Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = slotted wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7852 KiB  
Article
Formation of a Freezing Wall Around a Vertical Shaft Under Localized Freezing
by Yu Zhang, Yuhang Wang, Weihao Yang, Zhijiang Yang, Chi Zhang, Tao Han, Tingting Luo, Yongjie Ma and Cheng Zou
Appl. Sci. 2025, 15(13), 7144; https://doi.org/10.3390/app15137144 - 25 Jun 2025
Viewed by 225
Abstract
A localized freezing technique was proposed as an auxiliary method for retrofitting the lining of a vertical shaft. The influence of the freezing temperature, lining thickness, slot height, and slot duration on the evolution of the freezing wall in the clay layer was [...] Read more.
A localized freezing technique was proposed as an auxiliary method for retrofitting the lining of a vertical shaft. The influence of the freezing temperature, lining thickness, slot height, and slot duration on the evolution of the freezing wall in the clay layer was analyzed using a hydro-thermal numerical model. Under the baseline conditions (stratum temperature of 24 °C, shaft lining thickness of 2 m, and freezing temperature of −30 °C), the freezing wall behind the slotting zone was 0.74 m at 90 d, 1.89 m at 180 d, 2.78 m at 270 d, and 3.48 m at 360 d. The average growth rate of the freezing wall during one year was negatively linearly correlated with the freezing temperature and the shaft lining thickness, with change rates of −0.00033 m/(d∙°C) and −0.00262 m/(d∙m), respectively. Using the thickness of the freezing wall behind the slotting zone to reach 1.2 m as the slotting criterion, a freezing duration of 123 days is required under typical operational parameters. The evolution of the freezing wall was simulated for a slotting duration of 15 d with a slot height of 0.5–2.0 m and for a slot height of 1.5 m with a slotting duration of 5–20 d. The freezing walls did not melt in both schemes and expanded outward. The research findings are significant for improving freezing methods for shaft linings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 15831 KiB  
Article
Experimental Investigation on Static Performance of Novel Precast Concrete Composite Slab–Composite Shear Wall Connections
by Xiaozhen Shang, Ming Zheng, Yutao Guo, Liangdong Zhuang and Huqing Liang
Buildings 2025, 15(11), 1935; https://doi.org/10.3390/buildings15111935 - 3 Jun 2025
Viewed by 594
Abstract
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in [...] Read more.
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in this study. In this novel connection, rectangular slots are introduced at the ends of the precast slabs, and lap-spliced reinforcement is placed within the slots to enable force transfer across the joint region. To investigate the static performance of SCS-CW connections, four groups of connection specimens were designed and fabricated. Using the structural detailing of the connection zone as the variable parameter, the mechanical performance of each specimen group was analyzed. The results show that the specimens demonstrated bending failure behavior. The key failure modes were yielding of the longitudinal reinforcement in the post-cast layer, yielding of the lap-spliced reinforcement, and concrete crushing at the precast slab ends within the plastic hinge zone. Compared to composite slab–composite wall connections with protruding rebars, the SCS-CW connections demonstrated superior ductility and a higher load-carrying capacity, satisfying the design requirements. Additionally, it was revealed that the anchorage length of lap-spliced reinforcement significantly affected the ultimate load-carrying capacity and ductility of SCS-CW connections, thus highlighting anchorage length as a critical design parameter for these connections. This study also presents methods for calculating the flexural bearing capacity and flexural stiffness of SCS-CW connections. Finally, finite element modeling was conducted on the connections to further investigate the influences of the lap-spliced reinforcement quantity, diameter, and anchorage length on the mechanical performance of the connections, and corresponding design recommendations are provided. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4059 KiB  
Article
Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm
by Jianian He, Lu Wang, Jiajun Hu, Zhiming He and Shizhe Chen
Appl. Sci. 2025, 15(11), 6088; https://doi.org/10.3390/app15116088 - 28 May 2025
Viewed by 388
Abstract
This study develops an enhanced coding strategy with adaptive parameter adjustment mechanisms to address the premature convergence issue inherent in conventional genetic algorithms (GAs). An improved adaptive genetic algorithm (IAGA) is proposed for optimizing the slit pattern configurations of 16 steel-frame-slotted steel plate [...] Read more.
This study develops an enhanced coding strategy with adaptive parameter adjustment mechanisms to address the premature convergence issue inherent in conventional genetic algorithms (GAs). An improved adaptive genetic algorithm (IAGA) is proposed for optimizing the slit pattern configurations of 16 steel-frame-slotted steel plate shear wall (SSPSW) systems. The methodology incorporates a real-time probability modulation of the crossover and mutation operations based on population diversity metrics. ABAQUS finite element software and PYTHON interactive analysis were systematically used to evaluate the mechanical performance of the optimized configurations, focusing on achieving an optimal ductility–stiffness balance under cyclic loading conditions. The numerical results demonstrate that the IAGA achieves faster convergence than standard GAs. A higher aspect ratio of the inter-slot column (l/b) or a smaller aspect ratio of the slot (b/t) leads to better ductility and lower stiffness. It is recommended that the configuration with connections on two sides of an SSPSW frame be adopted. Full article
Show Figures

Figure 1

23 pages, 7867 KiB  
Article
Compact Waveguide Antenna Design for 77 GHz High-Resolution Radar
by Chin-Hsien Wu, Tsun-Che Huang and Malcolm Ng Mou Kehn
Sensors 2025, 25(11), 3262; https://doi.org/10.3390/s25113262 - 22 May 2025
Viewed by 767
Abstract
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the [...] Read more.
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the automotive antenna. Strong gains and narrow beamwidths of highly directive radiation beams afford longer detection range and finer spatial selectivity. Although conventionally used, patch antennas suffer from intrinsic path losses that are much higher when compared to the waveguide antenna. Designed at 77 GHz, presented in this article is an 8-element slot array on the narrow side wall of a rectangular waveguide, thus being readily extendable to planar arrays by adding others alongside while maintaining the element spacing requirement for grating lobe avoidance. Comprising tilted Z-shaped slots for higher gain while keeping constrained within the narrow wall, adjacent ones separated by half the guided wavelength are inclined with reversed tilt angles for cross-polar cancelation. An open-ended external waveguide is placed over each slot for polarization purification. Equivalent circuit models of slotted waveguides aid the design. An approach for sidelobe suppression using the Chebyshev distribution is adopted. Four types of arrays are proposed, all of which show potential for different demands and applications in automotive radar. Prototypes based on designs by simulations were fabricated and measured. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 13680 KiB  
Article
Parametric Analysis of Steel Studs to Reduce Thermal Bridges in Light Steel Framing Construction Systems
by Marcelo Langner, Thais A. Soares, António Figueiredo, Ricardo M. S. F. Almeida and Romeu Vicente
Buildings 2025, 15(2), 194; https://doi.org/10.3390/buildings15020194 - 10 Jan 2025
Viewed by 752
Abstract
Thermal bridges significantly affect the thermal performance of light steel framing systems due to the high thermal conductivity of steel. The objective of this study is to identify modifications on the steel profiles to reduce heat flux and improve the thermal resistance of [...] Read more.
Thermal bridges significantly affect the thermal performance of light steel framing systems due to the high thermal conductivity of steel. The objective of this study is to identify modifications on the steel profiles to reduce heat flux and improve the thermal resistance of both single- and double-layer wall panels. Three approaches were analyzed: (i) slotted steel studs, (ii) integration of less-conductive materials into the web section, and (iii) modifications to web geometry. A numerical model was calibrated based on experimental data and used to perform dynamic simulations with different configurations. Results show that incorporating less-conductive materials, such as rigid polyamide, achieved a heat flux reduction of up to 98%, while optimized slotted patterns reduced heat flux by up to 90%. The results also demonstrated that all web modifications effectively reduced heat flux through the wall, with approaches (i) and (ii) showing the greatest impact. The shape of the slots also has an important impact on the heat flux. The most effective strategy for enhancing the thermal performance of the steel studs was the use of a less-conductive material. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2497 KiB  
Article
Expression Levels of MUC5AC and MUC5B in Airway Goblet Cells Are Associated with Traits of COPD and Progression of Chronic Airflow Limitation
by Terezia Pincikova, Heta Merikallio, Ioanna Kotortsi, Reza Karimi, Chuan-Xing Li, Elisa Lappi-Blanco, Sara K. Lindén, Médea Padra, Åsa M. Wheelock, Sven Nyrén, Carl Magnus Sköld and Riitta L. Kaarteenaho
Int. J. Mol. Sci. 2024, 25(24), 13653; https://doi.org/10.3390/ijms252413653 - 20 Dec 2024
Viewed by 2647
Abstract
Mucins 5AC (MUC5AC) and 5B (MUC5B) are the major mucins providing the organizing framework for the airway’s mucus gel. We retrieved bronchial mucosal biopsies and bronchial wash (BW) samples through bronchoscopy from patients with chronic obstructive pulmonary disease (n = 38), healthy [...] Read more.
Mucins 5AC (MUC5AC) and 5B (MUC5B) are the major mucins providing the organizing framework for the airway’s mucus gel. We retrieved bronchial mucosal biopsies and bronchial wash (BW) samples through bronchoscopy from patients with chronic obstructive pulmonary disease (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). The expression of MUC5AC and MUC5B was assessed immunohistochemically. The mucin concentrations in BW were determined using the slot-blot technique. The immunohistochemical expression of MUC5AC and MUC5B was localized to goblet cells and submucosal glands. Smokers had higher MUC5AC and lower MUC5B goblet cell expression and higher concentrations of soluble MUC5AC in BW than never-smokers. The MUC5B expression in goblet cells correlated positively with expiratory air flows, diffusing capacity, and the dyspnoea score. Chronic bronchitis, emphysema, and the progression of chronic airflow limitation during a median follow-up time of 8.4 years were associated with higher MUC5AC and lower MUC5B expression in goblet cells. Sustainers, slow progressors, and rapid progressors of airflow obstruction differed in their MUC5B expression at baseline. Emphysema and bronchial wall thickening on CT at a follow-up visit were associated with lower MUC5B expression at baseline. Our findings strengthen the hypothesis that MUC5AC and MUC5B are yet another contributing factor to smoking-associated lung disease progression. Full article
(This article belongs to the Special Issue Biomarkers of Lung Disorders)
Show Figures

Graphical abstract

22 pages, 4299 KiB  
Article
Extension of the Side Distance Measurement Aspect Ratio in the Measurement of a Slot or Bore Using a Commercial Laser Triangulation Sensor
by Jan Hošek
Sensors 2024, 24(23), 7734; https://doi.org/10.3390/s24237734 - 3 Dec 2024
Cited by 1 | Viewed by 820
Abstract
We propose a new commercial laser triangulation sensor modification to enable the measurement of slots or bores side distance. The study showed the possibility of extending the sensor depth range for a slot or bore side distance measurement using a bypass of the [...] Read more.
We propose a new commercial laser triangulation sensor modification to enable the measurement of slots or bores side distance. The study showed the possibility of extending the sensor depth range for a slot or bore side distance measurement using a bypass of the illumination laser beam compared to a simple single mirror attachment to the sensor probe. We derived relations allowing for evaluation of the modified sensor side measurement range in desired depth based on the sensor parameters and the reflective mirror size and position. We demonstrated the functionality of the proposed measurement arrangement with an attachment to the commercial laser triangulation sensor and assessed the side-wall distance measurement. The results show the correct measurement depth and range prediction and the ability to perform side surface distance measurements at depths of more than 3.5 times the slot size. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

8 pages, 3202 KiB  
Communication
Optimization Design and Simulation of Coin-Slot-Type Anti-Resonant Fiber Structure for 2 μm Transmission
by Boyue Zhang, Zhaoyang Tian, Yu Li, Xinyang Su, Hongxiang Chi, Zikun Nie, Xiaoyu Luo, Bohan Li, Tianran Sun, Sergey Sarkisov and Sergey Kobtsev
Photonics 2024, 11(12), 1109; https://doi.org/10.3390/photonics11121109 - 23 Nov 2024
Viewed by 1178
Abstract
In this work, we propose a new type of hollow-core anti-resonant fiber (HC-ARF) structure called a coin-slot structure. In this type of structure, two more layers of glass walls are added into the outer cladding capillary, which can effectively prevent light from leaking [...] Read more.
In this work, we propose a new type of hollow-core anti-resonant fiber (HC-ARF) structure called a coin-slot structure. In this type of structure, two more layers of glass walls are added into the outer cladding capillary, which can effectively prevent light from leaking out of the fiber. In aiming to explore the influence of the outer resonant tube on loss at a wavelength of 2 μm, the fundamental mode loss, high-order mode loss, and higher-order mode extinction ratio (HOMER) under different geometric parameters are studied. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

23 pages, 8541 KiB  
Article
Thermal Power and the Structural Parameters of a Wind Turbine Permanent Magnet Eddy Current Heater
by Honglei Lu, Ce Zhou, Wenpeng Hong and Haoshu Ding
Processes 2024, 12(11), 2398; https://doi.org/10.3390/pr12112398 - 31 Oct 2024
Cited by 1 | Viewed by 1086
Abstract
Permanent magnet eddy current heating as a new type of wind energy utilization method, which is energy-saving, is zero-emission, and involves no pollution and a high utilization of wind energy, has attracted more and more attention. This paper deals with the simulation and [...] Read more.
Permanent magnet eddy current heating as a new type of wind energy utilization method, which is energy-saving, is zero-emission, and involves no pollution and a high utilization of wind energy, has attracted more and more attention. This paper deals with the simulation and optimal design of a permanent magnet eddy current heater (PMECH) driven by wind. Solid steel, closed-slot, and open-slot PMECH are proposed, and corresponding 2D finite element method (FEM) models are established. Using the skin depth concept, numerical analyses are conducted on the influence of the number, size, and position of copper strips on the thermal power of closed-slot and open-slot PMECHs, and the thermal power growth compared to solid steel PMECH. The results showed that there is an optimal value for stator wall thickness. When the air-gap length is 0.5 mm and the rotation speed is 200 and 1000 rpm, the optimal stator wall thickness is 16 and 9 mm, respectively. Compared to the influence of conductivity on thermal power, the influence of permeability is more significant. Compared with solid steel PMECH, both closed-slot and open-slot PMECH in a low-speed region can effectively improve thermal power, and the open slot has more obvious advantages. The maximum values of the thermal power growth (TPG) and thermal power growth rate (TPGR) of the closed-slot PMECH are 1.57 kW and 120.15%, respectively. The maximums of TPG and TPGR of the open-slot PMECH are 2.58 kW and 175.08%, respectively. The experimental results prove the validity of the analytical calculation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 2820 KiB  
Article
Research and Application for Alternate Production Technology of Dual-Branch Horizontal Wells in an Offshore Oilfield
by Dong Zhang, Fenghui Li, Yanlai Li, Xu Zheng, Chunyan Liu, Hongjie Liu and Xiang Wang
Processes 2024, 12(8), 1753; https://doi.org/10.3390/pr12081753 - 20 Aug 2024
Viewed by 887
Abstract
Old-well sidetracking is a key method for controlling low-productivity wells in the Bohai oilfield. This study employs reservoir engineering and numerical simulation techniques to investigate the maximum drainage radius and natural coning control mechanism in heavy-oil reservoirs with bottom water. Based on these [...] Read more.
Old-well sidetracking is a key method for controlling low-productivity wells in the Bohai oilfield. This study employs reservoir engineering and numerical simulation techniques to investigate the maximum drainage radius and natural coning control mechanism in heavy-oil reservoirs with bottom water. Based on these findings, an alternate production technology was developed for dual-branch horizontal wells. The technology creates a new branch through sidetracking, connecting and isolating the old and new wellbores using a combination of wall hangers and branch guides. Initially, the old wellbore with an ultra-high water cut is temporarily sealed. When the new branch reaches a high water-cut stage, production is switched back to the old wellbore. This technology was successfully applied to three wells in the Bohai oilfield, resulting in the new branch achieving expected production levels, while reopening the old wellbore increased daily oil output by 27 m3 and reduced water cut by 5.6%. Cumulative oil production from these wells reached 95,000 m3. This technology improves well-slot resource utilization, enhances recovery rates, and has significant potential for broader application. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

18 pages, 35401 KiB  
Article
Vibration Reduction on Circular Disks with Vibroacoustic Metamaterials
by Sebastian Rieß, Ron Schmidt, William Kaal, Heiko Atzrodt and Sven Herold
Appl. Sci. 2024, 14(11), 4637; https://doi.org/10.3390/app14114637 - 28 May 2024
Cited by 1 | Viewed by 1800
Abstract
Vibroacoustic metamaterials represent an innovative technology developed for broadband vibration reduction. They consist of an array of local resonators and are able to reduce vibrations over a wide frequency range, commonly referred to as a stop band. Vibroacoustic metamaterials may be a promising [...] Read more.
Vibroacoustic metamaterials represent an innovative technology developed for broadband vibration reduction. They consist of an array of local resonators and are able to reduce vibrations over a wide frequency range, commonly referred to as a stop band. Vibroacoustic metamaterials may be a promising strategy to reduce out-of-plane vibrations of thin-walled, disk-shaped structures, such as saw blades. However, their behavior in rotating systems has not yet been fully understood. In this study, a vibroacoustic metamaterial integrated into a circular disk for the reduction of out-of-plane vibrations is experimentally investigated in the rotating and non-rotating state. Derived from the predominant frequency range of noise emitted by saw blades, a vibroacoustic metamaterial with a numerically predicted stop band in the frequency range from 2000 Hz to 3000 Hz, suitable for integration into a circular disk, is designed. The resonators of the metamaterial are realized by cutting slots into the disk using a waterjet cutting machine. To experimentally examine the structural dynamic behavior, the disk is excited by an impulse hammer and observed by a stationary optical velocity sensor on a rotor dynamics test stand. The results of the rotating and the non-rotating state are compared. The measurements are carried out at two different radii and at speeds up to 3000 rpm. A distinct stop band characteristic is shown in the desired frequency range from 2000 Hz to 3000 Hz in the rotating and non-rotating state. No significant shift of the stop band frequency range was observed during rotation. However, adjacent modes were observed to propagate into the stop band frequency range. This work contributes to a better understanding of the behavior of vibroacoustic metamaterials in the rotating state and enables future applications of vibroacoustic metamaterials for vibration reduction in rotating, disk-shaped structures such as saw blades, brake disks or gears. Full article
Show Figures

Figure 1

21 pages, 9664 KiB  
Article
Effects of Different Structural Film Cooling on Cooling Performance in a GO2/GH2 Subscale Thrust Chamber
by Jixin Xiang, Yujie Jia, Zhiqiang Li and He Ren
Aerospace 2024, 11(6), 433; https://doi.org/10.3390/aerospace11060433 - 27 May 2024
Cited by 1 | Viewed by 1301
Abstract
To investigate the wall cooling of the thrust chamber in an engine, two film-cooling structures, namely, a circular hole structure and a slot structure, were designed. Numerical simulations were performed to study the coupled flow and regenerative cooling heat transfer in thrust chambers [...] Read more.
To investigate the wall cooling of the thrust chamber in an engine, two film-cooling structures, namely, a circular hole structure and a slot structure, were designed. Numerical simulations were performed to study the coupled flow and regenerative cooling heat transfer in thrust chambers with different structures. The influences of parameters such as the film mass flow rate and film hole size on wall cooling were analyzed. Experiments were conducted in a thrust chamber to validate the accuracy of the numerical calculation method. The results indicate that the slot-structured film adheres better to the wall than the circular-hole-structured film, and the film closely adhering to the wall provides better insulation against hot gas, resulting in a reduction of approximately 6% in wall temperature. When the film hole size changes, the change in circumferential wall temperature in the upstream region of the slot-structured film is more pronounced. This paper aims to provide a reference for the design of the cooling structure at the head of the thrust chamber in engineering and suggests directions for optimization and improvement. Full article
Show Figures

Figure 1

12 pages, 5549 KiB  
Article
Nanotomographic Analysis of Orthodontic Molar Tubes for Direct Bonding
by Seweryn Kłos, Joanna Janiszewska-Olszowska and Katarzyna Grocholewicz
Appl. Sci. 2024, 14(10), 4174; https://doi.org/10.3390/app14104174 - 14 May 2024
Viewed by 1630
Abstract
(1) Background: The most important part of an orthodontic attachment (bracket or tube) is the tube or slot for the insertion of the orthodontic wire. Aligning teeth along the archwire according to angular values preadjusted in the bracket slots (or tubes) requires a [...] Read more.
(1) Background: The most important part of an orthodontic attachment (bracket or tube) is the tube or slot for the insertion of the orthodontic wire. Aligning teeth along the archwire according to angular values preadjusted in the bracket slots (or tubes) requires a very precise size accordance between the archwires and slots. The aim of this study was to perform a nanotomographic analysis of the geometric features of molar tubes for direct bonding in terms of their dimensions and angles of their inner walls and analyze the presence of metallurgic imperfections. (2) Methods: Orthodontic tubes (n = 100) for upper right first molars from five different manufacturers (3M-Victory Series, Adenta-Bond Sing, Dentaurum-Ortho Cast M, GC-L LP, and ORMCO-Accent), 20 tubes each, were subjected to nanotomographic analysis. Measurements of the inner channel of the tubes, angles between the walls, and analysis of metallurgic imperfections were performed using high-resolution computed tomography. (3) Results: height measurements differed by 4–14% from ideal values declared by manufacturers, whereas the angles ranged from reducing by a maximum 1% comparing to values declared (hypodivergent walls) to increasing by a maximum 4.5% (divergent walls). (4) Conclusions: 1. The sizes of channels measured were slightly larger than those declared by manufacturers. 2. Slight deviations in wall parallelism and angles between the walls were found. 3. Some tubes were characterized by manufacturing defects of the metal. 4. Efforts should be made to further improve the production process of orthodontic attachments. Full article
(This article belongs to the Special Issue Innovative Approaches in Orthodontics Diagnostic and Dental Treatment)
Show Figures

Figure 1

18 pages, 10912 KiB  
Article
Dynamic Analysis of Tip Leakage Phenomena in Axial Flow Pumps Using a Square-Cavity Jet Model
by Xinyan Song, Puyu Cao, Jinfeng Zhang, Zikai Lv, Guidong Li and Luanjiao Liu
Water 2024, 16(5), 676; https://doi.org/10.3390/w16050676 - 25 Feb 2024
Cited by 1 | Viewed by 1905
Abstract
In the field of pump impeller studies, tip leakage flow (TLF) and the resultant tip leakage vortex (TLV) significantly influence hydraulic efficiency, cavitation, and noise generation. This paper builds a novel square-cavity jet model combined with Large Eddy Simulation (LES) technology to obtain [...] Read more.
In the field of pump impeller studies, tip leakage flow (TLF) and the resultant tip leakage vortex (TLV) significantly influence hydraulic efficiency, cavitation, and noise generation. This paper builds a novel square-cavity jet model combined with Large Eddy Simulation (LES) technology to obtain precise the dynamic properties of the TLV, significantly simplifying the computational resources required for numerical simulations. The novel square-cavity jet model simplifies a single blade channel to a square-cavity, and then adds a longitudinal slit on the top wall of the square-cavity. The analysis of both instantaneous and time-averaged flow fields indicates that the interaction between the main flow and the jet is the primary source of TLV generation. This study successfully captures the formation process of the TLV and accurately reveals its turbulent coherent structures. The evolution of the TLV is divided into three main parts: the first part is the jet slot, predominantly characterized by negative vorticity flow. The second part is the TLV formation, which is mainly composed of significant negative streamwise vortices. The third part is the development of the TLV, where positive and negative vorticities begin to interact, resulting in a more complex overall structure. The entire evolution of the TLV phenomenon starts with a concentrated negative vortex, which, after breakdown, develops at a certain angle to the slot and continuously advances towards the sidewall, ultimately resulting in the formation of a large-scale intermingled group of small-scale positive and negative vortices. This research not only provides a new physical model for investigating the tip leakage phenomenon in axial flow pumps but also offers a powerful tool and methodology for future studies in similar complex flow domains. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

11 pages, 4673 KiB  
Article
Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components
by Karsten Wandtke, Amadeus Becker, Dirk Schroepfer, Arne Kromm, Thomas Kannengiesser, Ronny Scharf-Wildenhain, André Haelsig and Jonas Hensel
Metals 2024, 14(1), 82; https://doi.org/10.3390/met14010082 - 10 Jan 2024
Cited by 5 | Viewed by 2206
Abstract
High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams or WAAM components [...] Read more.
High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams or WAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds and WAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. Full article
Show Figures

Figure 1

Back to TopTop