Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = skeletal muscle morphology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 372 KiB  
Article
Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players
by Bettina Béres, István Györe, Annamária Zsákai, Tamas Dobronyi, Peter Bakonyi and Tamás Szabó
Sports 2025, 13(8), 252; https://doi.org/10.3390/sports13080252 - 31 Jul 2025
Viewed by 151
Abstract
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal [...] Read more.
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal exercise, with limited exploration of deficit dynamics. The present study aimed to analyze the behavior of oxygen deficit in young female handball players (N = 42, age: 15.4 ± 1.3 years) during graded exercise. Oxygen deficit was estimated using the American College of Sports Medicine (ACSM) algorithm, restricted to subanaerobic threshold segments of a quasi-ramp exercise protocol. Cardiorespiratory parameters were measured with the spiroergometry test on treadmills, and body composition was assessed via Dual Energy X-ray Absorptiometry (DEXA). Cluster and principal component analyzes revealed two distinct athlete profiles with statistically significant differences in both morphological and physiological traits. Cluster 2 showed significantly higher relative VO2 peak (51.43 ± 3.70 vs. 45.70 ± 2.87 mL·kg−1·min−1; p < 0.001; Cohen’s d = 1.76), yet also exhibited a greater oxygen deficit per kilogram (39.03 ± 16.71 vs. 32.56 ± 14.33 mL·kg−1; p = 0.018; d = 0.80). Cluster 1 had higher absolute body mass (69.67 ± 8.13 vs. 59.66 ± 6.81 kg; p < 0.001), skeletal muscle mass (p < 0.001), and fat mass (p < 0.001), indicating that body composition strongly influenced oxygen deficit values. The observed differences in oxygen deficit profiles suggest a strong influence of genetic predispositions, particularly in cardiovascular and muscular oxygen utilization capacity. Age also emerged as a critical factor in determining the potential for adaptation. Oxygen deficit during submaximal exercise appears to be a multifactorial phenomenon shaped by structural and physiological traits. While certain influencing factors can be modified through training, others especially those of genetic origin pose inherent limitations. Early development of cardiorespiratory capacity may offer the most effective strategy for long-term optimization. Full article
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Postmortem Changes in mRNA Expression and Tissue Morphology in Brain and Femoral Muscle Tissues of Rat
by Sujin Choi, Minju Jung, Mingyoung Jeong, Sohyeong Kim, Dong Geon Lee, Kwangmin Park, Xianglan Xuan, Heechul Park, Dong Hyeok Kim, Jungho Kim, Min Ho Lee, Yoonjung Cho and Sunghyun Kim
Int. J. Mol. Sci. 2025, 26(15), 7059; https://doi.org/10.3390/ijms26157059 - 22 Jul 2025
Viewed by 208
Abstract
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s [...] Read more.
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s nomogram, which uses rectal temperature measurement; livor mortis; rigor mortis; and forensic entomology. However, these methods are usually affected by various conditions in the surrounding environment. The purpose of the present study was to compare molecular genetics and histological changes in the brain and skeletal muscle tissues of SD rats over increasing periods of time after death. For the PMIs, we considered 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 4 days, 6 days, 8 days, 10 days, 14 days, and 21 days and compared them at 4 °C and 26 °C. Hematoxylin and Eosin (H&E) staining was performed to observe tissue changes. Morphological tissue changes were observed in cells for up to 21 days at 4 °C, and cell destruction was visually confirmed after 14 days at 26 °C. Total RNA (tRNA) was isolated from each tissue sample, and complementary DNA (cDNA) was synthesized. A reverse transcription quantitative PCR (RT-qPCR) SYBR Green assay targeting three types of housekeeping genes, including Gapdh, Sort1, B2m, and 5S rRNA, was performed. The results showed that Gapdh and 5S rRNA were highly stable and could be better RNA targets for estimating the PMI in brain and skeletal muscle tissues. Conversely, Sort1 and B2m showed poor stability and low expression levels. In conclusion, these molecular biomarkers could be used as auxiliary indicators of the PMI in human, depending on the stability of the marker. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

20 pages, 4089 KiB  
Article
Epicatechin Gallate Regulation of Steroid Hormone Levels Improves Sarcopenia in C57BL/6J Mice
by Ziwei Huang, Meifeng Liu, Yufei Zhou, Yiyu Tang, Jian’an Huang, Sheng Zhang, Zhonghua Liu and Ailing Liu
Foods 2025, 14(14), 2495; https://doi.org/10.3390/foods14142495 - 16 Jul 2025
Viewed by 342
Abstract
The decline in differentiation capacity during skeletal muscle (SkM) aging contributes to the deterioration of skeletal muscle function and impairs regenerative ability. Epicatechin gallate (ECG), a major functional component of catechins found in tea, has an unclear role in aging-related sarcopenia. In vivo [...] Read more.
The decline in differentiation capacity during skeletal muscle (SkM) aging contributes to the deterioration of skeletal muscle function and impairs regenerative ability. Epicatechin gallate (ECG), a major functional component of catechins found in tea, has an unclear role in aging-related sarcopenia. In vivo experiments in 54-week-old C57BL/6J mice showed that ECG treatment improved exercise performance, muscle mass, and fiber morphology and downregulated the expression of the testosterone metabolic enzyme gene UGT2A3 in aged mice. In vitro experiments with Leydig cells (TM3) demonstrated that ECG upregulated the mRNA and protein expression levels of testosterone synthase genes, including StAR, P450scc, 3β-HSD, CYP17a1, and 17β-HSD. Network pharmacology analysis further suggested that ECG can influence testosterone secretion through the regulation of cytokines, thereby promoting skeletal muscle differentiation. These findings indicate that ECG enhances the differentiation of skeletal muscle cells by modulating testosterone levels, which helps alleviate age-related muscle function decline. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

27 pages, 5816 KiB  
Article
Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans
by Piper Reid Hunt, Martine Ferguson, Nicholas Olejnik, Jeffrey Yourick and Robert L. Sprando
Toxics 2025, 13(7), 589; https://doi.org/10.3390/toxics13070589 - 14 Jul 2025
Viewed by 348
Abstract
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like [...] Read more.
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like C. elegans lacks these systems. However, many genetic pathways required for mammalian morphogenesis have at least some conserved elements in this small, invertebrate model. The C. elegans lifecycle is 3 days. The effects of 5FU, HU, and RV on the C. elegans morphology were evaluated on day 4 post-initiation of the feeding after hatching for continuous and 24 h (early-only) developmental exposures. Continuous exposures to 5FU and HU induced increases in the incidences of abnormal gonadal structures that were significantly reduced in early-only exposure groups. The incidence of prolapse increased with continuous 5FU and HU exposures and was further increased in early-only exposure groups. Intestinal prolapse through the vulval muscle in C. elegans may be related to reported 5FU and HU effects on skeletal muscle and the gastrointestinal tract in mammals. Continuous RV exposures induced a phenotype lacking a uterus and gonad arms, as well as vulval anomalies that were largely, but not completely, reversed with early-only exposures, which is consistent with reported reversible reproductive tract anomalies after an RV exposure in mammals. These findings suggest that C. elegans can be used to detect the hazard risk from chemicals that adversely affect conserved pathways involved in organismal morphogenesis, but to determine the fit-for-purpose use of this model in chemical safety evaluations, further studies using larger and more diverse chemical test panels are needed. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

17 pages, 1208 KiB  
Article
Structural Features of the Temporomandibular Joint Evaluated by MRI and Their Association with Oral Function and Craniofacial Morphology in Female Patients with Malocclusion: A Cross-Sectional Study
by Mari Kaneda, Yudai Shimpo, Kana Yoshida, Rintaro Kubo, Fumitaka Kobayashi, Akira Mishima, Chinami Igarashi and Hiroshi Tomonari
J. Clin. Med. 2025, 14(14), 4921; https://doi.org/10.3390/jcm14144921 - 11 Jul 2025
Viewed by 387
Abstract
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, [...] Read more.
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, few studies have examined how TMJ structural features observed on MRI findings relate to oral function and craniofacial morphology in female patients with malocclusion. To investigate the associations among TMJ structural features, oral function, and craniofacial morphology in female patients with malocclusion, using MRI findings interpreted in conjunction with a preliminary assessment based on selected components of the DC/TMDs Axis I protocol. Methods: A total of 120 female patients (mean age: 27.3 ± 10.9 years) underwent clinical examination based on DC/TMDs Axis I and MRI-based structural characterization of the TMJ. Based on the structural features identified by MRI, patients were classified into four groups for comparison: osteoarthritis (OA), bilateral disk displacement (BDD), unilateral disk displacement (UDD), and a group with Osseous Change/Disk Displacement negative (OC/DD (−)). Occlusal contact area, occlusal force, masticatory efficiency, tongue pressure, and lip pressure were measured. Lateral cephalometric analysis assessed skeletal and dental patterns. Results: OA group exhibited significantly reduced occlusal contact area (p < 0.0083, η2 = 0.12) and occlusal force (p < 0.0083, η2 = 0.14) compared to the OC/DD (−) group. Cephalometric analysis revealed that both OA and BDD groups had significantly larger ANB angles (OA: 5.7°, BDD: 5.2°, OC/DD (−): 3.7°; p < 0.0083, η2 = 0.21) and FMA angles (OA: 32.4°, BDD: 31.8°, OC/DD (−): 29.0°; p < 0.0083, η2 = 0.17) compared to the OC/DD (−) group. No significant differences were observed in masticatory efficiency, tongue pressure, or lip pressure. Conclusions: TMJ structural abnormalities detected via MRI, especially osteoarthritis, are associated with diminished oral function and skeletal Class II and high-angle features in female patients with malocclusion. Although orthodontic treatment is not intended to manage TMDs, MRI-based structural characterization—when clinically appropriate—may aid in treatment planning by identifying underlying joint conditions. Full article
Show Figures

Figure 1

25 pages, 4666 KiB  
Article
Taurine Attenuates Disuse Muscle Atrophy Through Modulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 Pathways
by Xi Liu, Yifen Chen, Linglin Zhang, Zhen Qi, Longhe Yang, Caihua Huang, Li Wang and Donghai Lin
Antioxidants 2025, 14(7), 847; https://doi.org/10.3390/antiox14070847 - 10 Jul 2025
Viewed by 547
Abstract
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid [...] Read more.
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid enriched in energy drinks, can improve the proliferation and myogenic differentiation potential of myoblasts. This study aimed to investigate whether taurine supplementation could protect against DMA and explore its potential role in modulating ferroptosis. Using a hindlimb suspension-induced DMA model in male C57BL/6J mice (6–8 weeks old), we assessed muscle mass, function, ferroptosis-related markers, histopathological changes, and metabolic alterations. The results showed that taurine supplementation improved muscle strength and morphology while attenuating markers of ferroptosis, including iron accumulation, lipid peroxidation, and glutathione and related protein (NRF2, GPX4, and xCT) depletion. Metabolomic analysis suggested that taurine modulates disorders in glutathione and lipid metabolism, potentially associated with the regulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 pathways. While these findings support a protective role for taurine and a possible link between ferroptosis and DMA, further functional studies are needed to confirm causality and assess the compound’s translational potential. This study provides initial in vivo evidence implicating ferroptosis in DMA and highlights taurine as a promising candidate for future therapeutic exploration. Full article
Show Figures

Figure 1

27 pages, 10560 KiB  
Article
A Liposomal Strategy for Dual-Action Therapy in Sarcopenia: Co-Delivery of Caffeine and HAMA
by Alfred Najm, Alexandra Cătălina Bîrcă, Adelina-Gabriela Niculescu, Adina Alberts, Alexandru Mihai Grumezescu, Bianca Gălățeanu, Mircea Beuran, Bogdan Severus Gaspar, Claudiu Stefan Turculet and Ariana Hudiță
Int. J. Mol. Sci. 2025, 26(13), 6031; https://doi.org/10.3390/ijms26136031 - 24 Jun 2025
Viewed by 547
Abstract
The biological complexity of sarcopenia presents a major challenge for therapeutic intervention due to the wide range of degenerative changes it induces in skeletal muscle. This study demonstrates the potential of liposomal controlled release systems to address these challenges by combining two bioactive [...] Read more.
The biological complexity of sarcopenia presents a major challenge for therapeutic intervention due to the wide range of degenerative changes it induces in skeletal muscle. This study demonstrates the potential of liposomal controlled release systems to address these challenges by combining two bioactive agents with complementary actions: caffeine (CAF), encapsulated in DMPC-based liposomes, and hyaluronic acid methacrylate (HAMA), encapsulated in DOPC-based liposomes. A hybrid system was also developed to deliver both substances simultaneously, aiming to restore tissue function through combined metabolic, anti-inflammatory, and regenerative effects. The liposomes exhibited nanoscale dimensions, spherical morphology, and intact membrane structure, as confirmed by electron microscopy. DLS analysis indicated good colloidal stability and monodisperse size distribution across all formulations, with improved stability observed in the hybrid system. Drug release studies showed a time-dependent profile, with HAMA releasing rapidly and CAF releasing gradually, supporting a dual-action therapeutic approach tailored to the multifactorial pathology of sarcopenia. The biological assays, performed in an established in vitro sarcopenia model, revealed the potential of liposomes co-delivering caffeine and HAMA to mitigate oxidative stress, preserve mitochondrial function, and reduce apoptosis in H2O2-damaged myotubes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 12796 KiB  
Article
The Thoracic Anatomy of Two Flightless Chrysolina Species (Coleoptera: Chrysomelidae)
by Sipei Liu, Xiaokun Liu, Xieshuang Wang, Wenjie Li, Xin Liu and Siqin Ge
Insects 2025, 16(6), 618; https://doi.org/10.3390/insects16060618 - 11 Jun 2025
Viewed by 914
Abstract
Flight loss has independently evolved across nearly all winged insect orders. Comparing the thoracic structures of flightless insects with those of their flight-capable relatives can reveal key characteristics linked with flight. Although flight loss has been widely studied in beetles, exploration of this [...] Read more.
Flight loss has independently evolved across nearly all winged insect orders. Comparing the thoracic structures of flightless insects with those of their flight-capable relatives can reveal key characteristics linked with flight. Although flight loss has been widely studied in beetles, exploration of this phenomenon has been limited to taxonomic and geographic distribution studies in the species-rich family Chrysomelidae, with little analysis of thoracic anatomical structures. This study employs a suite of morphological techniques to examine the thoracic structures of two flightless beetle species Chrysolina: sulcicollis and Chrysolina virgata, originating from desert and temperate regions, respectively. A comparison between the two flightless species reveals that C. sulcicollis has fewer tergo-pleural muscles involved in elytral movement likely to save water, but more muscles that contribute to stabilizing larger body structures. Meanwhile, differences are also observed in the elytral base, the anterior corner of the mesal suture, and the setae on the meso-inner region of the epipleuron. Compared to other flight-capable chrysomelid beetles, apart from the absence of flight-related muscles, the two flightless beetles exhibit similar thoracic skeletal structures. The absence of lateral cervical sclerites, along with the presence of muscles Idvm4, 5 and Itpm5, could enhance head mobility as a compensatory adaptation doe the loss of flight capability. Additionally, the greater number of tergo-pleural muscles in the mesothorax of C. virgata could suggest that its elytra serve a specialized function. Compared to other flightless beetles, aside from the similarly reduced flight muscles, these two species have relatively intact thoracic skeletons. Further data on habitat, functional compensation and other related factors are needed to compare their evolutionary processes with those of other flightless beetles. Full article
Show Figures

Figure 1

15 pages, 3408 KiB  
Article
Pharmacological HIF-PH Inhibition Suppresses Myoblast Differentiation Through Continued HIF-1α Stabilization
by Yuya Miki, Akinobu Ochi, Hideki Uedono, Yoshinori Kakutani, Mitsuru Ichii, Yuki Nagata, Katsuhito Mori, Yasuo Imanishi, Tetsuo Shoji, Tomoaki Morioka and Masanori Emoto
Int. J. Mol. Sci. 2025, 26(11), 5410; https://doi.org/10.3390/ijms26115410 - 5 Jun 2025
Viewed by 489
Abstract
Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors continually stabilize hypoxia-inducible factor-1α (HIF-1α). These inhibitors are effective in the clinical treatment of renal anemia. However, the effects of continued HIF-1α stabilization on skeletal muscle differentiation remain unclear. This study aimed to investigate the effects of [...] Read more.
Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors continually stabilize hypoxia-inducible factor-1α (HIF-1α). These inhibitors are effective in the clinical treatment of renal anemia. However, the effects of continued HIF-1α stabilization on skeletal muscle differentiation remain unclear. This study aimed to investigate the effects of continued HIF-1α stabilization on skeletal muscle differentiation using a HIF-PH inhibitor in both in vitro and in vivo models. We cultured mouse C2C12 myoblasts to differentiate into myotubes with or without FG-4592, a HIF-PH inhibitor. Additionally, we treated nine-week-old male C57BL/6 mice with either FG-4592 or vehicle via intraperitoneal injections three times a week for four weeks. In vitro, FG-4592 treatment stabilized HIF-1α continually. Morphological analysis revealed that 72 h FG-4592 treatment suppressed differentiation of C2C12 myoblasts into myotubes. This treatment decreased the gene and protein expression of MyoD and myogenin, reduced the protein expression of myosin heavy chain (MHC), and increased the gene and protein expression of myostatin. HIF-1α knockdown mitigated the decrease in MHC protein expression induced by FG-4592. In vivo, FG-4592 treatment increased HIF-1α protein expression and decreased MyoD, myogenin, and MHC protein expression in gastrocnemius muscle. These findings suggest that pharmacological HIF-PH inhibition suppresses myoblast differentiation through continued HIF-1α stabilization. Full article
Show Figures

Figure 1

18 pages, 3819 KiB  
Article
Melatonin Promotes Muscle Growth and Redirects Fat Deposition in Cashmere Goats via Gut Microbiota Modulation and Enhanced Antioxidant Capacity
by Di Han, Zibin Zheng, Zhenyu Su, Xianliu Wang, Shiwei Ding, Chunyan Wang, Liwen He and Wei Zhang
Antioxidants 2025, 14(6), 645; https://doi.org/10.3390/antiox14060645 - 27 May 2025
Viewed by 638
Abstract
Liaoning cashmere goats is a dual-purpose breed valued for premium cashmere fiber and meat yields, and there is currently a lack of optimized strategies for meat quality, including skeletal muscle development and lipid partitioning. This investigation systematically examines how melatonin administration modulates gastrointestinal [...] Read more.
Liaoning cashmere goats is a dual-purpose breed valued for premium cashmere fiber and meat yields, and there is currently a lack of optimized strategies for meat quality, including skeletal muscle development and lipid partitioning. This investigation systematically examines how melatonin administration modulates gastrointestinal microbiota and antioxidant capacity to concurrently enhance skeletal muscle hypertrophy and redirect lipid deposition patterns, ultimately improving meat quality and carcass traits in Liaoning cashmere goats. Thirty female half-sibling kids were randomized into control and melatonin-treated groups (2 mg/kg live weight with subcutaneous implants). Postmortem analyses at 8 months assessed carcass traits, meat quality, muscle histology, plasma metabolites, and gut microbiota (16S rRNA sequencing). Melatonin supplementation decreased visceral adiposity (perirenal, omental, and mesenteric fat depots with a p < 0.05) while inducing muscle fiber hypertrophy (longissimus thoracis et lumborum (LTL) and biceps femoris (BF) with p < 0.05). The melatonin-treated group demonstrated elevated postmortem pH24h values, attenuated muscle drip loss, enhanced intramuscular protein deposition, and improved systemic antioxidant status (characterized by increased catalase and glutathione levels with concomitant reduction in malondialdehyde with p < 0.05). Melatonin reshaped gut microbiota, increasing α-diversity (p < 0.05) and enriching beneficial genera (Prevotella, Romboutsia, and Akkermansia), while suppressing lipogenic Desulfovibrio populations, and concomitant with improved intestinal morphology as evidenced by elevated villus height-to-crypt depth ratios. These findings establish that melatonin-mediated gastrointestinal microbiota remodeling drives anabolic muscle protein synthesis while optimizing fat deposition, providing a scientifically grounded strategy to enhance meat quality. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

22 pages, 2913 KiB  
Article
Comparative Analysis of PRV-1 in Atlantic Salmon and PRV-3 in Coho Salmon: Host-Specific Immune Responses and Apoptosis in Red Blood Cells
by Laura V. Solarte-Murillo, Sebastián Salgado, Tomás Gatica, Juan Guillermo Cárcamo, Thomais Tsoulia, Maria K. Dahle and Carlos Loncoman
Microorganisms 2025, 13(5), 1167; https://doi.org/10.3390/microorganisms13051167 - 21 May 2025
Viewed by 857
Abstract
Fish red blood cells (RBCs) are nucleated, transcriptionally active, and key players in both gas transport and immune responses. They are the primary targets of Orthoreovirus piscis (PRV), the etiological agent of heart and skeletal muscle inflammation (HSMI), which includes three genotypes (PRV-1, [...] Read more.
Fish red blood cells (RBCs) are nucleated, transcriptionally active, and key players in both gas transport and immune responses. They are the primary targets of Orthoreovirus piscis (PRV), the etiological agent of heart and skeletal muscle inflammation (HSMI), which includes three genotypes (PRV-1, PRV-2, and PRV-3), linked to circulatory disorders in farmed salmon. In Chile, PRV-3 affects the coho salmon (Oncorhynchus kisutch), but host–pathogen interactions remain poorly characterized. This study compared the interactions of PRV-3 in coho salmon and PRV-1 in Atlantic salmon (Salmo salar) using RBC infection models. RBCs were isolated from healthy juvenile salmon (n = 3) inoculated with either PRV-1 (Ct = 18.87) or PRV-3 (Ct = 21.86). Poly I:C (50 µg/mL) was used as a positive control for the antiviral response. Cells were monitored for up to 14 days post-infection (dpi). PRV-3 infection in coho salmon RBCs caused significant metabolic disruption, apoptosis from 7 dpi, and correlated with increasing viral loads. In contrast, PRV-1 infection in Atlantic salmon RBCs showed limited apoptosis and maintained cell viability. Coho salmon RBCs upregulated rig-i, mx, and pkr transcripts, indicating activation of the type I interferon pathway, whereas Atlantic salmon RBCs exhibited a more attenuated response. PRV-3 induced notable morphological changes in coho salmon RBCs, although neither PRV-3 nor PRV-1 caused hemolysis. These findings highlight species-specific differences in RBC responses to PRV infection and provide new insights into the pathogenesis of PRV-3 and PRV-1. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

11 pages, 2192 KiB  
Article
Effects of Aerobic Exercise on Irisin and Skeletal Muscle Autophagy in ApoE−/− Mice
by Wenxin Wang, Fengting Zheng, Jiawei Zhou, Yangfan Cao, Liang Zhang, Yao Lu, Qingbo Li, Ting Li, Mallikarjuna Korivi, Lifeng Wang and Wei Li
Curr. Issues Mol. Biol. 2025, 47(5), 371; https://doi.org/10.3390/cimb47050371 - 19 May 2025
Viewed by 604
Abstract
As a chronic inflammatory disease, atherosclerosis can affect the occurrence of skeletal muscle autophagy through a variety of mechanisms. Previous studies have demonstrated that exercise enhances autophagic activity through irisin-mediated pathways. Building upon this evidence, this study investigated the effects of a 12-week [...] Read more.
As a chronic inflammatory disease, atherosclerosis can affect the occurrence of skeletal muscle autophagy through a variety of mechanisms. Previous studies have demonstrated that exercise enhances autophagic activity through irisin-mediated pathways. Building upon this evidence, this study investigated the effects of a 12-week aerobic exercise training on irisin levels and skeletal muscle autophagy-related proteins in atherosclerotic mice. Male C57BL/6J and ApoE−/− mice were randomly assigned to four groups: Control Group (C), Aerobic Exercise Group (CE), ApoE−/− Control Group (AC), and ApoE−/− Aerobic Exercise Group (AE). Serum and muscle irisin levels were measured by ELISA; the expression levels of FNDC5, AMPK/mTOR pathway proteins and autophagy markers were detected by immunoblots, and muscle morphology was examined using H&E staining. Compared with the C group, the serum levels of TAG, TC, and LDL-C were higher than the AC group. Aerobic exercise increased irisin levels in skeletal muscle, upregulated the expression of LKB1 and p-AMPK, and presented an elevated LC3-II/I ratio, accompanied by reduced mTORC1 expression in CE mice. Aerobic exercise increased FNDC5 expression and irisin levels in serum and skeletal muscle, but also upregulated mTORC1 expression and reduced the LC3-II/I ratio in the AE group. Aerobic exercise enhances irisin synthesis and improves dyslipidemia in ApoE−/− mice. However, the increased expression of the mTORC1 protein contributed to decreasing the expression of autophagy-related proteins following exercise. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 2019 KiB  
Article
Metabolic Characteristics of Obese Adolescents with Different Degrees of Weight Loss After Identical Exercise Training Intervention
by Xianyan Xie, Gaoyuan Yang, Yulin Qin, Yu Wang, Zhijun Liu, Zhuofan Zhang, Ziyan Li, Huiguo Wang and Lin Zhu
Metabolites 2025, 15(5), 313; https://doi.org/10.3390/metabo15050313 - 7 May 2025
Viewed by 774
Abstract
Objectives: This study aims to elucidate the metabolic differences between obese adolescents categorized into low-weight-loss (LWL) and high-weight-loss (HWL) groups. Methods: The objective of this study is to investigate the metabolic characteristics of obese adolescents, with a focus on the statistically significant individual [...] Read more.
Objectives: This study aims to elucidate the metabolic differences between obese adolescents categorized into low-weight-loss (LWL) and high-weight-loss (HWL) groups. Methods: The objective of this study is to investigate the metabolic characteristics of obese adolescents, with a focus on the statistically significant individual differences observed in weight loss outcomes after the same dietary and exercise training intervention. A four-week exercise and dietary intervention was administered to the participants. Obese adolescents were categorized into LWL (with a weight loss percentage of 5–10%) and HWL (with a weight loss percentage of >10%) groups on the basis of their weight loss outcomes. Post-intervention changes in body morphology and body composition between the two groups were compared using Analysis of Covariance (ANCOVA), with gender as a covariate. Additionally, metabolic changes were analyzed in depth; differential metabolites between the groups were identified through ANCOVA adjusted for gender, followed by pathway analysis. Results: After the four-week exercise intervention, the body morphology and composition of the obese adolescents showed significant improvements compared with those before the intervention (p < 0.001). For example, weight decreased from 80.65 kg to 72.35 kg, BMI decreased from 30.57 kg/m2 to 27.26 kg/m2, waist circumference decreased from 103.64 cm to 94.72 cm, and body fat percentage decreased from 32.68% to 28.54%. Prior to the exercise intervention, no significant differences in body morphology and composition were observed between the HWL and LWL groups (p > 0.05). After the intervention, the HWL group demonstrated significant improvements in weight, body mass index, waist circumference, body fat percentage, fat mass, fat-free mass, body water amount, and skeletal muscle mass compared with the LWL group (p < 0.001). After controlling for the levels of pre-intervention metabolites, 27 differential metabolites were identified between the HWL and LWL groups. These metabolites were categorized into fatty acids, amino acids, organic acids, carnitines, indoles, benzoic acids, and carbohydrates. Notably, they were significantly enriched in the eight metabolic pathways involved in amino acid metabolism, fatty acid biosynthesis, and coenzyme A biosynthesis. Conclusions: A four-week exercise intervention enhanced the body morphology and physical fitness of obese adolescents, although the degree of weight loss varied among individuals. Considerable weight reduction was significantly correlated with metabolites involved in lipid, amino acid, organic acid, carbohydrate, and gut microbiota metabolism and with the enrichment of pathways involved in amino acid metabolism, fatty acid biosynthesis, and coenzyme A biosynthesis. These findings indicate that intrinsic metabolic characteristics considerably influence individual responsiveness to exercise-based weight-loss interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

19 pages, 4623 KiB  
Article
Lactobacillus fermentum LF31 Supplementation Reversed Atrophy Fibers in a Model of Myopathy Through the Modulation of IL-6, TNF-α, and Hsp60 Levels Enhancing Muscle Regeneration
by Martina Sausa, Letizia Paladino, Federica Scalia, Francesco Paolo Zummo, Giuseppe Vergilio, Francesca Rappa, Francesco Cappello, Melania Ionelia Gratie, Patrizia Proia, Valentina Di Felice, Antonella Marino Gammazza, Filippo Macaluso and Rosario Barone
Nutrients 2025, 17(9), 1550; https://doi.org/10.3390/nu17091550 - 30 Apr 2025
Viewed by 693
Abstract
Background/Objectives: Recent studies have highlighted the role of the gut–muscle axis, suggesting that modulation of the gut microbiota may indirectly benefit skeletal muscle. This study aimed to evaluate the effects of Lactobacillus fermentum (L. fermentum) supplementation in a model of [...] Read more.
Background/Objectives: Recent studies have highlighted the role of the gut–muscle axis, suggesting that modulation of the gut microbiota may indirectly benefit skeletal muscle. This study aimed to evaluate the effects of Lactobacillus fermentum (L. fermentum) supplementation in a model of muscle atrophy induced by chronic ethanol (EtOH) intake, focusing on inflammatory and antioxidant mechanisms. Methods: Sixty 12-month-old female Balb/c mice were divided randomly into three groups (n = 20/group): (1) Ethanol (EtOH) group, receiving ethanol daily for 8 and 12 weeks to induce systemic oxidative stress and inflammation; (2) Ethanol + Probiotic (EtOH + P) group, receiving both ethanol and L. fermentum supplementation for the same durations; and (3) Control (Ctrl) group, receiving only water. Muscle samples were analyzed for the fiber morphology, inflammatory markers, oxidative stress indicators, and satellite cell (SC) activity. All data were tested for normality using the Shapiro–Wilk test before applying a parametric analysis. A statistical analysis was performed using one-way ANOVA followed by a Bonferroni post-hoc test. The level of significance was set at p < 0.05. Results: EtOH exposure caused significant atrophy in all muscle fiber types (type I, IIa, and IIb), with the most pronounced effects on oxidative fibers. L. fermentum supplementation significantly reversed atrophy in type I and IIa fibers, accompanied by a significant reduction in IL-6, TNF-α, and Hsp60 expression levels, indicating the protective effect of L. fermentum against oxidative stress and inflammation. Moreover, the probiotic treatment increased MyoD expression in SCs, suggesting enhanced regenerative activity, without histological evidence of fibrosis. Conclusions: These findings suggest that L. fermentum supplementation could counteract EtOH-induced skeletal muscle damage by reducing inflammation and oxidative stress and promoting muscle repair, indicating its potential as an adjuvant, in the therapeutic strategy of models of muscle degeneration. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

20 pages, 8179 KiB  
Article
Unveiling Key Genes and Crucial Pathways in Goose Muscle Satellite Cell Biology Through Integrated Transcriptomic and Metabolomic Analyses
by Yi Liu, Cui Wang, Mingxia Li, Yunzhou Yang, Huiying Wang, Shufang Chen and Daqian He
Int. J. Mol. Sci. 2025, 26(8), 3710; https://doi.org/10.3390/ijms26083710 - 14 Apr 2025
Viewed by 567
Abstract
Skeletal muscle satellite cells (SMSCs) are quiescent stem cells located in skeletal muscle tissue and function as the primary reservoir of myogenic progenitors for muscle growth and regeneration. However, the molecular and metabolic mechanisms governing their differentiation in geese remain largely unexplored. This [...] Read more.
Skeletal muscle satellite cells (SMSCs) are quiescent stem cells located in skeletal muscle tissue and function as the primary reservoir of myogenic progenitors for muscle growth and regeneration. However, the molecular and metabolic mechanisms governing their differentiation in geese remain largely unexplored. This study comprehensively examined the morphological, transcriptional, and metabolic dynamics of goose SMSCs across three critical differentiation stages: the quiescent stage (DD0), the differentiation stage (DD4), and the late differentiation stage (DD6). By integrating transcriptomic and metabolomic analyses, stage-specific molecular signatures and regulatory networks involved in SMSC differentiation were identified. Principal component analysis revealed distinct clustering patterns in gene expression and metabolite profiles across these stages, highlighting dynamic shifts in lipid metabolism and myogenesis. The PPAR signaling pathway emerged as a key regulator, with crucial genes such as PPARG, IGF1, ACSL5, FABP5, and PLIN1 exhibiting differentiation-dependent expression patterns. Notably, PPARG and IGF1 displayed negative correlations with adenosine and L-carnitine levels, suggesting their role in metabolic reprogramming during myotube formation. Additionally, MYOM2 and MYBPC1 exhibited stage-specific regulation and positively correlated with 2,3-dimethoxyphenylamine. This study provides a foundational framework for understanding muscle development and regeneration, offering valuable insights for both agricultural and biomedical research. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

Back to TopTop