, J.R.; Brown, M.E.; Bheri, S.; Brazhkina, O.; Son, Y.H.; Davis, M.E. Knockdown of Deleterious miRNA in Progenitor Cell-Derived Small Extracellular Vesicles Enhances Tissue Repair in Myocardial Infarction. Sci. Adv. 2023, 9, eabo4616. [Google Scholar] [CrossRef]
- Guo, B.; Zhuang, T.-T.; Li, C.-C.; Li, F.; Shan, S.-K.; Zheng, M.-H.; Xu, Q.-S.; Wang, Y.; Lei, L.-M.; Tang, K.-X.; et al. MiRNA-132/212 Encapsulated by Adipose Tissue-Derived Exosomes Worsen Atherosclerosis Progression. Cardiovasc. Diabetol. 2024, 23, 331. [Google Scholar] [CrossRef]
- Ronan, G.; Bahcecioglu, G.; Yang, J.; Zorlutuna, P. Cardiac Tissue-Resident Vesicles Differentially Modulate Anti-Fibrotic Phenotype by Age and Sex through Synergistic miRNA Effects. Biomaterials 2024, 311, 122671. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Y.-H.; Liu, C.; Wang, S.-Q.; Ma, J.; Li, X.-Q.; Ren, M.; Yang, T.-T.; Liu, G.-Z. lncRNA, miRNA, and mRNA of Plasma and Tumor-Derived Exosomes of Cardiac Myxoma-Related Ischaemic Stroke. Sci. Data 2025, 12, 91. [Google Scholar] [CrossRef]
- Mirna, M.; Paar, V.; Topf, A.; Kraus, T.; Sotlar, K.; Aigner, A.; Ewe, A.; Watzinger, S.; Podesser, B.K.; Hackl, M.; et al. A New Player in the Game: Treatment with antagomiR-21a-5p Significantly Attenuates Histological and Echocardiographic Effects of Experimental Autoimmune Myocarditis. Cardiovasc. Res. 2022, 118, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Li, Z.; Wang, Y.; Xiong, H.; Sun, W.; Zhou, S.; Liu, Y.; Ni, C. Targeted Delivery of ZNF416 siRNA-Loaded Liposomes Attenuates Experimental Pulmonary Fibrosis. J. Transl. Med. 2022, 20, 523. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Zhou, Q.; Miao, K.; Zhang, L.; Wu, G.; Yu, J.; Xu, Y.; Xiong, W.; Li, Y.; Wang, Y. Suppressing Sart1 to Modulate Macrophage Polarization by siRNA-Loaded Liposomes: A Promising Therapeutic Strategy for Pulmonary Fibrosis. Theranostics 2021, 11, 1192–1206. [Google Scholar] [CrossRef]
- Liu, S.; Popowski, K.D.; Eckhardt, C.M.; Zhang, W.; Li, J.; Jing, Y.; Silkstone, D.; Belcher, E.; Cislo, M.; Hu, S.; et al. Inhalable Hsa-miR-30a-3p Liposomes Attenuate Pulmonary Fibrosis. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2025, 12, e2405434. [Google Scholar] [CrossRef]
- Khanna, V.; Singh, K. MicroRNAs as Promising Drug Delivery Target to Ameliorate Chronic Obstructive Pulmonary Disease Using Nano-Carriers: A Comprehensive Review. Mol. Cell. Biochem. 2025, 480, 1431–1448. [Google Scholar] [CrossRef]
- Wang, C.; Mao, Z.; Gomchok, D.; Li, X.; Liu, H.; Shao, J.; Cao, H.; Xue, G.; Lv, L.; Duan, J.; et al. Small Extracellular Vesicles Derived from miRNA-486 Overexpressed Dental Pulp Stem Cells Mitigate High Altitude Pulmonary Edema through PTEN/PI3K/AKT/eNOS Pathway. Heliyon 2025, 11, e41960. [Google Scholar] [CrossRef]
- Ma, C.; Liu, K.; Wang, F.; Fei, X.; Niu, C.; Li, T.; Liu, L. Neutrophil Membrane-Engineered Panax Ginseng Root-Derived Exosomes Loaded miRNA 182-5p Targets NOX4/Drp-1/NLRP3 Signal Pathway to Alleviate Acute Lung Injury in Sepsis: Experimental Studies. Int. J. Surg. Lond. Engl. 2024, 110, 72–86. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.; Zhang, M.; Bera, H.; Xu, W.; Jiang, H.; Zhao, X.; Wu, L.; Cun, D.; Yang, M. Pulmonary Fibroblast-Specific Delivery of siRNA Exploiting Exosomes-Based Nanoscaffolds for IPF Treatment. Asian J. Pharm. Sci. 2024, 19, 100929. [Google Scholar] [CrossRef]
- Halib, N.; Pavan, N.; Trombetta, C.; Dapas, B.; Farra, R.; Scaggiante, B.; Grassi, M.; Grassi, G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022, 14, 718. [Google Scholar] [CrossRef]
- Zapała, B.; Kamińska, A.; Piwowar, M.; Paziewska, A.; Gala-Błądzińska, A.; Stępień, E.Ł. miRNA Signature of Urine Extracellular Vesicles Shows the Involvement of Inflammatory and Apoptotic Processes in Diabetic Chronic Kidney Disease. Pharm. Res. 2023, 40, 817–832. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, L.; Hong, S.; Wang, Q.; Zhang, J.; Wang, S. The Matrix of Exosomes: Decoding the Role of miRNA in Macrophage Polarization and Oxidative Stress. Int. Immunopharmacol. 2025, 159, 114942. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in Humans from Systemically Administered siRNA via Targeted Nanoparticles. Nature 2010, 464, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.J.; Mitra, R.; McArthur, M.J.; Baze, W.; Barnhart, K.; Wu, S.Y.; Rodriguez-Aguayo, C.; Zhang, X.; Coleman, R.L.; Lopez-Berestein, G.; et al. Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Mol. Cancer Ther. 2017, 16, 1114–1123. [Google Scholar] [CrossRef]
- El Dika, I.; Lim, H.Y.; Yong, W.P.; Lin, C.-C.; Yoon, J.-H.; Modiano, M.; Freilich, B.; Choi, H.J.; Chao, T.-Y.; Kelley, R.K.; et al. An Open-Label, Multicenter, Phase I, Dose Escalation Study with Phase II Expansion Cohort to Determine the Safety, Pharmacokinetics, and Preliminary Antitumor Activity of Intravenous TKM-080301 in Subjects with Advanced Hepatocellular Carcinoma. Oncologist 2019, 24, 747-e218. [Google Scholar] [CrossRef]
- Sall, I.M.; Flaviu, T.A. Plant and Mammalian-Derived Extracellular Vesicles: A New Therapeutic Approach for the Future. Front. Bioeng. Biotechnol. 2023, 11, 1215650. [Google Scholar] [CrossRef]
- Wolf, D.; Baier, G. IFNγ Helps CBLB-Deficient CD8+ T Cells to Put up Resistance to Tregs. Cancer Immunol. Res. 2022, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chen, Y.-F.; Yang, C.-F.; Ho, H.-J.; Yang, J.F.; Chou, Y.-L.; Lin, C.-W.; Yang, P.-C. Pharmacokinetics and Safety Profile of SNS812, a First in Human Fully Modified siRNA Targeting Wide-Spectrum SARS-CoV-2, in Healthy Subjects. Clin. Transl. Sci. 2025, 18, e70202. [Google Scholar] [CrossRef] [PubMed]
- van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and Activity of microRNA-Loaded Minicells in Patients with Recurrent Malignant Pleural Mesothelioma: A First-in-Man, Phase 1, Open-Label, Dose-Escalation Study. Lancet Oncol. 2017, 18, 1386–1396. [Google Scholar] [CrossRef]
- Ganguly, K.; Kishore, U.; Madan, T. Interplay between C-Type Lectin Receptors and microRNAs in Cellular Homeostasis and Immune Response. FEBS J. 2021, 288, 4210–4229. [Google Scholar] [CrossRef]
- Valipour, A.; Jäger, M.; Wu, P.; Schmitt, J.; Bunch, C.; Weberschock, T. Interventions for Mycosis Fungoides. Cochrane Database Syst. Rev. 2020, 7, CD008946. [Google Scholar] [CrossRef]
- Lucibello, G.; Mograbi, B.; Milano, G.; Hofman, P.; Brest, P. PD-L1 Regulation Revisited: Impact on Immunotherapeutic Strategies. Trends Mol. Med. 2021, 27, 868–881. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.-K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.-L.; Kim, T.-Y.; et al. Phase 1 Study of MRX34, a Liposomal miR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Qin, Z.-X.; Zuo, L.; Zeng, Z.; Ma, R.; Xie, W.; Zhu, X.; Zhou, X. GalNac-siRNA Conjugate Delivery Technology Promotes the Treatment of Typical Chronic Liver Diseases. Expert Opin. Drug Deliv. 2025, 22, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Khvorova, A. Oligonucleotide Therapeutics—A New Class of Cholesterol-Lowering Drugs. N. Engl. J. Med. 2017, 376, 4–7. [Google Scholar] [CrossRef]
- Adams, D.; Tournev, I.L.; Taylor, M.S.; Coelho, T.; Planté-Bordeneuve, V.; Berk, J.L.; González-Duarte, A.; Gillmore, J.D.; Low, S.-C.; Sekijima, Y.; et al. Efficacy and Safety of Vutrisiran for Patients with Hereditary Transthyretin-Mediated Amyloidosis with Polyneuropathy: A Randomized Clinical Trial. Amyloid 2023, 30, 18–26. [Google Scholar] [CrossRef]
- Balwani, M.; Sardh, E.; Ventura, P.; Peiró, P.A.; Rees, D.C.; Stölzel, U.; Bissell, D.M.; Bonkovsky, H.L.; Windyga, J.; Anderson, K.E.; et al. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N. Engl. J. Med. 2020, 382, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Garrelfs, S.F.; Frishberg, Y.; Hulton, S.A.; Koren, M.J.; O’Riordan, W.D.; Cochat, P.; Deschênes, G.; Shasha-Lavsky, H.; Saland, J.M.; Van’t Hoff, W.G.; et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N. Engl. J. Med. 2021, 384, 1216–1226. [Google Scholar] [CrossRef]
- Baum, M.A.; Langman, C.; Cochat, P.; Lieske, J.C.; Moochhala, S.H.; Hamamoto, S.; Satoh, H.; Mourani, C.; Ariceta, G.; Torres, A.; et al. PHYOX2: A Pivotal Randomized Study of Nedosiran in Primary Hyperoxaluria Type 1 or 2. Kidney Int. 2023, 103, 207–217. [Google Scholar] [CrossRef]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef]
- Young, G.; Srivastava, A.; Kavakli, K.; Ross, C.; Sathar, J.; You, C.-W.; Tran, H.; Sun, J.; Wu, R.; Poloskey, S.; et al. Efficacy and Safety of Fitusiran Prophylaxis in People with Haemophilia A or Haemophilia B with Inhibitors (ATLAS-INH): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Lond. Engl. 2023, 401, 1427–1437. [Google Scholar] [CrossRef]
- Srivastava, A.; Rangarajan, S.; Kavakli, K.; Klamroth, R.; Kenet, G.; Khoo, L.; You, C.-W.; Xu, W.; Malan, N.; Frenzel, L.; et al. Fitusiran Prophylaxis in People with Severe Haemophilia A or Haemophilia B without Inhibitors (ATLAS-A/B): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Haematol. 2023, 10, e322–e332. [Google Scholar] [CrossRef]
- Akinc, A.; Zumbuehl, A.; Goldberg, M.; Leshchiner, E.S.; Busini, V.; Hossain, N.; Bacallado, S.A.; Nguyen, D.N.; Fuller, J.; Alvarez, R.; et al. A Combinatorial Library of Lipid-like Materials for Delivery of RNAi Therapeutics. Nat. Biotechnol. 2008, 26, 561–569. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef]
- Hafez, I.M.; Cullis, P.R. Roles of Lipid Polymorphism in Intracellular Delivery. Adv. Drug Deliv. Rev. 2001, 47, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Høgset, A.; Prasmickaite, L.; Selbo, P.K.; Hellum, M.; Engesaeter, B.Ø.; Bonsted, A.; Berg, K. Photochemical Internalisation in Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2004, 56, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Chen, X.; Zhu, J.; Kopechek, J.; Helfield, B.; Yu, F.; Cyriac, J.; Lavery, L.; Grandis, J.R.; Villanueva, F.S. Ultrasound Enhanced siRNA Delivery Using Cationic Liposome-Microbubble Complexes for the Treatment of Squamous Cell Carcinoma. Nanotheranostics 2024, 8, 285–297. [Google Scholar] [CrossRef] [PubMed]


| Target Gene(s) | Delivery Vehicle | Administration Method | Delivery Site (Tissue/Organ) | Disease/Model | Rats or Mice | RNAi Type | Key Outcomes/Efficacy | Ref. |
|---|---|---|---|---|---|---|---|---|
| BCL2L1/BFL-1 | Cationic liposome + F-PEI polymer (co-delivering PROTAC DT2216) | Not specified (likely systemic) | Malignant Tumors (General) | Malignant Tumor Xenograft | Mice | siRNA | “Remarkable degradation” of target proteins and inhibition of tumor cells in vivo and in vitro. | [48] |
| MEF2D | tLyp-1 peptide-modified liposome (co-delivering SN38) | Systemic | HCC | HCC (H22 cells) | Mice | siRNA | Reduced PD-L1 expression, suppressed tumor growth, and increased CD4+ T cells in the tumor. | [38] |
| TWF1 | BRBP1 peptide-modified liposome (co-delivering Paclitaxel) | Systemic | Brain metastases | Brain Metastatic Breast Cancer (231-BR cells) | Mice | siRNA | Crossed BBB, accumulated in brain metastases, inhibited tumor growth, and reversed Paclitaxel resistance. | [97] |
| STAT3 | Endoplasmic reticulum-modified liposome in a hydrogel (co-delivering Lidocaine) | Intra-operative injection | Lung resection surface | Orthotopic NSCLC | Mice | siRNA | Inhibited tumor growth, reduced MPE volume, and provided pain relief with a single administration. | [37] |
| Midkine (MDK) | Polymer-locking fusogenic liposome (Plofsome) | Systemic | Brain Tumor | Orthotopic GBM | Mice | siRNA & CRISPR-Cas9 | Crossed BBB, reduced TMZ resistance, and significantly inhibited GBM growth. | [42] |
| HPV16 E6 | PEGylated cationic liposome | Not specified (in vitro study) | Cervical Cancer Cells | Cervical Cancer (CaSki cells) | In vivo | siRNA | Reduced HPV16 E6 protein levels, restored p53, and inhibited proliferation (25.7%), migration (95.7%), and invasion (97.8%). | [98] |
| GFAT1 | Macrophage membrane-camouflaged, LFC131-targeted liposome | Systemic | Tumor | PDAC | Not specified | siRNA | Reduced HA levels, improved permeability of chemotherapy, and demonstrated potent antitumor efficacy with Doxil. | [47] |
| PLK1 | Folate-modified PEGylated cationic liposome | Systemic | Tumor | Nasopharyngeal Carcinoma Xenograft (KB cells) | Mice | siRNA | Achieved selective tumor cell growth inhibition and accumulation of siRNA in tumor xenografts. | [99] |
| BIRC5 (Survivin) | Dermatan sulfate/chitosan-graft-poly(methyl methacrylate) NPs | Not specified (in vitro) | Tumor cells | Triple-Negative Breast Cancer (4T1 cells) | In vivo | siRNA | Silenced survivin; inhibited cell viability, migration, and proliferation in vitro. | [57] |
| HIF-1α | Hyaluronic acid-displaying chitosan NPs | Systemic (in vivo) | Pancreatic tumor cells | Pancreatic Cancer (multiple cell lines) | In vivo | siRNA | Significant knockdown of HIF-1α and downstream genes in vivo. HMW chitosan was more effective for knockdown. | [63] |
| AFP | Polymeric NPs (co-administered with Sunitinib or Sorafenib) | Not specified (in vitro) | Tumor cells | HCC (cell model) | In vivo | siRNA | With Sunitinib, AFP-mRNA expression was decreased to ~28.5%. Cell viability reduced to ~39% (with Sorafenib) and ~44% (with Sunitinib). | [56] |
| cPLA2 | Blood exosomes (co-delivering Metformin) | Systemic | GBM | Patient-Derived Xenograft GBM model | Mice | siRNA | Crossed BBB, impaired tumor energy metabolism, reduced tumor growth, and prolonged survival. | [71] |
| IGF1 & IGF1R (via miR-603 delivery) | PR_b peptide-functionalized PEGylated liposome with a PEI/miRNA core | Not specified (in vitro) | Patient-derived glioblastoma stem-like cells | GBM | In vivo | miRNA | 22-fold increase in intracellular miR-603 levels; decreased IGF1/IGF1R expression; sensitized glioblastoma cells to ionizing radiation. | [100] |
| NF-κB, miR-191-5p (inhibition) & p53, miR-543 (upregulation) | Zein polymeric nanoparticles (delivering Metformin, not RNAi) | Not specified (in vivo) | Solid Tumor | Ehrlich Carcinoma (solid tumor in mice) | Mice | miRNA (downstream effect) | This study delivered Metformin. The observed miRNA changes were a result of the drug’s action, not the primary cargo. Produced a pronounced anticancer effect. | [85] |
| MACC1 (via miR-143) | Adipose-derived stem cell exosomes targeting TM4SF5 protein | Not specified (in vivo) | Tumor | Colorectal Cancer xenograft model (HCT116 cells) | Mice | miRNA | Resulted in the smallest tumor size and lowest growth rate compared to controls (p < 0.05); decreased MACC1 expression. | [92] |
| Target Gene(s) | Delivery Vehicle | Administration Method | Delivery Site (Tissue/Organ) | Disease/Model | Rats or Mice | RNAi Type | Key Outcomes/Efficacy | Ref. |
|---|---|---|---|---|---|---|---|---|
| NLRP3 | VCAM-1 peptide-targeted cationic liposomes | Local (carotid) & Systemic (IV) | Vascular Endothelium | Atherosclerosis (Rat partial carotid ligation & ApoE-/- mice) | Mice | siRNA | Attenuated LDL deposition in the carotid artery (rat model); reduced plaque formation (mouse model). | [102] |
| TGFβ1 | Human serum-derived extracellular vesicles (hEVs) functionalized with FAP aptamer | IV | Injured Cardiac Tissue | Cardiac Injury (Ang II-treated mice) | Mice | siRNA | Significantly improved cardiac function, reduced myocardial fibrosis, and decreased cardiomyocyte cross-sectional area (p < 0.05) without systemic toxicity. | [105] |
| miR-185-5p (inhibition) | Cardiac-targeting peptide-functionalized liposomes | Not specified (in vivo) | Cardiac tissue | Dilated Cardiomyopathy (DOX-induced mice) | Mice | miRNA (inhibitor) | Increased LVEF by 27.3%; reduced myocardial fibrosis by 36.5%; enhanced survival. Reduced apoptosis by 42.6% in vitro. | [106] |
| CD38 (via miRNA-499a-5p) | Cardiac Homing Peptide-engineered bone marrow MSC-derived exosomes | Not specified (in vivo) | Heart | Cardiotoxicity (DOX-induced model) | Mice | miRNA | Significantly improved electrocardiogram, decreased myocardial enzymes, and improved cardiac pathological changes. | [108] |
| Target Gene(s) | Delivery Vehicle | Administration Method | Delivery Site (Tissue/Organ) | Disease/Model | Rats or Mice | RNAi Type | Key Outcomes/Efficacy | Ref. |
|---|---|---|---|---|---|---|---|---|
| ZNF416 | Liposomes | Tail-vein injection | Lung (fibrotic area) | Pulmonary Fibrosis (Silica- or Bleomycin-induced mice) | Mice | siRNA | Co-administration with SB431542 significantly protected mice against lung injury and fibrosis. Passively targeted the fibrotic lung area. | [116] |
| Sart1 | Liposomes | Intratracheal | Lung (macrophages) | Pulmonary Fibrosis (Bleomycin-induced mice) | Mice | siRNA | Significantly protected mice against lung injury and fibrosis by attenuating M2 macrophage infiltration. | [117] |
| Smad4 | Exosome membrane-DOTAP hybrid nanoscaffolds (DOTAP/siSmad4@EM) | Pulmonary | Lung (pulmonary fibroblasts) | Idiopathic Pulmonary Fibrosis (Mouse model) | Mice | siRNA | Significantly down-regulated Smad4 expression with augmented anti-fibrosis efficiency and excellent biocompatibility. | [122] |
| CNPY2/PERK/DDIT3 (via miR-30a-3p) | Inhalable liposomes | Dry powder inhalation | Lung (myofibroblasts) | Idiopathic Pulmonary Fibrosis (Bleomycin-induced mice) | Mice | miRNA (mimic) | Consistently improved pulmonary function across six tests; promoted de-differentiation of profibrotic myofibroblasts. | [118] |
| Target Gene(s) | Delivery Vehicle | Administration Method | Delivery Site (Tissue/Organ) | Disease/Model | Rats or Mice | RNAi Type | Key Outcomes/Efficacy | Ref. |
|---|---|---|---|---|---|---|---|---|
| Arginase-2 | KTP-modified, layer-by-layer polymeric nanoparticles | Tail-vein injection | Kidneys (proximal tubular cells) | CI-AKI (Iohexol-induced mice) | Mice | siRNA | Alleviated oxidative stress, rescued mitochondrial dysfunction, and reduced apoptosis, demonstrating a robust therapeutic effect. | [27] |
| Multiple (via miRNA delivery) | Exosomes from healthy HK2 cells (kidney epithelial cells) | Renal subcapsular injection | Kidney | CaOx Crystal-Induced Kidney Injury | Rats | miRNA | Effectively reduced CaOx crystal deposition and tubular damage; suppressed oxidative stress and M1 macrophage polarization. | [125] |
| COL1A1 (via miRNA-92a-1-5p) | Prostate cancer cell-derived exosomes | Not specified (in vivo) | Bone | In vivo osteolysis model | Mice | miRNA | Induced osteolysis and promoted osteoclast differentiation in vivo. | [109] |
| Drug Name | Genetic/Protein Target | Delivery Vehicle | Administration Method | Tissue | Disease | ClinicalTrials.gov Identifier | Status | Ref. |
|---|---|---|---|---|---|---|---|---|
| CALAA-01 | RRM2 | Cyclodextrin nanoparticles | Intravenous infusion | Tumor | Advanced solid tumors | NCT00689065 | Phase I (Terminated 2013) | [126] |
| EphA2-targeting DOPC | EphA2 | Neutral liposome | administered intravenously | Tumor | Advanced Malignant Solid Neoplasm | NCT01591356 | Phase I (Active, not recruiting2025-07) | [127] |
| TKM-080301 | PLK1 | LNPs | Intravenously | Liver | Hepatocellular carcinoma | NCT02191878 | Completed (2019-01) | [128] |
| MSC-derived Exosomes with KRAS G12D siRNA | KrasG12D | MSC-derived exosomes | Intravenously | Pancreas | Pancreatic cancer | NCT03608631 | Phase 1 (Active, not recruiting) | [129] |
| APN401 | Cbl-b | siRNA-transfected Peripheral Blood Mononuclear Cells | Intravenously | Tumor | Solid tumors | NCT03087591 | Completed (2024-10) | [130] |
| NU-0129 | Bcl2L12 | SNA platform | Intravenously | Solid Tumors/Immune cells | Glioblastoma multiforme | NCT03020017 | Completed (2022-08) | ND |
| MBS-COV | SNS812 | ND | Inhalation | Brain | SARS-CoV-2 | NCT05677893 | Completed (2025-03) | [131] |
| Drug Name | Genetic/Protein Target | Delivery Vehicle | Administration Method | Tissue | Disease | ClinicalTrials.gov Identifier | Status | Ref. |
|---|---|---|---|---|---|---|---|---|
| TargomiRs | miR-16 Mimic | EnGeneIC Delivery Vehicle | IV injected | Lung/Pleura | Malignant Pleural Mesothelioma; Non-Small Cell Lung Cancer | NCT02369198 | Phase 1 Completed in 2017 | [132] |
| Obefazimod (ABX464) | miRNA-124 | ND | Oral | Colon/Intestines | Ulcerative Colitis | NCT05507203 NCT05507216 | Phase 3 (Completed in 2025-08) | ND |
| cobomarsen (MRG-106) | miR-155 | LNA-mediated | Subcutaneous intravenous | Blood/Lymphoid tissue | ATLL | NCT02580552 NCT03713320 NCT03837457 | Phase I (Completed-2020) Phase II (Terminated-2020) Phase II (Terminated-2020) | [133,134] |
| TenoMiR | miR-29a | Lateral epicondylitis | Injection | Tendon | Single intralesional injection | NCT06192927 | Phase II (Completed-2025) | ND |
| MRX34 | miR-RX34 | liposomal | intravenously | Liver | Primary Liver Cancer | NCT01829971 NCT02862145 | Phase I (Terminated-2016) | [135,136] |
| Trade Name | Target Gene | Delivery Vehicle | Route | Tissue/Organ | Disease | Date of Approved | Clinical Trial ID | Refs. |
|---|---|---|---|---|---|---|---|---|
| Patisiran (Onpattro®) | TTR | LNP | IV | Liver | hATTR | 2018-08 | NCT01960348 | [137] |
| Vutrisiran (Amvuttra®) | TTR | GalNAc | SI | Liver | hATTR | 2022-06 | NCT03759379 | [140] |
| Givosiran (Givlaari®) | ALAS1 | GalNAc | SI | Liver | AHP | 2019-11 | NCT03338816 | [141] |
| Lumasiran (Oxlumo®) | HAO1 | GalNAc | SI | Liver | PH1 | 2020-11 | NCT03681184 | [142] |
| Nedosiran (Rivfloza™) | LDHA | GalNAc | SI | Liver | PH1 | 2023-09 | NCT03847909 | [143] |
| Inclisiran (Leqvio®) | PCSK9 | GalNAc | SI | Liver | Hypercholesterolemia | 2021-12 | NCT03399370, NCT03400800 | [144] |
| Fitusiran | AT | GalNAc | SI | Liver | Hemophilia A and B | 2025-13 | NCT03417102, NCT03417245 | [145,146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Ma, L.; Fu, P.; Zhang, C. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics. Pharmaceutics 2025, 17, 1502. https://doi.org/10.3390/pharmaceutics17111502
Ren T, Ma L, Fu P, Zhang C. Nanoparticles Used for the Delivery of RNAi-Based Therapeutics. Pharmaceutics. 2025; 17(11):1502. https://doi.org/10.3390/pharmaceutics17111502
Chicago/Turabian StyleRen, Tianrui, Liang Ma, Ping Fu, and Chuyue Zhang. 2025. "Nanoparticles Used for the Delivery of RNAi-Based Therapeutics" Pharmaceutics 17, no. 11: 1502. https://doi.org/10.3390/pharmaceutics17111502
APA StyleRen, T., Ma, L., Fu, P., & Zhang, C. (2025). Nanoparticles Used for the Delivery of RNAi-Based Therapeutics. Pharmaceutics, 17(11), 1502. https://doi.org/10.3390/pharmaceutics17111502

