Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = slow-roll inflation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1110 KiB  
Article
Time Scales of Slow-Roll Inflation in Asymptotically Safe Cosmology
by József Nagy, Sándor Nagy and Kornél Sailer
Universe 2025, 11(3), 77; https://doi.org/10.3390/universe11030077 - 21 Feb 2025
Viewed by 449
Abstract
Making use of the well-known renormalization group (RG) scale dependences of the gravitational couplings in the framework of the two-parameter Einstein–Hilbert (EH) theory of gravity, the single scalar field-driven cosmological inflation is discussed in a spatially homogeneous, isotropic, and flat model universe. The [...] Read more.
Making use of the well-known renormalization group (RG) scale dependences of the gravitational couplings in the framework of the two-parameter Einstein–Hilbert (EH) theory of gravity, the single scalar field-driven cosmological inflation is discussed in a spatially homogeneous, isotropic, and flat model universe. The inflaton field is represented by a one-component real, non-self-interacting, massive scalar field minimally coupled to gravity. Cases without and with the incorporation of the RG scaling of the inflaton mass are compared with each other and with the corresponding classical case. It is shown that the quantum improvement drastically alters the timing of the slow-roll inflation with the desirable number N,60 e-foldings, as compared with the classical case. Furthermore, accounting for the RG flow of the inflaton mass has an enormous effect on the timing of the desirable slow roll, too. Although providing the desirable slow-roll inflation, none of the versions of the investigated quantum-improved toy models provide a realistic value of the amplitude of the scalar perturbations. Full article
Show Figures

Figure 1

54 pages, 671 KiB  
Article
Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation
by Panagiotis Dorlis, Nick E. Mavromatos and Sotirios-Neilos Vlachos
Universe 2025, 11(1), 15; https://doi.org/10.3390/universe11010015 - 11 Jan 2025
Cited by 5 | Viewed by 1137
Abstract
In this work, we elaborate further on a (3+1)-dimensional cosmological Running-Vacuum-type-Model (RVM) of inflation based on string-inspired Chern-Simons(CS) gravity, involving axions coupled to gravitational-CS(gCS) anomalous terms. Inflation in such models is caused by primordial-gravitational-waves(GW)-induced condensation of the gCS terms, which leads to a [...] Read more.
In this work, we elaborate further on a (3+1)-dimensional cosmological Running-Vacuum-type-Model (RVM) of inflation based on string-inspired Chern-Simons(CS) gravity, involving axions coupled to gravitational-CS(gCS) anomalous terms. Inflation in such models is caused by primordial-gravitational-waves(GW)-induced condensation of the gCS terms, which leads to a linear-axion potential. We demonstrate that this inflationary phase may be metastable, due to the existence of imaginary parts of the gCS condensate. These are quantum effects, proportional to commutators of GW perturbations, hence vanishing in the classical theory. Their existence is quantum-ordering-scheme dependent. We argue in favor of a physical importance of such imaginary parts, which we compute to second order in the GW (tensor) perturbations in the framework of a gauge-fixed effective Lagrangian, within a (mean field) weak-quantum-gravity-path-integral approach. We thus provide estimates of the inflation lifetime. On matching our results with the inflationary phenomenology, we fix the quantum-ordering ambiguities, and obtain an order-of-magnitude constraint on the String-Mass-Scale-to-Planck-Mass ratio, consistent with previous estimates by the authors in the framework of a dynamical-system approach to linear-axion RVM inflation. Finally, we examine the role of periodic modulations in the axion potential induced by non-perturbative effects on the slow-roll inflationary parameters, and find compatibility with the cosmological data. Full article
19 pages, 1337 KiB  
Article
Two-Loop Corrections in Power Spectrum in Models of Inflation with Primordial Black Hole Formation
by Hassan Firouzjahi
Universe 2024, 10(12), 456; https://doi.org/10.3390/universe10120456 - 13 Dec 2024
Cited by 1 | Viewed by 990
Abstract
We calculated the two-loop corrections in the primordial power spectrum in models of single-field inflation incorporating an intermediate USR phase employed for PBH formation. Among the overall eleven one-particle irreducible Feynman diagrams, we calculated the corrections from the “double scoop” two-loop diagram involving [...] Read more.
We calculated the two-loop corrections in the primordial power spectrum in models of single-field inflation incorporating an intermediate USR phase employed for PBH formation. Among the overall eleven one-particle irreducible Feynman diagrams, we calculated the corrections from the “double scoop” two-loop diagram involving two vertices of quartic Hamiltonians. We demonstrate herein the fractional two-loop correction in power spectrum scales, like the square of the fractional one-loop correction. We confirm our previous findings that the loop corrections become arbitrarily large in the setup where the transition from the intermediate USR to the final slow-roll phase is very sharp. This suggests that in order for the analysis to be under perturbative control against loop corrections, one requires a mild transition with a long enough relaxation period towards the final attractor phase. Full article
(This article belongs to the Special Issue Primordial Black Holes from Inflation)
Show Figures

Figure 1

26 pages, 388 KiB  
Review
Introduction to the Number of e-Folds in Slow-Roll Inflation
by Alessandro Di Marco, Emanuele Orazi and Gianfranco Pradisi
Universe 2024, 10(7), 284; https://doi.org/10.3390/universe10070284 - 29 Jun 2024
Cited by 5 | Viewed by 1867
Abstract
In this review, a pedagogical introduction to the concepts of slow-roll inflationary universe and number of e-folds is provided. In particular, the differences between the basic notion of number of e-folds (Ne), total number of e-folds ( [...] Read more.
In this review, a pedagogical introduction to the concepts of slow-roll inflationary universe and number of e-folds is provided. In particular, the differences between the basic notion of number of e-folds (Ne), total number of e-folds (NT) and number of e-folds before the end of inflation (N) are outlined. The proper application of the number of e-folds before the end of inflation is discussed both as a time-like variable for the scalar field evolution and as a key parameter for computing inflationary predictions. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
23 pages, 1412 KiB  
Article
Sustaining Quasi De-Sitter Inflation with Bulk Viscosity
by Sayantani Lahiri and Luciano Rezzolla
Symmetry 2024, 16(2), 194; https://doi.org/10.3390/sym16020194 - 6 Feb 2024
Cited by 3 | Viewed by 1433
Abstract
The de-Sitter spacetime is a maximally symmetric Lorentzian manifold with constant positive scalar curvature that plays a fundamental role in modern cosmology. Here, we investigate bulk-viscosity-assisted quasi de-Sitter inflation, that is the period of accelerated expansion in the early universe during which [...] Read more.
The de-Sitter spacetime is a maximally symmetric Lorentzian manifold with constant positive scalar curvature that plays a fundamental role in modern cosmology. Here, we investigate bulk-viscosity-assisted quasi de-Sitter inflation, that is the period of accelerated expansion in the early universe during which H˙H2, with H(t) being the Hubble expansion rate. We do so in the framework of a causal theory of relativistic hydrodynamics, which takes into account non-equilibrium effects associated with bulk viscosity, which may have been present as the early universe underwent an accelerated expansion. In this framework, the existence of a quasi de-Sitter universe emerges as a natural consequence of the presence of bulk viscosity, without requiring introducing additional scalar fields. As a result, the equation of state, determined by numerically solving the generalized momentum-conservation equation involving bulk viscosity pressure turns out to be time dependent. The transition timescale characterising its departure from an exact de-Sitter phase is intricately related to the magnitude of the bulk viscosity. We examine the properties of the new equation of state, as well as the transition timescale in the presence of bulk viscosity pressure. In addition, we construct a fluid description of inflation and demonstrate that, in the context of the causal formalism, it is equivalent to the scalar field theory of inflation. Our analysis also shows that the slow-roll conditions are realised in the bulk-viscosity-supported model of inflation. Finally, we examine the viability of our model by computing the inflationary observables, namely the spectral index and the tensor-to-scalar ratio of the curvature perturbations, and compare them with a number of different observations, finding good agreement in most cases. Full article
(This article belongs to the Special Issue Exact Solutions in Modern Cosmology with Symmetry/Asymmetry)
Show Figures

Figure 1

37 pages, 1279 KiB  
Article
Exiting Inflation with a Smooth Scale Factor
by Harry Oslislo and Brett Altschul
Symmetry 2023, 15(11), 2042; https://doi.org/10.3390/sym15112042 - 10 Nov 2023
Viewed by 1818
Abstract
The expectation that the physical expansion of space occurs smoothly may be expressed mathematically as a requirement for continuity in the time derivative of the metric scale factor of the Friedmann–Robertson–Walker cosmology. We explore the consequences of imposing such a smoothness requirement, examining [...] Read more.
The expectation that the physical expansion of space occurs smoothly may be expressed mathematically as a requirement for continuity in the time derivative of the metric scale factor of the Friedmann–Robertson–Walker cosmology. We explore the consequences of imposing such a smoothness requirement, examining the forms of possible interpolating functions between the end of inflation and subsequent radiation- or matter-dominated eras, using a straightforward geometric model of the interpolating behavior. We quantify the magnitude of the cusp found in a direct transition from the end of slow-roll inflation to the subsequent era, analyze the validity of several smooth interpolator candidates, and investigate equation-of-state and thermodynamic constraints. We find an order-of-magnitude increase in the size of the universe at the end of the transition to a single-component radiation or matter era. We also evaluate the interpolating functions in terms of the standard theory of preheating and determine the effect on the number of bosons produced. Full article
Show Figures

Figure 1

10 pages, 832 KiB  
Communication
Production of Primordial Black Holes in Improved E-Models of Inflation
by Daniel Frolovsky and Sergei V. Ketov
Universe 2023, 9(6), 294; https://doi.org/10.3390/universe9060294 - 16 Jun 2023
Cited by 9 | Viewed by 1743
Abstract
E-type α-attractor models of single-field inflation were generalized further in order to accommodate production of primordial black holes (PBHs) via adding a near-inflection point to the inflaton scalar potential at smaller scales, in good agreement with measurements of cosmic microwave background (CMB) [...] Read more.
E-type α-attractor models of single-field inflation were generalized further in order to accommodate production of primordial black holes (PBHs) via adding a near-inflection point to the inflaton scalar potential at smaller scales, in good agreement with measurements of cosmic microwave background (CMB) radiation. A minimal number of new parameters were used but their fine-tuning was maximized in order to increase the possible masses of PBHs formed during an ultra-slow-roll phase, leading to a large enhancement in the power spectrum of scalar (curvature) perturbations by 6 or 7 orders of magnitude against the power spectrum of perturbations observed in CMB. It was found that extreme fine-tuning of the parameters in our models can lead to the formation of moon-sized PBHs, with masses of up to 1026 g, still in agreement with CMB observations. Quantum corrections are known to lead to the perturbative upper bound on the amplitude of large scalar perturbations responsible for PBH production. The quantum (one-loop) corrections in our models were found to be suppressed by one order of magnitude for PBHs with masses of approximately 1019 g, which may form the whole dark matter in the Universe. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

78 pages, 2968 KiB  
Review
Inflation and Primordial Black Holes
by Ogan Özsoy and Gianmassimo Tasinato
Universe 2023, 9(5), 203; https://doi.org/10.3390/universe9050203 - 24 Apr 2023
Cited by 119 | Viewed by 5894
Abstract
We review conceptual aspects of inflationary scenarios able to produce primordial black holes by amplifying the size of curvature fluctuations to the level required to trigger black hole formation. We identify general mechanisms to do so, both for single- and multiple-field inflation. In [...] Read more.
We review conceptual aspects of inflationary scenarios able to produce primordial black holes by amplifying the size of curvature fluctuations to the level required to trigger black hole formation. We identify general mechanisms to do so, both for single- and multiple-field inflation. In single-field inflation, the spectrum of curvature fluctuations is enhanced by pronounced gradients of background quantities controlling the cosmological dynamics, which can induce brief phases of non-slow-roll inflationary evolution. In multiple-field inflation, the amplification occurs through appropriate couplings with additional sectors characterized by tachyonic instabilities that enhance the size of their fluctuations. As representative examples, we consider axion inflation and two-field models of inflation with rapid turns in field space. We develop our discussion in a pedagogical manner by including some of the most relevant calculations and by guiding the reader through the existing theoretical literature, emphasizing general themes common to several models. Full article
(This article belongs to the Special Issue Primordial Black Holes from Inflation)
Show Figures

Figure 1

11 pages, 909 KiB  
Communication
Fitting Power Spectrum of Scalar Perturbations for Primordial Black Hole Production during Inflation
by Daniel Frolovsky and Sergei V. Ketov
Astronomy 2023, 2(1), 47-57; https://doi.org/10.3390/astronomy2010005 - 22 Mar 2023
Cited by 10 | Viewed by 2356
Abstract
A simple phenomenological fit for the power spectrum of scalar (curvature) perturbations during inflation is proposed to analytically describe slow roll of inflaton and formation of primordial black holes (PBH) in the early universe, in the framework of single-field models. The fit is [...] Read more.
A simple phenomenological fit for the power spectrum of scalar (curvature) perturbations during inflation is proposed to analytically describe slow roll of inflaton and formation of primordial black holes (PBH) in the early universe, in the framework of single-field models. The fit is given by a sum of the power spectrum of slow-roll inflation, needed for a viable description of the cosmic microwave background (CMB) radiation in agreement with Planck/BICEP/Keck measurements, and the log-normal (Gaussian) fit for the power spectrum enhancement (peak) needed for efficient PBH production, in the leading (model-independent) approximation. The T-type α-attractor models are used to get the simple CMB power spectrum depending upon the e-folds as the running variable. The location and height of the peak are chosen to yield the PBH masses in the asteroid-size window allowed for the whole (current) dark matter. We find the restrictions on the peak width. Full article
Show Figures

Figure 1

7 pages, 616 KiB  
Proceeding Paper
On Cosmological Inflation in Palatini F(R,ϕ) Gravity
by Mahmoud AlHallak
Phys. Sci. Forum 2023, 7(1), 35; https://doi.org/10.3390/ECU2023-14048 - 17 Feb 2023
Cited by 2 | Viewed by 1043
Abstract
Single field inflationary models are investigated within Palatini quadratic gravity, represented by R+αR2, along with a non-minimal coupling of the form f(ϕ)R between the inflaton field ϕ and the gravity. The treatment is performed [...] Read more.
Single field inflationary models are investigated within Palatini quadratic gravity, represented by R+αR2, along with a non-minimal coupling of the form f(ϕ)R between the inflaton field ϕ and the gravity. The treatment is performed in the Einstein frame, where the minimal coupling to gravity is recovered through conformal transformation. We consider various limits of the model with different inflationary scenarios characterized as canonical slow-roll inflation in the limit αϕ˙2(1+f(ϕ)), constant-roll k-inflation for α1, and slow-roll K-inflation for α1. A cosine and exponential potential are examined with the limits mentioned above and different well-motivated non-minimal couplings to gravity. We compare the theoretical results, exemplified by the tensor-to-scalar r ratio and spectral index ns, with the recent observational results of Planck 2018 and BICEP/Keck. Furthermore, we include the results of a new study forecast precision with which ns and r can be constrained by currently envisaged observations, including CMB (Simons Observatory, CMB-S4, and LiteBIRD). Full article
(This article belongs to the Proceedings of The 2nd Electronic Conference on Universe)
Show Figures

Figure 1

13 pages, 1023 KiB  
Article
Post-Inflationary Production of Dark Matter after Inflection Point Slow Roll Inflation
by Anish Ghoshal, Gaetano Lambiase, Supratik Pal, Arnab Paul and Shiladitya Porey
Symmetry 2023, 15(2), 543; https://doi.org/10.3390/sym15020543 - 17 Feb 2023
Cited by 4 | Viewed by 1958
Abstract
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial [...] Read more.
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial forms of the potential; one is symmetric about the origin, and the other is not. We fix the coefficients of the potentials satisfying current Planck-Bicep data. We calculate the permissible range of yχ and mχ for the production of enough dark matter to explain the total Cold Dark Matter (CDM) mass density of the present universe while satisfying Cosmic Background Radiation (CMBR) measurements and other cosmological bounds. Full article
Show Figures

Figure 1

39 pages, 9798 KiB  
Review
Observational Imprints of Enhanced Scalar Power on Small Scales in Ultra Slow Roll Inflation and Associated Non-Gaussianities
by H. V. Ragavendra and L. Sriramkumar
Galaxies 2023, 11(1), 34; https://doi.org/10.3390/galaxies11010034 - 15 Feb 2023
Cited by 33 | Viewed by 2234
Abstract
The discovery of gravitational waves from merging binary black holes has generated considerable interest in examining whether these black holes could have a primordial origin. If a significant number of black holes have to be produced in the early universe, the primordial scalar [...] Read more.
The discovery of gravitational waves from merging binary black holes has generated considerable interest in examining whether these black holes could have a primordial origin. If a significant number of black holes have to be produced in the early universe, the primordial scalar power spectrum should have an enhanced amplitude on small scales, when compared to the COBE normalized values on the large scales that is strongly constrained by the anisotropies in the cosmic microwave background. In the inflationary scenario driven by a single, canonical scalar field, such power spectra can be achieved in models that permit a brief period of ultra slow roll inflation during which the first slow roll parameter decreases exponentially. In this review, we shall consider a handful of such inflationary models as well as a reconstructed scenario and examine the extent of formation of primordial black holes and the generation of secondary gravitational waves in these cases. We shall also discuss the strength and shape of the scalar bispectrum and the associated non-Gaussianity parameter that arise in such situations. We shall conclude with an outlook wherein we discuss the wider implications of the increased strengths of the non-Gaussianities on smaller scales. Full article
Show Figures

Figure 1

16 pages, 527 KiB  
Article
On Warm Natural Inflation and Planck 2018 Constraints
by Mahmoud AlHallak, Khalil Kalid Al-Said, Nidal Chamoun and Moustafa Sayem El-Daher
Universe 2023, 9(2), 80; https://doi.org/10.3390/universe9020080 - 2 Feb 2023
Cited by 9 | Viewed by 1656
Abstract
We investigate natural inflation with non-minimal coupling to gravity, characterized either by a quadratic or a periodic term, within the warm inflation paradigm during the slow-roll stage, in both strong and weak dissipation limits; and show that, in the case of a T [...] Read more.
We investigate natural inflation with non-minimal coupling to gravity, characterized either by a quadratic or a periodic term, within the warm inflation paradigm during the slow-roll stage, in both strong and weak dissipation limits; and show that, in the case of a T-linearly dependent dissipative term, it can accommodate the spectral index ns and tensor-to-scalar ratio r observables given by Planck 2018 constraints, albeit with a too-small value of the e-folding number to solve the horizon problem, providing, thus, only a partial solution to natural inflation issues, assuming a T-cubically dependent dissipative term can provide a solution to this e-folding number issue. Full article
(This article belongs to the Special Issue Warm Inflation)
Show Figures

Figure 1

9 pages, 419 KiB  
Article
On the Constant-Roll Tachyon Inflation with Large and Small ηH
by Qin Fei, Waqas Ahmed and Zhen-Lai Wang
Symmetry 2022, 14(12), 2670; https://doi.org/10.3390/sym14122670 - 16 Dec 2022
Cited by 1 | Viewed by 1696
Abstract
We study the constant-roll tachyon inflation with large and small η. In previous studies, only the constant-roll tachyon inflation with small η is consistent with the observations. We find that the duality between the constant-roll tachyon inflation with large and small η [...] Read more.
We study the constant-roll tachyon inflation with large and small η. In previous studies, only the constant-roll tachyon inflation with small η is consistent with the observations. We find that the duality between the constant-roll tachyon inflation with large and small η may exist. The apparent duality suggests that the constant-roll tachyon inflationary model with large η may also be consistent with the observations. By fitting the spectral tilde ns and tensor to scalar ratio r, which is a measure of primordial gravitational waves with the observations, we get small and large η in this range 0.01629ηH0.00079 and 3.00081ηH3.01621 at the 2σ C.L for N=60 efolds. Full article
(This article belongs to the Special Issue Symmetry in Inflationary Cosmology)
Show Figures

Figure 1

25 pages, 891 KiB  
Article
Asymptotic Solutions of a Generalized Starobinski Model: Kinetic Dominance, Slow Roll and Separatrices
by Elena Medina and Luis Martínez Alonso
Universe 2021, 7(12), 500; https://doi.org/10.3390/universe7120500 - 15 Dec 2021
Cited by 1 | Viewed by 2604
Abstract
We consider a generalized Starobinski inflationary model. We present a method for computing solutions as generalized asymptotic expansions, both in the kinetic dominance stage (psi series solutions) and in the slow roll stage (asymptotic expansions of the separatrix solutions). These asymptotic expansions are [...] Read more.
We consider a generalized Starobinski inflationary model. We present a method for computing solutions as generalized asymptotic expansions, both in the kinetic dominance stage (psi series solutions) and in the slow roll stage (asymptotic expansions of the separatrix solutions). These asymptotic expansions are derived in the framework of the Hamilton-Jacobi formalism where the Hubble parameter is written as a function of the inflaton field. They are applied to determine the values of the inflaton field when the inflation period starts and ends as well as to estimate the corresponding amount of inflation. As a consequence, they can be used to select the appropriate initial conditions for determining a solution with a previously fixed amount of inflation. Full article
(This article belongs to the Special Issue Cosmological Models, Quantum Theories and Astrophysical Observations)
Show Figures

Figure 1

Back to TopTop