Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = skin/electrode impedance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3166 KiB  
Article
Impedance Characterization and Modeling of Gold, Silver, and PEDOT:PSS Ultra-Thin Tattoo Electrodes for Wearable Bioelectronics
by Antonello Mascia, Riccardo Collu, Nasreddine Makni, Mattia Concas, Massimo Barbaro and Piero Cosseddu
Sensors 2025, 25(15), 4568; https://doi.org/10.3390/s25154568 - 23 Jul 2025
Viewed by 337
Abstract
This study presents a comprehensive evaluation and an equivalent circuit modeling of the skin–electrode impedance characteristics of three types of ultra-thin tattoo electrodes, all based on Parylene C nanofilms but with different active materials: Gold, Silver, and PEDOT:PSS. Their performance was compared to [...] Read more.
This study presents a comprehensive evaluation and an equivalent circuit modeling of the skin–electrode impedance characteristics of three types of ultra-thin tattoo electrodes, all based on Parylene C nanofilms but with different active materials: Gold, Silver, and PEDOT:PSS. Their performance was compared to standard disposable Ag/AgCl electrodes. Impedance measurements were carried out on six human subjects under controlled conditions, assessing the frequency response in the range of 20 Hz to 1 kHz. For each subject, the impedance was recorded six times over one hour to investigate the stability and the temporal performance. The collected data were subsequently analyzed to model the electrical properties and interface behavior of each electrode type. The findings demonstrate that the tattoo electrodes offer impedance levels comparable to those of Ag/AgCl electrodes (in the order of tens of kΩ at 20 Hz), while providing additional benefits such as enhanced conformability, improved skin adhesion, and reduced skin irritation during use. Furthermore, the modeling of the skin–electrode interface through a more detailed equivalent circuit than the single time constant model enables a more detailed interface analysis and description, with fitting algorithm R2 scores of about 0.999 and 0.979 for the impedance magnitude and impedance phase, respectively. The proposed equivalent circuit offers valuable insights for optimizing electrode design, supporting the potential of Parylene C-based tattoo electrodes as promising alternatives for next-generation wearable bioelectronic applications. Full article
(This article belongs to the Special Issue Bioimpedance Measurements and Microelectrodes)
Show Figures

Figure 1

35 pages, 6415 KiB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Viewed by 370
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

17 pages, 4312 KiB  
Article
Study on Electrical Characteristics and ECG Signal Acquisition Performance of Fabric Electrodes Based on Organizational Structure and Wearing Pressure
by Ming Wang, Jinli Zhou and Ge Zhang
Micromachines 2025, 16(7), 821; https://doi.org/10.3390/mi16070821 - 17 Jul 2025
Viewed by 313
Abstract
Obtaining stable ECG signals under both static and dynamic conditions, while ensuring comfortable wear, is a prerequisite for fabric-electrode applications. It is necessary to study the wearing pressure of fabric electrodes as well as their organizational structure. In this study, fabric electrodes with [...] Read more.
Obtaining stable ECG signals under both static and dynamic conditions, while ensuring comfortable wear, is a prerequisite for fabric-electrode applications. It is necessary to study the wearing pressure of fabric electrodes as well as their organizational structure. In this study, fabric electrodes with different organizational structures (plain weave, twill weave, and satin weave) were prepared using silver-plated nylon conductive yarns as weft yarns and polyester yarns as warp yarns. The electrical characteristics of these structures of fabric electrodes were analyzed under different wearing pressures (2 kPa, 3 kPa, 4 kPa, and 5 kPa), and their effects on the quality of static and dynamic ECG signals acquired from human body were examined. The results showed that the contact impedance of the twill and satin weave structured electrodes with the skin was smaller and more stable than that of the plain weave structured electrodes. Furthermore, when a wearing pressure of 3–4 kPa was applied to the satin-structured electrodes, they not only provided satisfactory comfort but also collected stable static and dynamic ECG signals during daily exercise. These results can provide a reference for the application of fabric electrodes in ECG monitoring devices and an important basis for the design of intelligent ECG clothing. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Electronics: Devices and Systems)
Show Figures

Figure 1

22 pages, 4685 KiB  
Article
Mental Fatigue Detection of Crane Operators Based on Electroencephalogram Signals Acquired by a Novel Rotary Switch-Type Semi-Dry Electrode Using Multifractal Detrend Fluctuation Analysis
by Fuwang Wang, Daping Chen and Xiaolei Zhang
Sensors 2025, 25(13), 3994; https://doi.org/10.3390/s25133994 - 26 Jun 2025
Viewed by 302
Abstract
The mental fatigue of crane operators can pose a serious threat to construction safety. To enhance the safety of crane operations on construction sites, this study proposes a rotary switch semi-dry electrode for detecting the mental fatigue of crane operators. This rotary switch [...] Read more.
The mental fatigue of crane operators can pose a serious threat to construction safety. To enhance the safety of crane operations on construction sites, this study proposes a rotary switch semi-dry electrode for detecting the mental fatigue of crane operators. This rotary switch semi-dry electrode overcomes the problems of the large impedance value of traditional dry electrodes, the cumbersome wet electrode operation, and the uncontrollable outflow of conductive liquid from traditional semi-dry electrodes. By designing a rotary switch structure inside the electrode, it allows the electrode to be turned on and used in motion, which greatly improves the efficiency of using the conductive fluid and prolongs the electrode’s use time. A conductive sponge was used at the electrode’s contact end with the skin, improving comfort and making it suitable for long-term wear. In addition, in this study, the multifractal detrend fluctuation analysis (MF-DFA) method was used to detect the mental fatigue state of crane operators. The results indicate that the MF-DFA is more responsive to the tiredness traits of individuals than conventional fatigue detection methods. The proposed rotary switch semi-dry electrode can quickly and accurately detect the mental fatigue of crane operators, provide support for timely warning or intervention, and effectively reduce the risk of accidents at construction sites, enhancing construction safety and efficiency. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 3939 KiB  
Article
Design and Validation of Low-Cost, Portable Impedance Analyzer System for Biopotential Electrode Evaluation and Skin/Electrode Impedance Measurement
by Jaydeep Panchal, Moon Inder Singh, Mandeep Singh and Karmjit Singh Sandha
Sensors 2025, 25(12), 3688; https://doi.org/10.3390/s25123688 - 12 Jun 2025
Viewed by 598
Abstract
This paper presents a novel, low-cost, portable impedance analyzer system designed for biopotential electrode evaluation and skin/electrode impedance measurement, critical for enhancing bioelectrical signal quality in healthcare applications. In contrast with conventional systems that depend on external PCs or host devices for data [...] Read more.
This paper presents a novel, low-cost, portable impedance analyzer system designed for biopotential electrode evaluation and skin/electrode impedance measurement, critical for enhancing bioelectrical signal quality in healthcare applications. In contrast with conventional systems that depend on external PCs or host devices for data acquisition, visualization, and analysis, this design integrates all functionalities into a single, compact platform powered by the Analog Devices AD5933 impedance converter and a Raspberry Pi 4. The design incorporates custom analog circuitry to extend the measurement range from 10 Hz to 100 kHz and supports a wide impedance spectrum through switchable feedback resistors. Validated against a benchtop impedance analyzer, the system demonstrates high accuracy with normalized root-mean-square errors (NRMSEs) of 1.41% and 3.77% for the impedance magnitude and phase of passive components, respectively, and 1.43% and 1.29% for the biopotential electrode evaluation and skin/electrode impedance measurement. This cost-effective solution, with a total cost of USD 159, addresses the accessibility challenges faced by smaller research labs and healthcare facilities, offering a compact, low-power platform for reliable impedance analysis in biomedical applications. Full article
(This article belongs to the Special Issue Integrated Sensor Systems for Medical Applications)
Show Figures

Figure 1

17 pages, 5652 KiB  
Article
A Molecularly Imprinted Polymer Nanobodies (nanoMIPs)-Based Electrochemical Sensor for the Detection of Staphylococcus epidermidis
by Witsanu Rapichai, Chularat Hlaoperm, Adriana Feldner, Julia Völkle, Kiattawee Choowongkomon, Jatuporn Rattanasrisomporn and Peter A. Lieberzeit
Sensors 2025, 25(7), 2150; https://doi.org/10.3390/s25072150 - 28 Mar 2025
Viewed by 900
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) contamination is commonly found on human skin and medical devices. Herein, we present a sensor utilizing molecularly imprinted polymer nanobodies (nanoMIP) for recognition and electrochemical impedance spectroscopy (EIS) to detect S. epidermidis. Sensor manufacturing involves synthesizing nanoMIP via solid-phase [...] Read more.
Methicillin-resistant Staphylococcus epidermidis (MRSE) contamination is commonly found on human skin and medical devices. Herein, we present a sensor utilizing molecularly imprinted polymer nanobodies (nanoMIP) for recognition and electrochemical impedance spectroscopy (EIS) to detect S. epidermidis. Sensor manufacturing involves synthesizing nanoMIP via solid-phase synthesis using whole bacteria as templates. Screen-printed gold electrode (AuSPE)-modified 16-mercaptohexadecanoic acid (MHDA) served to immobilize the nanoMIPs on the sensor surface through an amide bond, with the remaining functional groups blocked by ethanolamine (ETA). Scanning electron microscope (SEM) analysis of the modified AuSPE surface reveals immobilized spherical nanoMIP particles of 114–120 nm diameter, while atomic force microscope (AFM) analysis showed increased roughness and height compared to bare AuSPE. The sensor is selective for S. epidermidis, with a remarkable detection limit of 1 CFU/mL. This research demonstrates that the developed nanoMIP-based sensor effectively detects S. epidermidis. Further research will focus on developing protocols to integrate the nanoMIP-based EIS sensor into medical and industrial applications, ultimately contributing to improved safety for both humans and animals in the future. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

17 pages, 4555 KiB  
Article
Preliminary Study on Wearable Smart Socks with Hydrogel Electrodes for Surface Electromyography-Based Muscle Activity Assessment
by Gabriele Rescio, Elisa Sciurti, Lucia Giampetruzzi, Anna Maria Carluccio, Luca Francioso and Alessandro Leone
Sensors 2025, 25(5), 1618; https://doi.org/10.3390/s25051618 - 6 Mar 2025
Cited by 1 | Viewed by 1379
Abstract
Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require [...] Read more.
Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require precise placement by trained personnel. Wearable sEMG systems integrating textile electrodes have been proposed to improve usability; however, they often suffer from poor skin–electrode coupling, leading to higher impedance, motion artifacts, and reduced signal quality. To address these limitations, we propose a preliminary model of smart socks, integrating biocompatible hybrid polymer electrodes positioned over the target muscles. Compared with commercial Ag/AgCl electrodes, these hybrid electrodes ensure lower the skin–electrode impedance, enhancing signal acquisition (19.2 ± 3.1 kΩ vs. 27.8 ± 4.5 kΩ for Ag/AgCl electrodes). Moreover, to the best of our knowledge, this is the first wearable system incorporating hydrogel-based electrodes in a sock specifically designed for the analysis of lower limb muscles, which are crucial for evaluating conditions such as sarcopenia, fall risk, and gait anomalies. The system incorporates a lightweight, wireless commercial module for data pre-processing and transmission. sEMG signals from the Gastrocnemius and Tibialis muscles were analyzed, demonstrating a strong correlation (R = 0.87) between signals acquired with the smart socks and those obtained using commercial Ag/AgCl electrodes. Future studies will further validate its long-term performance under real-world conditions and with a larger dataset. Full article
Show Figures

Figure 1

19 pages, 10502 KiB  
Article
Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement
by Fangmeng Zeng, Guanghua Wang, Chenyi Sun, Jiayi Gao, Shanqun Ji and Quanxi Zhang
Polymers 2025, 17(5), 683; https://doi.org/10.3390/polym17050683 - 4 Mar 2025
Viewed by 1015
Abstract
Recent advancements in smart textiles have facilitated their extensive application in wearable health monitoring, particularly in brain activity measurement. This study introduces a flexible and washable fabric dry electroencephalography (EEG) electrode designed for brain activity measurement. The fabric dry electrode is constructed from [...] Read more.
Recent advancements in smart textiles have facilitated their extensive application in wearable health monitoring, particularly in brain activity measurement. This study introduces a flexible and washable fabric dry electroencephalography (EEG) electrode designed for brain activity measurement. The fabric dry electrode is constructed from electrically conductive polyester fabric with a resistivity of 0.09 Ω·cm, achieved by applying a PEDOT: PSS/PVA conductive paste coating on the textile substrate. A comparative analysis of the tensile properties between the conductive and untreated polyester fabric was conducted. The SEM images demonstrated that the PEDOT: PSS/PVA conductive polymer composite resulted in a uniform coating on the fabric surface. When enveloped in elastic foam, the fabric dry electrode maintained a low and stable electrode–skin contact impedance during prolonged EEG monitoring. Additionally, the short circuit noise level of the fabric dry electrode exhibited superior performance compared to both Ag/AgCl wet and finger dry electrode. The EEG signals acquired from the fabric dry electrode were comparable to those recorded by the Ag/AgCl wet electrode. Moreover, the fabric electrode effectively captured clear and reliable EEG signals, even after undergoing 10 washing cycles. The fabric dry electrode indicates good sweat resistance and biocompatibility during prolonged monitoring. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

15 pages, 6732 KiB  
Article
A High-Frequency Temporal-Interference Alternative Current Stimulation Device Using Pulse Amplitude Modulation with Push–Pull Current Sources
by Jia-Hao Bai, Szu-Chi Huang, Po-Lei Lee, Kuo-Kai Shyu, Chao-Jen Huang, Tsung-Chih Chen and Sheng-Ji Lai
Bioengineering 2025, 12(2), 164; https://doi.org/10.3390/bioengineering12020164 - 8 Feb 2025
Cited by 1 | Viewed by 1565
Abstract
This study proposes a high-frequency Pulse Amplitude-Modulation Temporal-Interference (PAM-TI) current stimulation device, which utilizes two sets of Amplitude-modulated transcranial alternating current stimulation (AM-tACS): one AM frequency at f0 (where f0 = 2 kHz) (source 1) and the other AM frequency at f1 = [...] Read more.
This study proposes a high-frequency Pulse Amplitude-Modulation Temporal-Interference (PAM-TI) current stimulation device, which utilizes two sets of Amplitude-modulated transcranial alternating current stimulation (AM-tACS): one AM frequency at f0 (where f0 = 2 kHz) (source 1) and the other AM frequency at f1 = f0 + f (where f1 = 2.01 kHz) (source 2), to generate a f (where f = 10 Hz) envelope modulated at a fc (where fc = 100 kHz) high carrier frequency. The high carrier frequency reduces body impedance and conserves more stimulation power, allowing it to penetrate the skin and reach the subcutaneous region. The proposed PAM-TI technique elevates the two current sources to a 100 kHz carrier frequency. Instead of the challenges associated with generating high-frequency stimulation currents using an MCU and DAC, the proposed PAM-TI stimulation device achieves this by simply utilizing a pair of complementary pulse-width modulations (PWMs). The push–pull technique is employed to balance the charging currents between the anode and cathode, synchronizing the current timing of Source 1 and Source 2 under the fc modulation condition. To minimize signal attenuation, the PAM circuit is integrated directly into the electrode, ensuring the high-frequency signal is generated close to the body and preventing degradation from long wires. Additionally, a dry pin-type spring-loaded electrode is used to reduce interference caused by hair when placed on the head. The device’s validity and current directionality were verified using a scalp tissue-mimicking phantom composed of agar and saline. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

13 pages, 2944 KiB  
Article
Development of a Wearable Electromyographic Sensor with Aerosol Jet Printing Technology
by Stefano Perilli, Massimo Di Pietro, Emanuele Mantini, Martina Regazzetti, Pawel Kiper, Francesco Galliani, Massimo Panella and Dante Mantini
Bioengineering 2024, 11(12), 1283; https://doi.org/10.3390/bioengineering11121283 - 17 Dec 2024
Cited by 5 | Viewed by 1370
Abstract
Electromyographic (EMG) sensors are essential tools for analyzing muscle activity, but traditional designs often face challenges such as motion artifacts, signal variability, and limited wearability. This study introduces a novel EMG sensor fabricated using Aerosol Jet Printing (AJP) technology that addresses these limitations [...] Read more.
Electromyographic (EMG) sensors are essential tools for analyzing muscle activity, but traditional designs often face challenges such as motion artifacts, signal variability, and limited wearability. This study introduces a novel EMG sensor fabricated using Aerosol Jet Printing (AJP) technology that addresses these limitations with a focus on precision, flexibility, and stability. The innovative sensor design minimizes air interposition at the skin–electrode interface, thereby reducing variability and improving signal quality. AJP enables the precise deposition of conductive materials onto flexible substrates, achieving a thinner and more conformable sensor that enhances user comfort and wearability. Performance testing compared the novel sensor to commercially available alternatives, highlighting its superior impedance stability across frequencies, even under mechanical stress. Physiological validation on a human participant confirmed the sensor’s ability to accurately capture muscle activity during rest and voluntary contractions, with clear differentiation between low and high activity states. The findings highlight the sensor’s potential for diverse applications, such as clinical diagnostics, rehabilitation, and sports performance monitoring. This work establishes AJP technology as a novel approach for designing wearable EMG sensors, providing a pathway for further advancements in miniaturization, strain-insensitive designs, and real-world deployment. Future research will explore optimization for broader applications and larger populations. Full article
Show Figures

Graphical abstract

21 pages, 5220 KiB  
Article
A Closed-Loop Ear-Worn Wearable EEG System with Real-Time Passive Electrode Skin Impedance Measurement for Early Autism Detection
by Muhammad Sheeraz, Abdul Rehman Aslam, Emmanuel Mic Drakakis, Hadi Heidari, Muhammad Awais Bin Altaf and Wala Saadeh
Sensors 2024, 24(23), 7489; https://doi.org/10.3390/s24237489 - 24 Nov 2024
Cited by 1 | Viewed by 1770
Abstract
Autism spectrum disorder (ASD) is a chronic neurological disorder with the severity directly linked to the diagnosis age. The severity can be reduced if diagnosis and intervention are early (age < 2 years). This work presents a novel ear-worn wearable EEG system designed [...] Read more.
Autism spectrum disorder (ASD) is a chronic neurological disorder with the severity directly linked to the diagnosis age. The severity can be reduced if diagnosis and intervention are early (age < 2 years). This work presents a novel ear-worn wearable EEG system designed to aid in the early detection of ASD. Conventional EEG systems often suffer from bulky, wired electrodes, high power consumption, and a lack of real-time electrode–skin interface (ESI) impedance monitoring. To address these limitations, our system incorporates continuous, long-term EEG recording, on-chip machine learning for real-time ASD prediction, and a passive ESI evaluation system. The passive ESI methodology evaluates impedance using the root mean square voltage of the output signal, considering factors like pressure, electrode surface area, material, gel thickness, and duration. The on-chip machine learning processor, implemented in 180 nm CMOS, occupies a minimal 2.52 mm² of active area while consuming only 0.87 µJ of energy per classification. The performance of this ML processor is validated using the Old Dominion University ASD dataset. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 4559 KiB  
Article
Motion Artifacts in Dynamic EEG Recordings: Experimental Observations, Electrical Modelling, and Design Considerations
by Alessandra Giangrande, Alberto Botter, Harri Piitulainen and Giacinto Luigi Cerone
Sensors 2024, 24(19), 6363; https://doi.org/10.3390/s24196363 - 30 Sep 2024
Cited by 3 | Viewed by 3091
Abstract
Despite the progress in the development of innovative EEG acquisition systems, their use in dynamic applications is still limited by motion artifacts compromising the interpretation of the collected signals. Therefore, extensive research on the genesis of motion artifacts in EEG recordings is still [...] Read more.
Despite the progress in the development of innovative EEG acquisition systems, their use in dynamic applications is still limited by motion artifacts compromising the interpretation of the collected signals. Therefore, extensive research on the genesis of motion artifacts in EEG recordings is still needed to optimize existing technologies, shedding light on possible solutions to overcome the current limitations. We identified three potential sources of motion artifacts occurring at three different levels of a traditional biopotential acquisition chain: the skin-electrode interface, the connecting cables between the detection and the acquisition systems, and the electrode-amplifier system. The identified sources of motion artifacts were modelled starting from experimental observations carried out on EEG signals. Consequently, we designed customized EEG electrode systems aiming at experimentally disentangling the possible causes of motion artifacts. Both analytical and experimental observations indicated two main residual sites responsible for motion artifacts: the connecting cables between the electrodes and the amplifier and the sudden changes in electrode-skin impedance due to electrode movements. We concluded that further advancements in EEG technology should focus on the transduction stage of the biopotentials amplification chain, such as the electrode technology and its interfacing with the acquisition system. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 11151 KiB  
Article
Electrical Impedance Tomography-Based Electronic Skin for Multi-Touch Tactile Sensing Using Hydrogel Material and FISTA Algorithm
by Zhentao Jiang, Zhiyuan Xu, Mingfu Li, Hui Zeng, Fan Gong and Yuke Tang
Sensors 2024, 24(18), 5985; https://doi.org/10.3390/s24185985 - 15 Sep 2024
Cited by 2 | Viewed by 1851
Abstract
Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of [...] Read more.
Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of the skin, ensuring the stretchability and elasticity of the skin’s interior. However, the image quality reconstructed by EIT technology has deteriorated in multi-touch identification, where it is challenging to clearly reflect the number of touchpoints and accurately size the touch areas. This paper proposed an EIT-based flexible tactile sensor that employs self-made hydrogel material as the primary sensing medium. The sensor’s structure, fabrication process, and tactile imaging principle were elaborated. To improve the quality of image reconstruction, the fast iterative shrinkage-thresholding algorithm (FISTA) was embedded into the EIDORS toolkit. The performances of the e-skin in aspects of assessing the touching area, quantitative force sensing and multi-touch identification were examined. Results showed that the mean intersection over union (MIoU) of the reconstructed images was improved up to 0.84, and the tactile position can be accurately imaged in the case of the number of the touchpoints up to seven (larger than two to four touchpoints in existing studies), proving that the combination of the proposed sensor and imaging algorithm has high sensitivity and accuracy in multi-touch tactile sensing. The presented e-skin shows potential promise for the application in complex human–robot interaction (HRI) environments, such as prosthetics and wearable devices. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

25 pages, 9089 KiB  
Article
Remotely Powered Two-Wire Cooperative Sensors for Bioimpedance Imaging Wearables
by Olivier Chételat, Michaël Rapin, Benjamin Bonnal, André Fivaz, Benjamin Sporrer, James Rosenthal and Josias Wacker
Sensors 2024, 24(18), 5896; https://doi.org/10.3390/s24185896 - 11 Sep 2024
Viewed by 1501
Abstract
Bioimpedance imaging aims to generate a 3D map of the resistivity and permittivity of biological tissue from multiple impedance channels measured with electrodes applied to the skin. When the electrodes are distributed around the body (for example, by delineating a cross section of [...] Read more.
Bioimpedance imaging aims to generate a 3D map of the resistivity and permittivity of biological tissue from multiple impedance channels measured with electrodes applied to the skin. When the electrodes are distributed around the body (for example, by delineating a cross section of the chest or a limb), bioimpedance imaging is called electrical impedance tomography (EIT) and results in functional 2D images. Conventional EIT systems rely on individually cabling each electrode to master electronics in a star configuration. This approach works well for rack-mounted equipment; however, the bulkiness of the cabling is unsuitable for a wearable system. Previously presented cooperative sensors solve this cabling problem using active (dry) electrodes connected via a two-wire parallel bus. The bus can be implemented with two unshielded wires or even two conductive textile layers, thus replacing the cumbersome wiring of the conventional star arrangement. Prior research demonstrated cooperative sensors for measuring bioimpedances, successfully realizing a measurement reference signal, sensor synchronization, and data transfer though still relying on individual batteries to power the sensors. Subsequent research using cooperative sensors for biopotential measurements proposed a method to remove batteries from the sensors and have the central unit supply power over the two-wire bus. Building from our previous research, this paper presents the application of this method to the measurement of bioimpedances. Two different approaches are discussed, one using discrete, commercially available components, and the other with an application-specific integrated circuit (ASIC). The initial experimental results reveal that both approaches are feasible, but the ASIC approach offers advantages for medical safety, as well as lower power consumption and a smaller size. Full article
Show Figures

Figure 1

13 pages, 4393 KiB  
Article
A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition
by Jun Guo, Xuanqi Wang, Ruiyu Bai, Zimo Zhang, Huazhen Chen, Kai Xue, Chuang Ma, Dawei Zang, Erwei Yin, Kunpeng Gao and Bowen Ji
Biosensors 2024, 14(9), 432; https://doi.org/10.3390/bios14090432 - 6 Sep 2024
Cited by 2 | Viewed by 2114
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through [...] Read more.
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human–machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair. Full article
Show Figures

Figure 1

Back to TopTop